IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 7, 2018, accepted November 22, 2018, date of publication December 25, 2018,

date of current version January 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2883738

Machine Learning Based Optimized Pruning
Approach for Decoding in Statistical

Machine Translation

DEBAJYOTY BANIK™, ASIF EKBAL, AND PUSHPAK BHATTACHARYYA

Department of Computer Science and Engineering, Indian Institute of Technology Patna, Bihta 801103, India

Corresponding author: Debajyoty Banik (debajyoty.banik @ gmail.com)

ABSTRACT A conventional decoding algorithm is critical to the success of any statistical machine
translation system. Providing an enormous amount of space leads to inappropriate slow decoding. There
is a trade-off between the translation accuracy and the decoding speed. Pruning algorithms (like histogram
pruning, threshold pruning) are trying to optimize this. The pruning algorithm has a pre-defined limit on
the supplemental parameters (i.e. stack size, beam threshold) that helps to improve the translation quality
and speed up the decoder. However, the same parameter value cannot provide the qualitative translation
in optimum time. These stack size and beam threshold values should be changed based on texts’ structures.
In this paper, we identify the best stack size and beam threshold values runtime based on the text structure and
characteristics using a machine learning-based approach. Then, the values of these parameters are applied
into the beam search algorithm for decoding. Finally, our experiments on low-resourced Asian languages
show significant performance improvements in terms of their translation accuracy and decoding time. The
HindEnCorp and ILCI datasets are used as the benchmark datasets with English-Hindi, Hindi-Marathi,
Hindi-Konkani, Bengali-Hindi language pair, for our various experiments. Moreover, we incorporate the
proposed technique in cube pruning algorithm for faster decoding. We notice more improvement in this

approach.

INDEX TERMS Machine learning, machine translation, decoding, evaluation metric.

I. INTRODUCTION

Statistical machine translation (SMT) has received enor-
mous interest in the field of natural language processing
community. Best performing statistical machine translation
systems are based on phrase-based models that aim to
reduce the restrictions of word-based translation by translat-
ing whole sequences of words, where the lengths may vary.
The sequences of words are called phrases. Mainly three
models are incorporated into the phrase base SMT system
for decoding, the translation model, the distortion model, and
the language model [32]. Mathematically, it can be modeled
as:

epest = argmax.P(elf) = argmax [P(f|e)PLu(e)] (1)

Where, f, e, have their usual meanings of output and
input, respectively. The translation with the highest score
is denoted as epesr. Pry(e) is language model, and P(f|e)
is the translation model. The translation model can be

expressed as:

1
P(fi'ler") = [[¢(filend(start; — endi .y — 1) (2)

i=1

where, ¢(fi|e;) is the phrase translation probability, which is
the probability of translating to phrase e; from the phrase f;.
The phrase translation probability is learned from large paral-
lel corpora. The distortion probability d(start; — end;_1 — 1)
is settled with an exponential cost. The simple meaning of
distortion cost is how many input words are skipped to gen-
erate the next output phrase. The language model measures
how likely it is that a sequence of words would be in the
target text. The decoding process is handled by segmenting
input sentence f into the sequence of I phrases fi/, which
are then distributed over all possible segments. The goal of
the machine translation model is to find the better transla-
tion [30], [5] in a reasonable time. The decoding problem
for statistical machine translation model is NP-complete [26].

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

1736 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3756-864X

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

IEEE Access

The exhausting analysis of all possible translations, scoring
them, and then finally selecting the best-translated output is
very costly. So, the decoder performs a heuristic search on
the search space and finds the translation closest to the best
translation (epegr).

The decoder’s task is to trace the translation that is most
probable as per arrangement of already learned parameters.
Traditional decoding of statistical machine translation model
uses beam search [28] algorithm that tries to find the best
translation. Generation of a huge number of hypotheses in
the stacks is a normal phenomenon for the exponential nature
of machine translation decoding. The main challenge in
machine translation decoding is large numbers of hypotheses
in the stacks, for its exponential nature of hypothesis gen-
eration. Comparatively poor hypotheses need to be pruned
out from the hypothesis list to speed up the decoding. Two
types of pruning algorithms are prevalent for this task; i.e.
histogram pruning and threshold pruning [41]. Maximum
number (n) of hypotheses in the stack is considered for his-
togram pruning. In threshold pruning, only those hypotheses
which have the score higher than a fixed value are allowed in
the stack. So, if the score of the next hypothesis is less than
this fixed value, it is pruned out. In existing methods, these
values are predefined and fixed. We propose a mechanism
to find optimal values for these parameters dynamically. The
primary goal of this work is to decode into the target sentence
in optimal time with better accuracy.

To make decoder faster, cube pruning [23] is an alternate
way of the search algorithm in addition to the traditional
approach. We have found out that cube pruning [8], [18] is
not only faster than beam search but also gives a much higher
translation accuracy in terms of BLEU. Very few works have
been done with cube pruning. We have also presented a
comparison between traditional beam search based and cube
pruning based decoding approaches to show their accuracy
and decoding time over differ over different source texts.
The performance improvement with machine learning based
parameter selection has been also described in our paper.
Cube pruning algorithm [8] has certain parameters that can
be used to improve the decoding process. It is also impossible
to manually predict the correct value of these parameters
like the selection of beam search algorithm’s parameters val-
ues for different inputs. We have incorporated the proposed
method with cube pruning algorithm to have better translation
accuracy in lesser time than any kind of existing decoding
approaches. We have achieved the goal after classifying input
text by using a machine learning approach and then applying
the best set of parameters while decoding. Finally, we have
incorporated our technique to Moses toolkit' which is a free
open source statistical machine translation engine and is well
approved by the community. We incorporate the proposed
framework with Moses2? which is cube pruning decoder for
optimal decoding.

1 https://github.com/moses-smt/mosesdecoder.git
2https:// github.com/moses-smt/mosesdecoder/tree/master/moses2

VOLUME 7, 2019

The decoding is an NP-hard problem [27]. Providing an
enormous amount of space leads to inappropriate slow decod-
ing. Since the space of probable translation is too large,
traditional decoding algorithms are just ready to explore its
segment. Hence, there is a chance to miss the better solu-
tions. Some pruning strategies have been integrated with
statistical machine translation decoding to keep the better
solutions for better translation in optimal time. The pruning
algorithm has a pre-defined limit on supplemental parame-
ters that help to improve translation quality and speed up
the decoder. The main problem of the existing machine
translation decoder is using predefined static parameters (i.e.
stack size, beam threshold) for decoding. But every text
may have a different structure. So, these parameter values
should be changed proactively for optimal decoding. It is
quite hard to predict the combination of these parameters’
values which will be optimum for a specific piece of text.
Higher decoding speed usually affected the cost of translation
quality.

In this paper, our contribution is to identify the best stack
size and the beam threshold values dynamically and apply
the values of these parameters during decoding. First, we use
beam search algorithm to decode. This paper aims to create
a simple but effective model for optimizing the decoding
algorithm, in terms of accuracy and speed. The paper shows,
the technique to dynamically choose the optimal stack size
and the beam threshold values in the beam search algorithm
which provides promising accuracy improvement in terms
of the BLEU score and decoding time. Moreover, we use
the cube pruning algorithm after dynamically selecting the
parameters’ values to have more optimal translated output
in term of accuracy in minimum time. It also validates the
inheriting power of our proposed approach.

A. RELATED WORK
The open source toolkit for statistical machine translation
(Moses) has been designed in [19]. Two new decoders were
proposed for fast and optimal decoding [15]. These two
decoders have opposite characteristics: a slow but optimal
decoder that treats decoding as an integer-programming opti-
mization problem and a fast but non-optimal greedy decoder.
They compared output quality and the speed of traditional
stack-based decoding approach with new decoders.
Researchers described language models which are very
efficient and fastin [17] and [39]. The phrase table implemen-
tation which is loaded on demand for the SMT decoder was
done in [40]. This method reduces the memory requirements
and initial loading time. Extend version (by compressing
the on-disk phrase table and lexicalized re-ordering model)
of this method was noted down in [25]. In [8] the cube-
pruning and the cube-growing algorithm were introduced that
allows the trade-off between translation quality and speed to
the adjusted with a single parameter. Hoang [19], Li [35]
support cube-pruning for phrase-based statistical models.
Hoang et al. [18] re-examine the major components of
phrase-based decoding and decoder implementation with

1737

IEEE Access

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

specific accentuation on speed and versatility on multi-
core machines. The outcome is a drop-in substitution for
the Moses decoder which is up to fifteen times faster and
scales monotonically with the number of cores. In [33],
translation accuracy was increased by using sub-word level
decoding but decoding time also increased to a great extent
(about 70 times). So, they tried to reduce the decoding time
by manipulating various factors that can affect the decod-
ing process but still, the decrease was not much and the
decoding time was 63 times more than the baseline case.
Koehn er al. [30] presented the Moses decoder! for phrase-
based machine translation. This tool was used to some extent
in our experiments. Traditional SMT uses the beam search
algorithm for finding the best translation. But in SMT, same
decoder parameters are applied for decoding whatever the
source text is unless specified otherwise. But it is not pos-
sible for the user to decide the set of parameter’s values for
different input. There is no such inbuilt mechanism to do so.
We know that there is always a trade-off between better trans-
lation and decoding time in machine translation. There is still
an effort to decrease the decoding time or increase the transla-
tion accuracy or both. But almost all the efforts were made till
now that try to improve either decoding algorithm [12] or tune
the parameters of the training model (MERT) [2]. But in
every case, the process of decoding is applied the same
way independent of the input. A fundamental fact has never
been considered so far, a certain type of text file, like in
stack decoding might require a different value stack size
and beam threshold. This scenario is not an exception for
other decoding algorithms, like cube pruning. In this paper,
we have shown that parameters’ values are a very crucial
factor for decoding time and translation accuracy which were
not explored before. We propose a machine learning based
parameters selection technique for better decoding. As per
the best of our knowledge, the concept of machine learning
approach for machine translation has been introduced for the
first time in the literature.

B. MOTIVATION

Though the neural machine translation (NMT) [38] is the
recent trend but it is not a good option for low resource
languages due to its data hungriness. Though there are several
techniques for low resource languages using NMT approach
but statistical machine translation (SMT) approach is better
till now than NMT system [31].

In SMT approach, some predefined values for stack size
and beam threshold may not provide the best translation in the
optimal time for every case which is shown in Table 2. Here,
the optimal stack size is different for different the ten texts.
Texts which are going to be decode may have different struc-
tures. A long sentence with complex structure may require a
large stack size than the comparatively sort sentence with the
simple sentence. Not only that, the parameter values depend
on the number of stop words, pause, etc. Moreover, a text may
have the variety of sentences. Mix types of sentences are very
common. So, the same values for these parameters is not a

1738

TABLE 1. Detailed decoding performance analysis of single file (f.en.6) for
various stack sizes and default beam threshold; The decoding has been
done for the file f.en6 which consists of 419 sentences or 6116 tokens.

Different stack sizes Dechmg Time BLEU
(s) (in sec)
s=10 12.131 15.77
s=50 34.643 16.08
s =100 65.167 16.23
s=150 95.821 16.17
s =200 125.326 16.18
s =250 154.283 16.16
s =300 188.145 16.18
s =350 214.04 16.18
s =400 241.513 16.18
s =450 267.826 16.18
s =500 305.024 16.77
s =550 333.132 16.18
s =600 366.645 16.18
s =650 396.202 16.18
s =700 423.579 16.18
s =750 455.309 16.18
s =800 492.565 16.18
s =850 530.863 16.18
s =900 560.738 16.18
s =950 571.772 16.18
s = 1000 612.192 16.18

good choice for all cases. How the translation accuracy and
decoding time depend on different values is shown in Table 1.
Similar behaviour is noticeable for beam threshold value.
An intelligence system is required to find the optimal param-
eter values. In this paper, we propose the machine learn-
ing based intelligence system to find the optimal parameter
values on runtime and automatically apply these parameter
values for decoding (using beam search algorithm and cube
pruning algorithm) which help us to achieve better translation
output in minimal time. Lots of files are handled during
the experiments. We maintain a convention for future use.
Our convention for the naming is <type>.<language>.<file
number>. For an example, f.en.1 is the first source file in the
English language.

There are various strategy to use beam search algorithm in
NMT approach [1], [13]. Here, the beam search is used to find
a translation that approximately maximizes the conditional
probability [16], [4] after a model is trained. This approach
is used by [38] to generate translations from their neural
machine translation model. We can also incorporate our tech-
nique here to identify and apply the optimal parameter values
for beam search in NMT system, which is left for interested
researchers in the recent future.

Il. MACHINE LEARNING BASED DECODING APPROACH
The decoder has to find the best plausible translation that is in
agreement with earlier trained data. Since the number of pos-
sible translations are huge, decoding algorithms are only able
to examine a part of it, risking to overlook better translations.
Since the decoding problem is NP-complete [26], the time
required for optimal decoding increases exponentially with
the length of the input.

We have used Moses [30], [5], [20] for phrase-based sta-
tistical machine translation model. Moses uses a beam search

VOLUME 7, 2019

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

IEEE Access

FIGURE 1. Example of the beam search tree.

algorithm that tries to find the best translation. A beam
search is a heuristic search method that integrates features
of breadth-first and best-first search methods. Only the most
promising nodes known as the beam width (instead of all
nodes) at each step of the search are retained for further
branching. Thus, it reduces the time and memory consump-
tion [29]. But still decoding is a computationally expensive
process. Traditional statistical machine translation system
uses stack decoding, where hypotheses are stored in stacks
and then pruning of bad hypotheses is done.

Beam search uses a state-space search procedure, like best-
first search (BFS) or depth-first search (DFS) [42]. What
makes this search technique apart from others, is the use of
heuristic rules to prune out bad search results even before
exploring them.

Figure 1 shows the working of beam search in the machine
translation system. During stack decoding hypotheses stacks
are created and then beam search is carried out to find the
translation with highest probability score (epess). The proba-
bilities are assigned and the translation with the best transla-
tion is chosen.

A. DECODER PARAMETERS IN TRADITIONAL BEAM
SEARCH ALGORITHM (STACK DECODING)

In machine translation, the goal is to find the best possible
translation, but even for a sentence of fair size, the number
of possibilities generated is so large that it is impossible to
go through all of the possible translation and find the best
translation. Even after applying heuristic search algorithms
which reduce the search space, the process still takes a lot
of time, and there is always a trade-off between accuracy
and time. The sophisticated phrase-based statistical machine
translation algorithm [32] (implemented in Moses decoder)
includes some vital decoder parameters that can be used to
control the search space and affect decoding time without
decreasing accuracy. In many cases choosing the right set of
parameters not only reduced decoding time but also increased
translated accuracy.

The different texts have different sentence structures.
We propose that distinct text files if decoded with the right
parameters, there would be a possibility for better translations
with less decoding time. So, it is essential to select the specific
decode parameters for optimal result. If we do not choose the
right parameters for the source text, we might even get worse

VOLUME 7, 2019

accuracy in spite of taking more decoding time. Our main aim
is to reduce the decoding time and simultaneously to keep
the translation as accurate as possible. So, to decide the right
value for our parameters for any given text we have tried to
integrate a machine learning classifier which can determine
the best set of parameters for us.

If we could select the search space in such a way con-
taining only the best translation options for a given file, then
decoding time will be minimal, and we might even get better
accuracy. One way to reduce the search space correctly is to
set the optimum size of hypothesis stacks for a file. For each
translated foreign phrase, the decoder keeps a stack of the
best (partial) translations. So, we have to select the right stack
size so that the better translation does not get pruned out. But
the user doesn’t know what values would be optimal for his
data. Our primary goal in this paper is to solve this problem.
By reducing this stack size, the search will be quicker, since
fewer hypotheses are kept at each stage, and therefore fewer
hypotheses are generated. Decoding leads to huge numbers
of hypotheses in the stacks and the bad hypotheses have to
be pruned out. In this proposed methodology, parameters for
both of the pruning algorithms have considered for better
performance:

o Histogram Pruning: The topmost of n hypotheses are
kept in the stack, and the rest are pruned out. The value
of n is directly proportional to the decoding time. Also,
sometimes good hypotheses are pruned out, and bad
hypotheses are kept.

o Threshold Pruning: Main aim of the threshold pruning is
the hypothesis having « times worse score than the best
hypothesis, that very hypothesis will be pruned out. « is
threshold pruning parameter, where 0 < o < 1. Among
all hypotheses for a source sentence in position j, Qo(J)
is the maximum probability. The hypothesis is pruned
out iff:

On, ¢)) < a.Qo(J) A3

Where Q(n, e’i) is the maximum probability of a phrase
sequence that results in the word sequence €. We have
shown in Section II-A, how quality and decoding time
vary for the different values of n and «. Finally, we have
identified dynamically optimal values of these parame-
ters for decoding in optimal time with better accuracy.
But according to best of our knowledge, there is no such
method to select their optimal value for n and «.

In these days, decoders use both histogram pruning
and threshold pruning to get the translated output at a
reasonable time. stack size (s) and beam threshold (b) are
controlling parameters for histogram pruning and threshold
pruning respectively. Currently, phrase-based machine trans-
lation system (i.e., Moses) uses a default set of values dur-
ing decoding for any input unless specified otherwise. But
the issue with this approach is that different pieces of text
have a different syntactic structure and different length. For
example, some texts consist of more short sentences while

1739

IEEE Access

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

TABLE 2. Observation to find classes from various files with different size. The reported Class (stack size) is responsible for optimal result. Default beam

threshold is used here.

File name | Sentence-count | Token-count Selectgd optimal Decod1ng Time BLEU
stack size (s) (in sec)
f.en.1 568 7915 s =200 325.121 16.26
f.en.2 1170 16769 s =400 749.125 17.24
f.en.3 1236 16585 s =350 633.562 16.31
f.en.4 1130 15284 s =300 450.694 16.96
f.en.5 765 9801 s =150 129.925 17.19
f.en.6 419 6116 s =100 65.167 16.23
f.en.7 1137 19938 s =400 1365.824 14.04
f.en.8 537 8094 s =300 607.686 12.59
f.en.9 954 12132 s =150 138.502 15.12
f.en.10 833 11542 s =350 468.068 16.45

TABLE 3. Detailed decoding performance analysis of files for various threshold and default stack size.

File name | Sentence-count | Token-count | Beam Threshold (b) | Decoding Time (sec) | BLEU

0.001 322.479 16.26
0.005 319.783 16.26
0.01 321.476 16.26
0.025 318.722 16.26

fen.l | 568 15 0.05 320311 16.26
0.1 321.235 16.26
0.2495 312.76 16.26
0.5 198.962 16.26
0.001 344.984 17.2
0.005 360.613 17.2
0.01 363.721 17.2
0.025 341.285 17.2

f.en.2 1170 16769 0.05 360433 773
0.1 341.04 17.2
0.2495 330.726 17.2
0.5 229.711 17.16

some have long sentences or simple and complex sentences.
We know that the decoding time for a sentence increases
with sentence length. So, different texts may require different
values of these parameters. But it is difficult to tell which
value will give the best results for a particular set of sentences.
So, in this paper, we have built a classification model using
machine learning approach to solve this problem. [33].

Here, our primary goal is to decrease the decoding time but,
without causing any harm to translation accuracy. If possible,
we have also tried to increase the accuracy of translated
text by selecting the proper values of stack size and beam
threshold automatically. We have observed from our exper-
iments, that stack size in range 10 to 1000 changes decoding
time and accuracy of translated output. Outside that range,
the accuracy is very low and/or the decoding time is extremely
delayed. Different files from different domains were decoded
using different values of stack size.

We found promising results, such as, for a particular file,
till an absolute value of stack size, the accuracy of the
translation increases with the stack size and for higher val-
ues, only the decoding time increased the accuracy either
decreased or remained constant. One interesting finding
would be that default stack size didn’t perform very well with
all types of source text rather in some cases the translation
was more accurate for certain values of stack size (such
as 100 or 150, etc.) and the decoding time also decreased

1740

considerably. Nevertheless, the time always increased with
increasing stack size as the search also increased. Table 1
shows the behaviour for one such file. Here the stack size is
increased from 10 to 1000 with a difference of fifty between
two consecutive cases. The decoding time increases with the
stack size. But the accuracy (in term of BLEU score [36])
has increased to stack size 250 and has remained constant
since. After a detailed analysis (decoding) of various files,
we have found eight classes (stack size) which are responsible
for providing optimal results with respect to BLEU and time.
Later these classes have been used for classification. Some of
the files with their optimal classes are noted down in Table 2.

On the other hand, the results for threshold pruning,
the parameter beam threshold showed entirely different
behavior. The default value for beam threshold seems to be
a tiny one, so the resultant translation is unaffected. We have
noticed from our observations that the desirable beam thresh-
old range is between 0.001 to 0.5.

After detailed analysis with lots of source files to select
optimal classes for beam threshold (b), we have found an
unusual behavior. Table 3 shows the behaviour of files con-
cerning changes in beam threshold while decoding. Here,
the stack size is kept as default. We had encouraging results in
this situation. There was no direct relation between time and
beam threshold but at beam threshold value 0.5 the decod-
ing time for file f.en.1 is lowest with the highest accuracy.

VOLUME 7, 2019

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

IEEE Access

For this particular source file, the difference is not big enough,
but there is a noticeable decrease in decoding time. But after
lots of observations with different data, it is noticed that this
is not the case for every source file. Other showed a decrease
in translation accuracy, but there was a decrease in decoding
time in all cases. For the example of file f.en.2, at beam
threshold value 0.5 the BLEU score decreases, but there is
also a substantial decrease in decoding time.

B. MACHINE LEARNING BASED PARAMETERS SELECTION
To solve the problems as discussed in previous sections, some
fast and automatic decision-making processes are required,
which can analyze the input source text and decide parame-
ters fit for its decoding. This decision-making process must
choose such parameter values which are capable of better
translating in minimal decoding time (the optimal transla-
tion). A pretty obvious solution to this problem is imple-
menting a machine learning classification model, which is
consolidated into our work. We have used the CN2 unordered
algorithm as the classifier [9], [34], which is a learning algo-
rithm for rule induction. Training data of this classifier is
set of optimal translated outputs using SMT decoder and its
corresponding stack size and beam threshold values (selected
as classes). Thus, enough amount of data is the constraint
here. The CN2 unordered algorithm is designed in such a
way so that it can handle this problem. This algorithm can
work with a small amount of data. This algorithm will work
even if the training data is imperfect [10]. The size of our
training dataset for the classifier is not enough, so we pre-
fer this CN2 algorithm rather other standard classification
approach used in the NLP community, i.e. decision trees,
support vector machine, etc. The central concepts are based
on Algorithm quasi-optimal learning (AQ algorithm) [7] and
the Iterative Dichotomiser 3 (ID3) algorithm. As a result,
it creates a rule set like that produced by AQ but is capable
of handling noisy data like ID3. It is a type of sequential
covering algorithms. A covering algorithm is an association
rule algorithm that creates a cover for the set of positive
instances, i.e., a set of hypotheses that account for all the
positive instances but none of the negative instances. Asso-
ciation rule learning is a rule-based machine learning method
for finding important relationships between variables. The
CN2 algorithm is a classification mechanism created for the
efficient induction of simple, easy to understand, rules of
form ‘“‘condition-based class prediction”, even in domains
where noise may be present. It modifies the standard sequen-
tial covering algorithm in some points:

« Itlearns rules that cover all classes of training examples.

« It accepts rules with certain accuracy; hence it can han-

dle noises.

o Its Learn One Rule procedure is not depended on any

particular monitoring example.

« It generates either an ordered or unordered set of rules.
CN2 has a choice to generate ordered or unordered set of rules
as their final result. There are good and bad points on both
options.

VOLUME 7, 2019

e Ordered: induce ordered rules (decision list). Rule con-
ditions are found, and the majority class is assigned in
the rule head.

o Unordered: induce unordered rules (rule set). Learning
rules for each class individually, regarding the original
learning data.

The primary challenge in building our classification model
was how to classify text. We cannot use the conventional ways
of text classification due to many reasons. Till now the text
classification models are mostly built using the popular *bag-
of-words’ model [21] or n-gram model [6] or syntactic and
semantic classification. Here, we need to classify documents
by structure and machine translation phenomena. So, we can-
not use either bag-of-words model or n-gram model as the
use word frequencies to classify text. Also, the concept of
syntactic and semantic parsing was not viable as it took lots
of time to parse a document. Since here our main aim is to
decrease the decoding time, this concept could not be used.
Now we had to come up with a new way to classify text which
is discussed in the next section.

1) FEATURES USED

We discuss a classification mechanism using a machine learn-
ing approach to predict the right values of parameters for
a particular piece of text. The output of the classifier will
be such that the accuracy must not decrease, but in many
cases, it may increase while lowering the decoding time
simultaneously. The goal of our project requires us to clas-
sify text, not on the basis of the content of the text rather
on its structure and type of sentences. The English word
order is S-V-O, whereas for For Hindi, it will be changed
to S-O-V order. Though SMT system does not consider any
linguistic structure of the sentences, the distortion model is
there to handle this challenge statistically. So, if the sen-
tence structure is complex and long, it will be challenging
to reorder and may require a larger search space to find the
best translation. Similarly, smaller sentences will be decoded
easily in a smaller search space. So, the lower stack size for
larger sentences will lead to poor translation, whereas higher
stack size for small sentence will lead to worse decoding
time. Same kinds of things are applicable for beam thresh-
old as discussed earlier. Since every file in our data has
a different structures and a different number of lines, so,
the following features are used to classify the text for our
task:

« Percentage of the comma (,) in a text: The percentage of
the comma against the total number of characters. The
comma means a pause in a sentence.

« Percentage of long sentences in the text: The percentage
of sentences with more than § words is calculated. Texts
containing more long phrases will belong to another
class than texts with more short sentences.

o Average words per line in the text: The total number of
words against the number of lines.

« Percentage of Stop words: Text files contain many stop
words like ’the’, ’is’, ’are’, ’and’ etc. Different texts

1741

IEEE Access

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

TABLE 4. Snapshot of Training Data for stack size Selection. stack size 100 is represented by “class a”, 150 is represented by “class b”, 200 is represented

by “class c¢” and so on, up to stack size 550 which is represented by “class j". Description of file name is like time.<text part name>.<beam size>.

Percentage Percentage Percentage Average . .
of Comma | of Stop Words | of Long Sentence | Word Per Sentence stack size File Name
. . . . discrete discrete
continuous | continuous continuous continuous
class meta
0.912 63.418 30.473 14.162 g time.f11.b0.2495
0.903 64.53 25.869 14.705 f time.f11.b0.05
0.93 63.744 27.408 14.266 b time.f13.b0.5
0.865 63.921 31.743 14.632 e time.f14.b0.5
0.915 63.85 25.81 13.51 a time.15.b0.2495
0.907 63.138 24.212 13.961 b time.f16.b0.2495
0.965 62.83 26.466 14.001 C time.f17.b0.05
0.878 63.057 27.257 13.298 e time.f19.b0.2495
0.897 62.955 25.905 13.463 a time.f20.b0.5
TI-\IBLE 5. Snapshot of Training Data for Beam Threshold Selection. Beam threshold value 0.2495 is represented by “class x”; 0.05 by “class y” and 0.5 by
“class z".
Percentage Percentage Percentage Average .
of Comn%a of Stop VgVords of Long %entence Word %’er Sentence Beam Threshold | FileName
. . . . discrete discrete
continuous continuous continuous continuous Tass oA
0.912 63.418 30.473 14.162 X time.f11.b0.2495
0.903 64.53 25.869 14.705 y time.f11.b0.05
0.93 63.744 27.408 14.266 z time.f13.b0.5
0.865539033 | 63.921 31.743 14.632 z time.f14.b0.5
0915 63.85 25.81 13.51 X time.15.b0.2495
0.907 63.138 24.212 13.961 X time.f16.b0.2495
0.965 62.83 26.466 14.001 y time.f17.b0.05
0.878 63.057 27.257 13.298 X time.f19.b0.2495
0.897 62.955 25.905 13.463 z time.f20.b0.5
are written in different styles. So, they will belong to “class ax”, “class ay”, “class az”, “class bx”, by, and so

different categories.

Traditional features (i.e. bag of words, word-to-vec etc.) don’t
keep here as features because our system does not worried
about the meaning or content of the text. It is more interested
about its complexity and structure. We use Orange [11] as
a classification tool for our task. Table 4 shows a sample of
classifier (orange) training data along with the features for
each file against the class (stack size). And Table 5 represents
the sample of classifier (orange) training data along with the
features of each file against the class (beam threshold).

We keep ten classes from stack size and three classes from
beam threshold for our classification model, as discussed in
Section II-C. These classes form the basis of our classification
model: stack size 100 is represented by ‘“‘class a’, 150 is
represented by ““class b’, 200 is represented by ““class ¢’ and
so on, up to stack size 550 which is represented by ““class j”.
Beam threshold value 0.2495 is represented by “‘class x”’;
0.05 by “class y” and 0.5 by “class z”’. These values can
be combined in any way to create a new class; such as

1742

on, up-to “class jz”’. So, now we have a total of 10 x 3 = 30
classes of parameters. When the given text file is classified it
can belong to any of the 30 classes. But since we are doing
the classification separately we have to choose only from
10 4+ 3 = 13 classes, so time complexity is decreased.

C. STEP BY STEP PROCEDURE

In this section, we describe empirical steps of our proposed
method most simply. Also, we discuss the detailed experi-
ment step by step here:

1) EMPIRICAL STEPS

Three steps have been encapsulated to accomplish the whole
task. The first phase is devoted to make training data of the
classifier. This training data is nothing but various features of
the source text, and their corresponding stack size and beam
threshold values (which is treated as a class). This helps to
achieve best-translated output in minimal time. There may
have various translated outputs for different stack size and

VOLUME 7, 2019

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

IEEE Access

N

Test text

Machine learning
based classifier

Cptimal

beam-threshold
and stack-size

Parallel
Corpus

Distortion model

Translation model, Language model, ‘

Cube-pruning or beam-
search algorithm (SMT

FIGURE 2. Overall architecture for decoding.

beam threshold. In training data, only best-translated output
and their corresponding class will get a chance to be placed.

The second phase is the control and the responsibility go
to the classifier. When a source text is submitted for trans-
lation, classifier chooses the best class (stack size and beam
threshold values) for decoding.

In the final phase, the selected stack size and beam thresh-
old values are forwarded to SMT decoder. SMT decoder
has used these values for pruning out the hypothe-
ses which are comparatively less sensitive to get better-
translated output in optimal time. The compact procedure
for the machine learning based SMT decoding is shown
in Figure 2.

2) DETAILED EXPERIMENT
We decoded the first ten files to get a basic under-
standing on how exactly changes in stack size and beam
threshold affect decoding time and accuracy. We used
the following values of these parameters. stack size:
10,50,100.150,200,250,300,350,400,450,500, 550, 600, 650,
700, 750,800,850,900,950,1000 beam threshold: 0.001,
0.005, 0.01, 0.025, 0.05, 0.1, 0.2495, 0.5

We decided to use these particular values in our experiment
after going through several threads of Moses-support mailing
archives.? Also, as mentioned previously, these values are
selected after numerous experiments on various test files. For
the sake of simplicity, the range of values for stack size was
very high. We took them at a distance of 50 each. Beam
threshold values were selected experimentally.

3 https://www.mail-archive.com/moses-support @mit.edu/msg02224.html

VOLUME 7, 2019

Decoder) to identify
best hypothesis

Table 6 (file f.en.6) shows the changes in decoding time
and translation accuracy as both the parameters are var-
ied. The accuracy of translation has increased to stack
size 200, after which it remains constant. The stack sizes
600 to 1000 take a considerable amount of time to find the
best translation, but there is no change in accuracy. This fact
was consistent with all our files; sometimes the accuracy
even decreased as the stack size was increased. As in Table 1
(for file f.en.6). On the other hand, in the case of beam
threshold in Table 6, the changes in time is not much till
beam threshold 0.1 but as it reaches beam threshold 0.5 a
considerable decrease in decoding time is observed and a
surprising bump in translation accuracy. In almost all our
experiments on different files, we recorded the second lowest
decoding time (combining all 31 observations; 21 observa-
tions from stack size and 10 from beam threshold) after stack
size 10 where time is lowest. But this fact is not consis-
tent with all the files, as in f.en.2 of Table 3 the decoding
time has decreased noticeably so in the case for the trans-
lation accuracy. The substantial decrease in decoding time
for beam threshold value 0.5 was consistent with all our
files.

After running the decoder through the ten files chosen
earlier for all values mentioned above of stack size and beam
threshold we discovered that:

« stack size 10 and 50 had a less decoding time, but the
translation accuracy was also quite low. So, we omit
these values for further study. Now coming to stack sizes
600 to 1000, which are not helpful at all. For these stack
sizes, not only the decoding time increased but the trans-
lation accuracy was the same as earlier, or it decreased.

1743

IEEE Access

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

TABLE 6. Changes in decoding time and translation accuracy as both the parameters (stack size, beam threshold) are varied.

There was no case of an increase in the accuracy of the
translated text. After various experiments, we observed
that the stack size 100 to 550 showed some desirable
changes in BLEU score and decoding time. For example,
in table 6 the translation accuracy increases till value
50 and drops for 100 and 150 and again rises for stack
size value 200. And 200 onwards it became constant.

o Beam threshold values 0.00000001f, b0.00001f, 0.001,
0.005, 0.01, 0.025,0.1 did not do any good either. There
were slight changes in decoding time and no change in
BLEU score. So, we took values 0.5, 0.05 and 0.2495 as
it is proved by experiment to be quite helpful.

Now the decoding data for the above mentioned useful
parameters (stack size 100 to 550 and beam threshold 0.5,
0.05 and 0.2495) are processed as follows. The data are sorted
according to decreasing BLEU and increasing the decoding
time for each of the fifty-nine files. After sorting the case
with highest BLEU and minimum time (that is the leading
case) of each file is used to create our training dataset for
our classification problem. This means that we now know
which file belongs to which class in training dataset. The
classes for files f.en.11 to f.en.23 are mentioned in Table 7
along with their number of words and number of sentences.
This data along with features as mentioned above has been
used to create the training data for classification for all the
59 files. The classification task is trained using this limited
amount of data due to low resource. Incorporating more data
as training set may improve the performance of the classifier.
It will improve the final translation accuracy.

Now the features namely ‘‘Percentage of the comma”,
“Percentage of short sentences”, “‘Percentage of stop words”
and ‘“‘average words per line” in a file; as discussed in the
previous section are added to the data set for training as
Table 4 and Table 5. The procedure for the on three other
language pairs: Hindi to Konkani, Hindi to Marathi, Bengali

1744

Default Beam Threshold Default stack size

stack size | Decoding Time | BLEU Default stack size | Decoding Time | BLEU
10 31.373 1593 0.001 322.479 16.26
50 88.021 16.24 0.005 319.783 16.26
100 163.25 16.21 0.01 321.476 16.26
150 241.859 16.19 0.025 318.722 16.26
200 325.121 16.26 0.05 320.311 16.26
250 403.105 16.26 0.1 321.235 16.26
300 494.107 16.26 0.2495 312.76 16.28
350 578.188 16.26 0.5 198.962 16.28
400 665.816 16.26

450 760.736 16.26

500 838.517 16.26

550 934.993 16.26

600 1020.356 16.26

650 1141.865 16.26

700 1215.647 16.26

750 1307.748 16.26

800 1404.757 16.26

850 1494.831 16.26

900 1600.286 16.26

950 1674.808 16.26

1000 1753.629 16.26

TABLE 7. Class for files along with file statistics.

Total number | Total number | Class for Class for
of sentences of words stack size | beam threshold
338 4787 g X

920 13529 f y

1142 16291 b Z

734 10740 e z

864 11673 a X

698 9745 b X

1130 18622 c y

1218 16197 e X

1297 17462 a zZ

697 10058 b X

542 7255 a X

761 8829 d X

to Hindi was the same except for the classifier training and
testing dataset were 20 files and 4 files each respectively,
as mentioned in Section I'V-A. Rest of the procedure was the
same.

Ill. MACHINE LEARNING BASED CUBE PRUNING

Efficient decoding is an important problem in machine trans-
lation, especially with an integrated language model, which is
essential for achieving good translation quality. Cube pruning
is a quick and better technique than traditional decoding. It is
quite similar to A* search on a specific search space with spe-
cific heuristics. There can be different ways for the decoder to
act upon the data. Earlier in beam search, the language model
is also considered at the time of decoding and so it becomes
computationally more expensive and also takes more time.
But another way is that we first decode without traditional
language model (henceforth -LM decoding) to produce a
k-best list of candidate translations, and then re-rank the
k-best list using the language model (LM). This method runs
faster in practice but often produces a considerable number of

VOLUME 7, 2019

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

IEEE Access

search errors since the true best translation (taking LM into
account) is often outside of the k-best list. Here, cube pruning
becomes useful. In cube pruning [8], [23], a compromise
between re-scoring and full-integration is done; it re-scores k
sub-translations at each node of the forest, rather than only at
the root node. It reduces the search space considerably. When
the above method is combined with beam search, only a small
fraction of the possible +LM items at a node will escape
being pruned. Moreover, we can select with reasonable accu-
racy those top-k items without computing all possible items
first. In a nutshell, cube pruning works on the -LM forest,
keeping at most k +LM items at each node, and uses the
k-best [22] parsing algorithm to speed up the computation.

A. DECODER PARAMETERS FOR CUBE PRUNING
TECHNIQUE

The task of the decoder is to search for the best possible trans-
lation in line with the earlier trained model. As the number
of possible translation can be very large; it is not possible to
go through the entire search space in a suitable amount of
time. So, decoding algorithms try to prune out (or remove)
poor hypotheses which are not fit to be included in the final
translation. There are various ways to do this pruning. Here,
we discuss cube pruning algorithm, what kind of parameters
it has and how they do affect the decoding process.

Even after applying various search algorithms and pruning
techniques, the process still takes a lot of time, and there
is always a trade-off between accuracy and time. But our
experiments have shown that choosing the right values for
the parameters according to the input improves the current
(default) conditions. This improvement occurs in terms of a
decrease in decoding time and increase in translation accu-
racy as discussed earlier.

The different text has a different sentence structure.
We propose a general architecture that different input,
if decoded with the suitable values of parameters (according
to input), then there would be better translations with less
decoding time. It could be incorporated with any decoding
technique to fix the parameter. So, it is very important what
values of parameters should be selected for a particular input
and which parameter’s values need to change over various
input text.

We decoded various text files for certain values of cube-
pruning pop limit, beam threshold, stack size and along with
help from moses support mail archives, and experimentally
discovered the following:

a. The range of cube-pruning pop limit is 500 to 50,000.

b. The range of beam threshold is from an unknown but
negligible value to 0.5.

c. The range of stack size is 10 to 1000.

d. Our experiments results showed that cube-pruning pop
limit and beam threshold didn’t have any suitable effect
on the decoder, but changing stack size did improve the
situation.

e. stack size 10 and 50 had really low decoding time, but
the translation accuracy was also quite low. So, we omit these

VOLUME 7, 2019

values for further study. Now coming to stack sizes 550 to
1000 were of no help either, here not only the decoding
time increased but the translation accuracy was the same as
earlier, or it decreased. There was no case of an increase of
accuracy of the translated text. After various experiments,
we observed that the stack size 100 to 500 showed some
desirable changes in BLEU score and decoding time. So,
we choose only stack size as the determining parameter in
our phrase-based machine translation using cube pruning.

IV. DATASET AND EXPERIMENTAL SETUP
In this section, we describe the used corpora, the details of
software and hardware setup here.

A. CORPORA AND DATASETS

We have used HindEnCorp [3] for training and testing a
machine translation model. The parallel corpora had over
2.7 lakh sentences from various domains, this data was split as
follows: first sentences 1 to 1001 tuning set; sentence number
1002 to 51002 split into 59 files containing multiple different
number of sentences (anything between 200 to 1200) to make
test set; and then 223880 sentences training set for Moses.
These 59 files were decoded as described in Section II-C
to form training and testing data for Orange classification.
These files were named f.en.1, fen.2 ..., f.en.59 serially.
The first ten files were selected for observing the changes
in time, and translation accuracy for choosing the important
values of parameters stack size and beam threshold, described
in Section II-C.

Apart from these, we have implemented the model on three
other language pairs: Hindi to Konkani, Hindi to Marathi,
Bengali to Hindi. For this, we used the multilingual ILCI
corpus [24] containing sentences from tourism and health
domains. This corpus was split as lines 1 to 1001 tuning set;
1002 to 11002 splits into 24 files containing 400 sentences
each; then 37998 sentences training set for Moses. These files
were named in the following format: “f.{language}.{serial
no}”. So, for Bengali to Hindi translations file names will be
f.bn.1, f.bn.2 ... and likewise. The test sets are split in such a
manner to record observations and understand the change in
decoding time and translation accuracy for different values of
the parameters on different files. These observations form the
training data for the classification model.

B. HARDWARE AND SOFTWARE SETUP

Decoding such a large number of files on a single computer
would take a lot of time. So, the load has been distributed
to six machines with the same hardware and software con-
figuration for completing the task in a short span of time.
The six computers were desktops with Intel i7 Octacore,
clocked @ 3.2 GHz, and Ubuntu 14.04 Operating system.
We first decoded the same text file on all of the machines
and noted the decoding times for in all cases. We found
out that the difference in decoding time was negligible. So,
we finally decoded all the files with these selected computers
simultaneously.

1745

IEEE Access

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

TABLE 8. Comparison for performance analysis for miscellaneous domain En-Hi translation (HindEncorp) between the traditional stack decoding and
machine learning-based stack decoding. 1, and | represent improvement and deterioration of proposed machine learning based decoding approach over

traditional decoding, and ¢ represents a steady situation for both of the cases.

Fil Senten token Stack decoding Machine learning based (with beam search) Improvement in
N entence | toke with default parameter | Stack decoding (proposed) proveme
name | count count - - : : . -
Decoding Value of predicted | Classification time Decoding
. BLEU N BLEU | . Accuracy
time parameters + Decoding time time
fien.1 | 568 7915 343 14.15 -s 100;-b 0.2495 | 171.473 1412 | 1t 3
fen.2 | 1170 16769 | 675.293 16.19 -s 100 ; -b 0.2495 | 336.473 1622 | 1 T
fen.3 | 1236 16585 | 581.839 15.88 -s300;-b 0.5 297.111 17.89 | 1 T
flend | 1130 15284 | 348.588 16.02 -s 100 ; -b 0.2495 | 178.652 16.02 | 1
f.en.5 | 765 9801 234.498 16.22 -s 150; -b 0.5 134.481 1622 | 1
fen.6 | 419 6116 1096.096 | 14.05 -s 100 ; -b 0.2495 | 556.575 1405 | 1
f.en.7 | 1397 19938 | 403.091 12.62 -s 300 ; -b 0.2495 | 592.539 13.65 | 1

We used Moses for stack decoding and Moses2 for cube
pruning with Indic NLP library* for tokenizing Hindi data.
For tokenizing English sentences, we used tokenizer.perl®
script and giza++° for alignment and irstlm’ to build our
3-gram language model. The classification was done using
Orange3 data mining library [11] and python3.

1) HYPER-PARAMETER INFORMATION

NMT system uses following hyper-parameters during the
training. Hindi and English vocabulary has been limited to
25K. 128-word embedding and 500 hidden units have been
used for this task. Stochastic Gradient Descent was used
with learning rate 0.001. We trained our models for a total
of 25 epochs with Batch-size 100. We use GPU - NVIDIA
1080Ti, Memory Size - 11 GB, Boost: 1582 MHz / Base:
1480 MHz, CUDA Cores - 3584, GPU Architecture - Pascal,
Core Clock - Reference Card, Memory Bus - 352 bit, Card
Bus - PCI-E 3.0 x 16, Memory Type - GDDR5X, GPU
Architecture - Pascal to train the NMT model with the same
training data used for training of SMT system.

V. RESULTS AND ANALYSIS

We have employed BLEU [36] to assess the translation accu-
racy. Also, the sum of classification time and decoding time
(informed by Moses) was used to calculate the time taken for
decoding the test files. The results were very satisfactory and
consistent with our study for every case. The test files showed
a great improvement when the classification model was used.
We decoded the test files in two ways:

o Decode using the Moses default values for the parame-
ters.

o And allowing our approach to analyze the text and
decide what parameters to take and decode it using those
parameters.

4https://bitbucket.org/anoopk/indic_nlp_library

5 https://github.com/moses-smt/mosesdecoder/blob/RELEASE-
3.0/scripts/tokenizer/tokenizer.perl

6https://github.com/moses—smt/giza—pp

7https://hlt—mt.fbk.eu/technologies/irstlm

1746

A. MACHINE LEARNING-BASED STACK DECODING

For stack decoding in phrase-based SMT system, stack size
and beam threshold are important parameters. A higher beam
threshold makes sure that only hypotheses with good prob-
ability scores are included in the best translation. But some-
times some bad hypotheses might be the correct translation
of the input file. So here the classifier model helps to decide
the right values. According to the observations for English
to Hindi translation decoding, six out of first seven files
showed a decrease in decoding time by more than 50% and
four out of seven files showed an increase in translation
accuracy against when they were decoded with Moses default
parameters. Also, three files showed a significant decrease
in decoding time, about 50% and the translation accuracy
remained the same. But for one file the translation accuracy
decreased from the default counterparts. This was because
our classifier was unable to predict the right class for the input
(test set) file. But even with the misclassification, there was a
significant decrease in decoding time. Also, the decrease was
of only 0.03% which we considered negligible.

Table 8 shows a snapshot of our results as discussed pre-
viously. Here, in this table we have presented total decod-
ing time including classification time for proposed machine
learning based decoding approach, against decoding time
using traditional default parameters which are pointed as
baseline decoding with a default parameter. The first column
shows the file names for each case. The file names pro-
vide us transparency of whole paper. Column with the name
“classification time + decoding time” shows the sum of
decoding time (informed by Moses) and classification time.
Classification time is the time required to read the input file
by analyzing its features and classifying it accordingly to a
previously trained model. After that, the next column includes
the translation accuracy obtained while applying the classi-
fication model. As the name suggests “Value of predicted
parameters” column shows details of the predicted values
for each file. The next column is a separator. The ‘“‘baseline
decoding with default parameters’ shows the Decoding time
and translation accuracy when default parameters are used
in decoding. Finally, 1, and |, and ¢ are used to show
performance analysis. 1 and | represent improvement and

VOLUME 7, 2019

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

IEEE Access

TABLE 9. Performance evaluation of machine learning-based stack

decoding with various language pairs.

VOLUME 7, 2019

olgzE
FHEEE
g el 5|8
515 (3|8
N[=[N —=| =
G| O B3| 12 5? Z
e MREEE R
Lo W oy = =t =
R A [B & o,
=2 O| |~ = >4
e &4
(e}
LB AR
ool m
W 00| OO AN c
x| Qo
Ne) =2
o Bl o = 5(? 2
WO 56 =8
SO Q =
J Wl u| K 2 e
w —_ = %%
e = 8
£2
QI = DI = loo] ;E'
O =™ = |8 e
O=olx m | =
—| O[O c 5
o
-
(¢}
o]
wlo|o|e E§ wn <L
DW= = 3 = |2
E=={= s a8
S|SISS Eg|FE
S &lo|s §o |FE
oloow "o |8 7
RiRE g |EE
O| © &5:
W %AE.
a g m
=J -y
S s
'_"_‘_'PU”OE%
o
RIR-2E 8 518 &
TIEINOS 0 »nla~
oI =R + 2/Zg
~J| o0 »—‘E- = =9
+| 00 =]) =
() &
= 5 ¢
2 35| 8
o =
w
W[= | — o 8
O o a
(| ool m <
W[\O| \O C: ~
—<—|—=>—= =)
59 e g
&8 (%5
g |wg
S|SB
G |58
wn O
- Z e
—
£ |FE
8 <
<] 8
(¢}
=2
— === = o
5(? 27
a9 |85
Q [®]
£ |25
7 |8
=]
2 8
<
— == % 95
(e} g'-g
g 5
8 2
SR -
[¢]
=4

deterioration of proposed machine learning based decoding
approach over traditional decoding, and ¢ represents a steady
situation for both of the cases; training and development set
consist of 223880, and 1001 sentence pairs respectively from
HindEncorp corpus, as described in Section IV-A. In the case
of Bengali to Hindi translation classifier chooses more stack
size than default to have better accuracy. So, decoding time
has been increased with accuracy. In general all of the cases
except the Bengali to Hindi translation of machine learning-
based stack decoding, required time decreased for optimally
select the parameters. And it is an observation there are three
cases of accuracy improvement in this approach.

A. The accuracy increases in most cases which is desirable
for our approach due to the selection of effective values
of decoder parameters. So, we have a benefit concerning
accuracy and time.

B. The steady situation in some cases because the param-
eters are selected in such a way so that it can provide the
decoded output in less time without affecting on translation
accuracy. So, we have a benefit with respect to time but no
need to compromise with translation accuracy in this case.

C. Deteriorate accuracy in the rare case (one file in whole
stack decoding for our experiments) because the parameters
are selected in such a way so that it can decode the input text
on a very minimal amount of time if it is very hard to get
better hypothesis with observed parameters. So, we have a
benefit with respect to time and the accuracy deterioration
is very negligible. This type of situation is reported at file
f.en.1 in Table 8. The decreased accuracy in term of BLEU is
0.03 which is really negligible. All of this scenario was done
because our model has been learned such a way to better val-
ues of parameters selection. First, this model tried to improve
accuracy and after that the time. If unable to improve both
then it is devoted to select those parameters values which are
responsible for decoding with similar accuracy in less amount
of time. If the model is unable to predict the parameters values
which are responsible for similar translation accuracy with
the default option. Then, at least it will improve the decoding
time. Though we do not have any experience in machine
learning-based stack decoding approach where translation
accuracy and decoding time decrease. But in rare of the rare
cases it could be possible due to the wrong classification
of parameters because our classification model is not 100%
accurate.

To verify our results we decode a given test set (f.en.3 of
Table 8) for a range of pruning parameters and compute
the corresponding BLEU scores in figure 3. It shows the
BLEU score range can vary from 15.04 to 17.89 for this
test set. The sets of pruning parameters are ({100, 0.2495},
{100, 0.05}, {100, 0.5}, {150, 0.2495}, {150, 0.05}, {150,
0.5}, {200, 0.2495}, {200, 0.05}, {200, 0.5}, {300, 0.2495},
{300, 0.05}, {300, 0.5}, {350, 0.2495}, {350, 0.05}, {350,
0.5}, {400, 0.2495}, {400, 0.05}, {400, 0.5}, {450, 0.2495},
{450, 0.05}, {450, 0.5}, {500, 0.2495}, {500, 0.05}, {500,
0.5}, {550, 0.2495}, {550, 0.05}, {550, 0.5}). Where, the

1747

IEEE Access

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

TABLE 10. Statistics of various language pairs.

Language pair Training set Development set | Test set Corpora name | Domain name
Sentence count | Sentence count Sentence count | Token count

hin-mar 38998 1000 400 7450 ILCI Miscellaneous

hin-kon 38998 1000 400 7450 ILCI Miscellaneous

ben-hin 38998 1000 400 5998 ILCI Miscellaneous

eng-hin 64724 1001 1002 7229 Launchpad Technology

{stack size, beam threshold} Vs BLEU score

550,0.5 I 16.21
550,0.05 IS 16.21
550,0.2495 IIIIEEEEEEE——— 16.21
500,0.5 IEEEEEEENNN——— 16.21
500,0.05 I 16.21
500,0.2495 I 16.21
450,0.5 I 16.21
450,0.05 I 16.21
450,0.2495 I 17.12
400, 0.5 I 17.12
400, 0.05 I (721
400,0.2495 IEE— 1721
350,0.5 I 7.21
350,0.05 I 1 7.89
350,0.2495 I 17.89
300,0.5 I 1 7.89
300,0.05 I 17.11
300,0.2495 I 16.57
200,0.5 I 16.29
200,0.05 I 16.29
200,0.2455 I 16.29
150,0.5 I 16.29
150,0.05 NN 16.24
150,0.2495 I 16.23
100,0.5 I 15.88
100,0.05 I 15.93
100,0.2495 I 15.04
13 14 15 16 17 18 19

FIGURE 3. The set 300, 0.5 is responsible for better BLEU score in
optimal time. The required decoding time for the test set (f.en.3 of
Table 8) is 297.111 ms which is exact same as our proposed system.

maximum BLEU score (17.89) is found using three parameter
sets only 300, 0.5, 350, 0.2495, 350, 0.05. We achieve the
BLEU score 17.89 using our automated ML-based approach
which is shown in Table 8. Similar experiments is reported
in Figure 4 to validate our system for optimal time. The
required decoding times are for these three parameter sets
300, 0.5, 350, 0.2495, 350, 0.05 are 297.111 ms, 335.678 ms
and 409.538 ms, respectively. The required decoding time
for the test set (f.en.3 of Table 8) is 297.111 ms which is
minimum among these three sets.

The proposed model is not restricted for English to Hindi
translation. The proposed technique able to produce the more
accurate result in less time. Performance analysis for var-
ious language pair such as Hindi-Marathi, Hindi-Konkani,

1748

{stack size, beam threshold} Vs Decoding time

350, 0.05

409.538

350,0.2495 335678

50 100 150 200 250 300 350 400 450

o

FIGURE 4. Decoding the test set (f.en.3 of Table 8) for a range of pruning
parameters and compute the corresponding decoding time which
validates our experiments.

Bengali-Hindi is reported in Table 9. It is shown everywhere
that the proposed technique does not look harmful for trans-
lation accuracy but it improves the decoding time lots. The
statistics for this dataset are shown in Table 10. Our demon-
strations are mainly for miscellaneous domain data. To show
that it works on domain-specific data, technical domain data
for eng-hin language pair has used in Table 9. Finally, it shows
that the proposed machine learning based decoding provides
a significant result.

B. CUBE PRUNING BASED DECODING INCORPORATED
WITH MACHINE LEARNING

In this section, we have disclosed detailed results of the cube
pruning based decoding with various files which are used for
stack decoding and machine learning-based stack decoding
in Section V-A for better comparison.

In Table 11, most of the files show an increase in the
translation accuracy when our classification model involves
for decoding over cube pruning approach, which is a very
desirable scenario. But in most cases, this increase in trans-
lation accuracy was achieved at a higher stack size than
the default resulting in a minimal increase in decoding
time. But, compared to the decoding time in beam search,
even this increased decoding time can be considered neg-
ligible. Unfortunately, due to misclassification for the file
f.en.5 there is a decrease in translation accuracy. This hap-
pens because the classifier that has predicted some wrong
value of the stack size for the files is due to our proposed
classifier (CN2), which does not have the same percent
accuracy.

VOLUME 7, 2019

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

IEEE Access

TABLE 11. Comparison for performance analysis for miscellaneous domain En-Hi translation (HindEncorp) between cube punning based decoding and
cube punning with machine learning-based stack decoding

File Sentence | token C}lbe pruning based decoding | Cube pruning with machine learning-based Tmprovement in

name | count count with default parameter decoding
]?ecodmg BLEU Value of predicted Class1ﬁcgt10q time BLEU Decodlng Accuracy
time parameters + Decoding time time

fen.l | 568 7915 18.0252 19.69 -5 450 27.7457 19.95 1 T

fen.2 | 1170 16769 | 27.7229 20.43 -s 450 47.8278 2142 | | T

fen.3 | 1236 16585 | 27.0383 19.94 -5 450 47.1202 20.98 1 T

fend | 1130 15284 | 25.9437 21.44 -5 200 25.7279 21.44 T

f.en.5 | 765 9801 18.1915 19.96 -5 450 30.2119 19.91 1

f.en.6 | 419 6116 13.9378 19.96 -s 100 10.9042 20 T T

f.en.7 | 1397 19938 | 31.9013 17.57 -s 300 42.3312 18.94 1 T

Source The network configuration doesn’t comply to the ONC standard.

Ref Sead BI-HINY ONC HFdh &1 Gle- el hadll

Refp netavarka koYnPZigareSana ONC mAnaka kA pAlana nahIM karawA.

NMT cdsd d7\|l|"l.-hl|'<‘\’|"| TET Fdl €

NMTr netavarka koYnPZigareSana nahIM karawA hE.

NMT+BPE cdd HI-HINYA dieA del &l 2|

{NMT+BPE}r netavarka koYnPZigareSana pAlana nahIM karawA hE.

PBMT qCdd DI-PINIE HFl el HIdl & Dl &l T8 ONC HHSD|

PBMTr netavarka koYnPZigareSana kampall nahIM karawA hE ko kI gal ONC mAnaka.

ML-based-Beam-PBMT

qedd DI-HINIE 3MTAHT A &I &l gl el el gl

ML-based-Beam-PBMTr

netavarka koYnPZigareSana oenasl mAnaka kA kI pAlana nahIM karawA hE.

ML-based-Cube-PBMT

qCad PI-HINIA HTTHT "D BT T -Tel dal 2|

ML-based-Cube-PBM T

netavarka koYnPZigareSana oenasl mAnaka kA pAlana nahIM karawA hE.

FIGURE 5. Comparison analysis (using lauchpad dataset) of different English-Hindi MT systems’ translated outputs. Where, Source and Ref refer to source
sentence and its reference translation. NMT, NMT+BPE, PBMT, ML-based-Beam-PBMT, ML-based-cube-PBMT are neural machine translation system,
neural machine translation system with byte pair encoding, phrase-based statistical machine translation system, machine learning based beam search
with phrase-based statistical machine translation system, and machine learning based cube pruning approach with phrase-based statistical machine
translation system’s translated output, respectively. Ref;, NMT;, {NMT+BPE};, PBMTy, ML-based-Beam-PBMT;, ML-based-cube-PBMT; refer to
transliteration (in WX-notation) of Ref, NMT, NMT+BPE, PBMT, ML-based-Beam-PBMT, ML-based-cube-PBMT, respectively.

Case-study for English-Hindi (En-Hi) translation is shown
in Figure 5. After qualitative analysis, we find that the NMT
system is capable to generate extremely good qualitative
translated output in terms of fluency but adequacy is worse
here for low resource language. To improve its translation
quality, byte pair encoding (BPE) [14] is used for rare words
with subword units [37] as this is a solution of low resource
language for NMT approach. Though the translation quality
is improved using BPE but could not transfer exact meaning
after translation. We find better adequacy in the translated
output generated by phrase-based statistical machine transla-
tion (PBMT) system. The proposed ML-based-Beam-PBMT
system helps to improve its translation quality in terms of
its adequacy and fluency. This is reflected in our case-study.
This translated sentence is almost fluent and adequate. Only
an extra word (kI) is there. After replacing the beam search
algorithm with cube pruning approach in our approach, this
extra unwanted word (kI) is omitted and make the translation
exactly adequate and fluent for this sentence. The case study
for Bengali-Hindi translation (using ILCI dataset) is shown

VOLUME 7, 2019

TABLE 12. Compact performance analysis among various MT systems in
terms of BLEU score and the decoding time for En-Hi translation.

MT Systems BLEU | Decoding Time
NMT [38] 12.11 658.367
NMT+BPE [37] 13.67 857.578
PBMT [32] 15.88 581.839
ML-based-Beam-PBMT 17.89 297.111
Cube pruning based-PBMT | 19.94 27.0383
ML-based-Cube-PBMT 20.98 47.1202

in Figure 6. Though the translated outputs are almost perfect
for these cases but there are some morphological, case mark-
ing problems and little bit adequacy problem at the translated
output of our proposed systems, which may resolve with the
described future scope.

Thus, it is proved that after using our machine learn-
ing based decoding model, the performance of the phrase-
based decoder improves to a great extent in terms of
decrease in decoding time or increase in translation accu-
racy or both. The compact performance comparisons

1749

IEEE Access

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

COTCaa 8T SITT - A1 52 43S OgR SNIeTS A1 11 SfoTa e 2021 87e! @I

Source oo™ 91| Gretl GITS i
Sourcer coKer xqRtiwe BAlo - KArAp xui Xaraner wawwbai sammiliwa WAke yAr praBAb
nijer icCA mawo yekono jiniser upar PelA yewe pAra
Ref AT AT Fed T F WG - X IEI & IR @ dcd AANed Jed @ [odl 9N Farel
feum o fovan S¥aan 21
Refy newroM kI beXaka xqRti meM Bale - bure xonoM hl prakAra ke wawwva samAhiwa
rahawe hEM jinakA praBAva manacAhl xiSA meM kivA jA sakawA hE
NMT AT DI &l UhR & 2id & Al [hdl A1 gq1iad 21 dad 2l
NMTr newroM kI xo prakAra ke howe hEM jo kisI BI praBAviwa ho sakawe hEM.
{NMT+BPE} A1 &1 Al IR & Feid eid @ Al idal 4l 28l ¥ gqliad &l Add o
newroM kI xo prakAra ke sixXAMwa howe hEM jo kisI BI icCA se praBAviwa ho sakawe
{NMT+BPE}r hEM .
PBMT A1 H =8l - g aFT 8] YBR & a9 - a9 o9dqd g dl a¥e 1hdid JeleHAl 90 e, faal
Q¢ BA ST Aehdl|
PBMTy newroM meM acCI - bure xonoM hl prakAra ke vEse - vEse,jisake pU kI waraha kiwAba

pahAdZInumA mile hE | kisl para PerA jA sakawA.

ML-based-Beam-PBMT

31 a1 YR I & 30 §¢ [FEid 2ld 2 9l Al [hdl 41 d¥e =0l g9idad & dad|

ML-based-Beam-PBMTr praBAviwa ho sakawe.

newroM xo prakAra kI ke acCe bure sixXAMwa howe hEM jo jo kisl BI waraha icCA

ML-based-Cube-PBMT

91§ Sl YhR A=w ¥ bgid 2id & ol [l Hl dve &l g=ol yHIad & dad|

ML-based-Cube-PBMTr praBAviwa ho sakawe.

newroM meM xo prakAra acCe bure sixXAMwa howe hEM jo kisl BI waraha kI icCA

FIGURE 6. Comparison analysis (using ILCI dataset) of different Bengali-Hindi MT systems’ translated outputs. Where, Source and Ref refer to source
sentence and its reference translation. NMT, NMT+BPE, PBMT, ML-based-Beam-PBMT, ML-based-cube-PBMT are neural machine translation system,
neural machine translation system with byte pair encoding, phrase-based statistical machine translation system, machine learning based beam search
with phrase-based statistical machine translation system, and machine learning based cube pruning approach with phrase-based statistical machine
translation system’s translated output, respectively. Sources ,Ref;, NMT;, {NMT+BPE};, PBMT;, ML-based-Beam-PBMT;, ML-based-cube-PBMT; refer to
transliteration (in WX-notation) of Source, Ref, NMT, NMT+BPE, PBMT, ML-based-Beam-PBMT, ML-based-cube-PBMT, respectively.

for En-Hi translation using the test file f.en.3 of Table § are
shown in Table 12.

VI. CONCLUSIONS

We have presented a simple and effective extension to the
phrase-based machine translation decoder in Moses by com-
bining the knowledge of machine learning and machine trans-
lation to speed up decoding and making the translation as
accurate as possible. As per our knowledge, such an approach
has never been attempted in the past. We have tried to prove
by experiments that the proposed framework has been very
effective in decreasing the decoding time or the increas-
ing translation accuracy for various corpora and domains of
input. In almost all our observations there has been at least
a 50% to about 90% decrease in decoding time with either
no decrease or an increase in translation accuracy for stack
decoding. As a matter of fact, in most cases, there has been an
increase in translation accuracy which shows that validity of
our work. Sometimes due to misclassification, wrong results
have been predicted but still the decrease in translation accu-
racy in utmost 0.03% which can be considered negligible.
Also in such cases of misclassification, there has been a
significant decrease in decoding time. In rare cases (single
time in whole stack decoding based experiments) there has
been the favorable increase in translation accuracy along with
an unwanted increase in decoding time. This is because our
machine learning model is trained not to compromise with

1750

translation accuracy. So, the cases where the decoding time
has increased, the translation accuracy has surely increased.
For cube pruning based approach, though in some cases it is
required more decoding time (negligible amount), translated
accuracy improves significantly. Finally, we can conclude
that the machine learning based decoding approach has a
significant improvement in term of its accuracy improve-
ment or decoding time improvement or both. We will try to
optimize classification methods in the recent future. Here,
the classifier could also be based on some features specific
to the phrase-based approach like the maximum length of a
phrase match, a total number of grammar rules that fire etc.
For this, we are planning to identify the optimal features for
this task. Due to the limitation of data, the neural network
could not be involved here for feature selection. We are also
planning to incorporate the neural network for automated
features identification in this framework.

REFERENCES

[1] D. Bahdanau, K. Cho, and Y. Bengio. (2014). “Neural machine trans-
lation by jointly learning to align and translate.” [Online]. Available:
https://arxiv.org/abs/1409.0473

[2] N. Bertoldi, B. Haddow, and J.-B. Fouet, “Improved minimum error rate
training in moses,” in The Prague Bulletin of Mathematical Linguistics,
vol. 91. Berlin, Germany: Versita, 2009, pp. 7-16.

[3] O. Bojar et al., “Hindencorp-hindi-english and hindi-only corpus for
machine translation,” in Proc. LREC, 2014, pp. 3550-3555.

[4] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Audio chord
recognition with recurrent neural networks,” in Proc. ISMIR, 2013,
pp. 335-340.

VOLUME 7, 2019

D. Banik et al.: Machine Learning-Based Optimized Pruning Approach for Decoding in SMT

IEEE Access

[5]
[6]
[71

[8]
[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

P. F. Brown et al., ““A statistical approach to machine translation,” Comput.
Linguistics, vol. 16, no. 2, pp. 79-85, 1990.

W. B. Cavnar and J. M. Trenkle, N-Gram-Based Text Categorization,
vol. 48113. Ann Arbor, MI, USA: Citeseer, no. 2, 1994, pp. 161-175.

G. Cervone, P. Franzese, and A. P. K. Keesee, “Algorithm quasi-optimal
(AQ) learning,” Wiley Interdiscipl. Rev., Comput. Statist., vol. 2, no. 2,
pp. 218-236, 2010.

D. Chiang, ““Hierarchical phrase-based translation,” Comput. Linguistics,
vol. 33, no. 2, pp. 201-228, 2007.

P. Clark and R. Boswell, “‘Rule induction with CN>: Some recent improve-
ments,” in Proc. Eur. Work. Session Learn. Berlin, Germany: Springer,
1991, pp. 151-163.

P. Clark and T. Niblett, “The CN; induction algorithm,” Mach. Learn.,
vol. 3, no. 4, pp. 261-283, 1989.

J. Demsar et al., ““Orange: Data mining toolbox in python,” J. Mach. Learn.
Res., vol. 14, no. 1, pp. 2349-2353, 2013.

Y. Feng, H. Mi, Y. Liu, and Q. Liu, “An efficient shift-reduce decoding
algorithm for phrased-based machine translation,” in Proc. 23rd Int. Conf.
Comput. Linguistics Posters, 2010, pp. 285-293.

M. Freitag and Y. Al-Onaizan. (2017). “Beam search strategies
for neural machine translation.” [Online]. Available: https://arxiv.org/
abs/1702.01806

P. Gage, “A new algorithm for data compression,” C Users J., vol. 12,
no. 2, pp. 23-38, 1994.

U. Germann, M. Jahr, K. Knight, D. Marcu, and K. Yamada, ‘“Fast
and optimal decoding for machine translation,” Artif. Intell., vol. 154,
nos. 1-2, pp. 127-143, 2004.

A. Graves. (2012). “Sequence transduction with recurrent neural net-
works.” [Online]. Available: https://arxiv.org/abs/1211.3711

K. Heafield, “KenLM: Faster and smaller language model queries,” in
Proc. 6th Workshop Stat. Mach. Transl., 2011, pp. 187-197.

H. Hoang, N. Bogoychev, L. Schwartz, and M. Junczys-Dowmunt.
(2016). “Fast, scalable phrase-based SMT decoding.” [Online]. Available:
https://arxiv.org/abs/1610.04265

H. Hoang and P. Koehn, “Design of the moses decoder for statistical
machine translation,” in Proc. Softw. Eng., Testing, Qual. Assurance Nat-
ural Lang. Process., 2008, pp. 58—65.

H. Hoang and P. Koehn, “Design of the moses decoder for statistical
machine translation,” in Proc. Softw. Eng., Testing, Qual. Assurance Nat-
ural Lang. Process., 2008, pp. 58-65.

C. R. Huang and L. H. Lee, “Contrastive approach towards text source
classification based on top-bag-of-word similarity,” in Proc. PACLIC,
2008, pp. 404-410.

L. Huang and D. Chiang, “Better k-best parsing,” in Proc. 9th Int. Work-
shop Parsing Technol., 2005, pp. 53—64.

L. Huang and D. Chiang, “‘Forest rescoring: Faster decoding with inte-
grated language models,” in Proc. 45th Annu. Meeting Assoc. Comput.
Linguistics, 2007, pp. 144-151.

G. N. Jha, “The TDIL program and the Indian langauge corpora intitia-
tive (ILCI),” in Proc. LREC, 2010, pp. 982-985.

M. Junczys-Dowmunt, “A space-efficient phrase table implementation
using minimal perfect hash functions,” in Proc. Int. Conf. Text, Speech
Dialogue. Berlin, Germany: Springer, 2012, pp. 320-327.

K. Knight, “Decoding complexity in word-replacement translation mod-
els,” Comput. Linguistics, vol. 25, no. 4, pp. 607-615, 1999.

K. Knight, “Decoding complexity in word-replacement translation mod-
els,” Comput. Linguistics, vol. 25, no. 4, pp. 607-615, 1999.

P. Koehn, “Pharaoh: A beam search decoder for phrase-based statistical
machine translation models,” in Proc. Conf. Assoc. Mach. Transl. Amer.
Berlin, Germany: Springer, 2004, pp. 115-124.

P. Koehn, Statistical Machine Translation. Cambridge, U.K.: Cambridge
Univ. Presss, 2009.

P. Koehn et al., “Moses: Open source toolkit for statistical machine trans-
lation,” in Proc. 45th Annu. Meeting ACL Interact. Poster Demonstration
Sessions, 2007, pp. 177-180.

P. Koehn and R. Knowles. (2017). “Six challenges for neural machine
translation.” [Online]. Available: https://arxiv.org/abs/1706.03872

P. Koehn, F. J. Och, and D. Marcu, ““Statistical phrase-based translation,”
in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics Hum.
Lang. Technol., vol. 1, 2003, pp. 48-54.

A. Kunchukuttan and P. Bhattacharyya. (2016). “Faster decoding for
subword level phrase-based SMT between related languages.” [Online].
Available: https://arxiv.org/abs/1611.00354

VOLUME 7, 2019

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

(42]

N. Lavrac, B. Kavsek, P. Flach, and L. Todorovski, “Subgroup discovery
with CN2-SD,” J. Mach. Learn. Res., vol. 5, pp. 153-188, Feb. 2004.

Z. Li et al, “Joshua: An open source toolkit for parsing-based
machine translation,” in Proc. 4th Workshop Stat. Mach. Transl., 2009,
pp. 135-139.

K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” in Proc. 40th Annu. Meeting
Assoc. Comput. Linguistics, 2002, pp. 311-318.

R. Sennrich, B. Haddow, and A. Birch. (2015). “Neural machine
translation of rare words with subword units.” [Online]. Available:
https://arxiv.org/abs/1508.07909

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104-3112.

M. Yasuhara, T. Tanaka, J. Y. Norimatsu, and M. Yamamoto, ““An efficient
language model using double-array structures,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2013, pp. 222-232.

R. Zens and H. Ney, “Efficient phrase-table representation for machine
translation with applications to online MT and speech translation,” in Proc.
Hum. Lang. Technol. Conf. North Amer. Assoc. Comput. Linguistics Main
Conf., 2007, pp. 492-499.

R. Zens, F. J. Och, and H. Ney, “Phrase-based statistical machine transla-
tion,” in Proc. Annu. Conf. Artif. Intell. Berlin, Germany: Springer, 2002,
pp. 18-32.

W. Zhang, “Complete anytime beam search,” in Proc. AAAI/IAAI 1998,
pp. 425-430.

DEBAJYOTY BANIK received the B.Eng. degree
from the Bengal Engineering and Science
University, Shibpur (IIEST Shibpur), and the
M.Tech. degree from the National Institute of
Technology Durgapur. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering, IIT Patna. His research
interests include machine translation, reversible
computing, quantum dot cellular automata, and
VLSI design and testing.

ASIF EKBAL was a Post-Doctoral Research
Fellow at the University of Trento, Italy, and
Heidelberg University, Germany. He is currently
the Dean of the R&D, IIT Patna, India, where
he is an Associate Professor with the Department
of Computer Science and Engineering. His cur-
rent research interests include natural language
processing, information extraction, machine learn-
ing applications, opinion mining, and text mining.
In these areas, he has authored or co-authored

around 100 papers in the journals like ACM TALIP, knowledge-based sys-
tems, and knowledge engineering, and conferences like ACL, COLING,
EACL, IJCNLP, and ECALI Google scholar citation, which is the benchmark
of computer science, shows his citation count of 1593 with h5-index of 22. He
is a recipient of the Best Innovative Project Award from the Indian National
Academy of Engineering, the JSPS Invitation Fellowship from the Gov-
ernment of Japan, and the Visesvaraya Young Faculty Research Fellowship
Award from the Government of India. His citation count is over 1.5K.

PUSHPAK BHATTACHARYYA was the Past Pres-
ident of the Association for the Computational
Linguistics from 2016 to 2017, and the Ex-Vijay
and Sita Vashee Chair Professor. He is a Com-
puter Scientist and a Professor with the Computer
Science and Engineering Department, IIT Bom-
bay. He is the Director of IIT Patna. He currently
heads the Natural language Processing Research
Group Center, Indian Language Technology Lab,
IIT Bombay. He is a well-known author in the field

of the machine translation, natural language processing, machine learning,
and artificial intelligence. His citation count is over 4.5K.

1751

	INTRODUCTION
	RELATED WORK
	MOTIVATION

	 MACHINE LEARNING BASED DECODING APPROACH
	DECODER PARAMETERS IN TRADITIONAL BEAM SEARCH ALGORITHM (STACK DECODING)
	MACHINE LEARNING BASED PARAMETERS SELECTION
	FEATURES USED

	STEP BY STEP PROCEDURE
	EMPIRICAL STEPS
	DETAILED EXPERIMENT

	MACHINE LEARNING BASED CUBE PRUNING
	DECODER PARAMETERS FOR CUBE PRUNING TECHNIQUE

	DATASET AND EXPERIMENTAL SETUP
	CORPORA AND DATASETS
	HARDWARE AND SOFTWARE SETUP
	HYPER-PARAMETER INFORMATION

	RESULTS AND ANALYSIS
	MACHINE LEARNING-BASED STACK DECODING
	CUBE PRUNING BASED DECODING INCORPORATED WITH MACHINE LEARNING

	CONCLUSIONS
	REFERENCES
	Biographies
	DEBAJYOTY BANIK
	ASIF EKBAL
	PUSHPAK BHATTACHARYYA

