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ABSTRACT In this paper, an efficient finger vein recognition algorithm based on the combination of the
nearest centroid neighbor and sparse representation classification techniques (kNCN-SRC) is presented.
The previously proposed recognition algorithms are mainly based on distance computation. In the proposed
method, the distance, as well as the spatial distribution, are considered to achieve a better recognition rate.
The proposedmethod consists of two stages: first, the k nearest neighbors of the test sample are selected based
on the nearest centroid neighbor, and then, in the second stage, based on the selected number of closest nearest
centroid neighbors (k), the test sample is classified by sparse representation. Findings from the proposed
method kNCN-SRC demonstrated an increased recognition rate. This improvement can be attributed to the
selection of the train samples, where the train samples are selected by considering the spatial and distance
distribution. In addition, the complexity of SRC is reduced by reducing the number of train samples for the
classification of the test sample by sparse representation and the processing speed of the proposed algorithm
is significantly improved in comparison with the conventional SRC which is due to the reduced number of
training samples. It can be concluded that the kNCN-SRC classification method is efficient for finger vein
recognition. An increase in the recognition rate of 3.35%, 9.07%, 20.23%, and 0.81% is obtained for the
proposed kNCN-SRC method in comparison with the conventional SRC for the four tested public finger
vein databases.

INDEX TERMS Distance criterion, finger vein recognition, k-nearest centroid neighbor, sparse representa-
tion classification, spatial distribution.

I. INTRODUCTION
Finger vein recognition is one of the hot topics in recent
years in biometric research. Finger vein is a hypodermic
recognition pattern of blood vessels which is unique for each
individual, including identical twins, and the pattern for each
finger is different within the same individual [1]. Amidst the
diverse characteristics of biometrics such as commonality,
uniqueness, and consistency, finger vein recognition exhibits
some good advantages over the other biometric characteris-
tics [2], [3] such as:

• Resist faking: As the finger vein is embedded inside the
skin it resists manipulation, and hence it is difficult to be
forged.

• Aliveness check: The finger vein recognition system
works based on aliveness detection, as the finger vein
image can only be accessed for a live person and hence
it cannot be faked.

• User-friendly: As capturing of the finger vein image is
contactless, it prevents the user from contamination and
other displeasing effects. Hence it is user-friendly.

So far few methods have been reported for utilization in
finger vein recognition, and most of them have focused on
feature extraction. Among them, extraction of the finger vein
using curvature in radon transform which detects the valley
like structures [4], representation of features of the finger
vein based on adaptive vector field estimation [5], affine
invariant feature matching [6], Direction Variance Boundary
Constraint Search (DVBCS) [7] to restore broken finger-vein
patterns, vein extraction by structure analysis algorithm [8],
the fusion of multi-scale matched filtering, and line track-
ing techniques [9] have been reported. Apart from feature
extraction methods for finger vein recognition, some research
work has also been proposed based on different classifica-
tion techniques. The classification of finger vein images by
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Support Vector Machine (SVM) is based on the separation
of training samples by a hyperplane [10]. The larger the
distance to the nearest training sample of any class the better
the separation achieved. The SVM method has difficulty
in kernel selection for setting the parameters properly for
optimal results of classification in order to generate the model
from the training data. Another classification technique for
finger vein recognition is by Sparse Representation Classifier
(SRC) [11]. In this approach, the finger vein images are repre-
sented sparsely and create a dictionarymatrix of training sam-
ples. This dictionary matrix then represents the test sample.
It is a computationally complex and time-consuming clas-
sification technique. Recently, another classification method
for finger vein recognition was reported, called Fuzzy based
k Nearest Centroid Neighbor (FkNCN) [12]. This method
is based on nearest centroid neighbor, and then the fuzzy
membership function is used to assign the class for the test
sample.

Despite certain limitations, SRC’s popularity remains
undiminished. Sparse Representation Classification is one of
the most recent classifiers that have been proposed in all
biometric systems such as face [13], iris [14], fingerprint [15],
palm print [16], gait [17] and also finger vein [11]. The
main aim of SRC is to represent the sample images using
the dictionary of fundamental signals called atoms, which
is the sparse representation for the image samples, and later
the test sample is represented by the atoms of the dictionary
matrix [11]. The sparse solution for the linear combination
can be obtained by the L1 norm optimization technique [18].
Obtaining the sparse solution is an iterative process and
requires complex matrix operation which is computationally
a very complex and time-consuming process. The dictionary
of atoms obtained consists of variable properties in compari-
son to the actual transformation due to the problems inher-
ent in image processing which may affect the recognition
rate [19].

In order to reduce the complexity and processing time
of SRC, a few methods have been proposed [20]–[23].
Zhang and Yang [20] proposed a k Nearest Neighbor based
Sparse Representation Classification (kNN-SRC) method to
overcome the problems of classification by sparse repre-
sentation combining two classifiers, k-NN, and SRC. This
method consists of two stages. In the first stage the train
samples are selected by the Nearest Neighbor classification
technique for the test sample and in the second stage, the test
sample is classified by SRC using the selected train samples.
Comparatively, the selected numbers of training samples are
less, due to which the processing time is reduced. In the
kNN-SRC [37] method, the selection of training samples
is by applying only the distance criterion, whereas in the
proposed kNCN-SRC method the selection is based on both
the distance and symmetric criteria. Xu et al. [21] proposed
a Two-Phase Test Sample Sparse Representation (TPTSR)
method for face recognition in which the samples are repre-
sented sparsely in two stages. The k train samples for the test
sample is obtained from all the training samples by sparse

representation, and in the second phase, the classification
of the test sample is obtained by linear combination of the
selected number of previously computed k train samples from
the first stage. In addition, Xu et al. [22] proposed another
methodology called Coarse to Fine Face Recognition based
on Sparse Representation (CFFR), in which the test sample is
classified from a coarse to fine SRC technique. This method
also comprises two stages. The first stage performs the sparse
representation over all the training samples, and in the next
stage, the weighted sum of the selected classes of train sam-
ples that are near to the test sample is determined. The basic
strategy of this method is to remove the training samples,
which are far from the test sample, and reduce the number
of training samples for the second stage of classification.
As the realization of the linear combination is computation-
ally a complex process, applying it in two stages increases
the complexity as well as processing time. Hence, for a
large number of databases, the processing time is very high.
Recently, Zeng et al. [23] proposed a Kernel Coarse to Fine
Recognition (KCFR) based sparse representation method for
face images. This method also consists of two stages, in the
first stage the selection of the candidate classes is made based
on feature space selection by the kernel function, and in
the second stage the test sample is classified to a class from
the candidate classes by sparse representation classification.
However, the complexity of kernel function increases with a
large number of training samples.

Except for the distance criterion, no other criteria are
applied in the mentioned methodologies [20]–[23] for the
first stage. The recognition is based on the minimum dis-
tance between the test sample and the train samples. Apart
from the distance criterion, there is also another criterion
that will affect the classification accuracy such as the sym-
metry criterion. The literal meaning of the symmetric dis-
tribution of an image is the distribution over the mean of
the pattern. The k Nearest Centroid neighbors classification
(k-NCN) [24] is based on both the distance and symmetric
distribution of the samples. The overall idea of k-NCN is
to find the nearest neighbor to the test sample, and also
with the consideration that the nearest centroid neighbor is
geometrically distributed over the query pattern evenly as
possible. In SRC, the classification of the patterns is based
on the distance factor (residual distances,) and there is no
consideration of symmetric criteria [11]. The classification
by SVM is achieved by considering the separation of the
training samples over a hyperplane. The higher gap over
the plane separates the correct from the incorrect training
samples; however, the symmetric criterion is not a factor for
classification [10]. The concept of k-NN classification is on
the basis of the minimum distance between the train and the
test samples only, without the symmetric criterion [12]. From
the previous studies, it is observed that the SRC gives a higher
recognition rate; hence motivated by the concept of k-NCN
and SRC, a combination of k-NCN with SRC is proposed
to solve the problems of the methods such as kNN-SRC,
TPTSR, CFFR and KCFR methods mentioned earlier.
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The proposed work in this paper is performed in
two stages, where the nearest centroid neighbor classifier
(NCN) is combined with sparse representation classifier
(kNCN-SRC). In the first stage, the k train samples which
are nearest to the test sample are selected based on the NCN
classification. By applying the Euclidean distance calcula-
tion method, the distances between the training samples and
test sample are computed. In the second stage, the selected
k number of train samples are used to classify the test sample
based on SRC. NCN consists of both distance and symmetric
constraints which selects the best candidates for SRC and
eliminates the far samples, thereby reducing the number of
train samples for SRC. These factors will result in a higher
recognition rate and faster processing speed.

As mentioned earlier, SRC is computationally a complex
and time-consuming process. In the kNCN-SRC method,
instead of considering all the train samples to be represented
sparsely, in the second stage, only a few of the closest centroid
neighbors are considered, thereby reducing the complexity
and time of the SRC method. In kNN-SRC, the best candi-
dates for the second stage are selected by the NN which is
based only on the distance criterion. Similarly, in TPTSR and
CFFR techniques, in the first stage, the best candidates are
obtained by sparse classification which is also only based
on the distance factor (residual values). Also in the KCFR
method, in the first stage, the candidate classes are learned
in the feature space selected by the kernel function. The
selection of the classes is by the minimum residual value
which is also based on distance factor.

In comparison to the actual transformation, the sparse solu-
tion obtained for an image in SRC consists of variable prop-
erties inherited from the image processing such as noise [19],
which results in a lower recognition rate. Also, the complexity
in obtaining the sparse solution increases the processing time.
However, in the proposed kNCN-SRC method, the selection
of the best candidates is by centroid distances which incorpo-
rates both the distance and symmetric criteria, resulting in a
higher recognition rate than the conventional SRC. The selec-
tion of best candidates reduces the number of train samples
for SRC classification which results in the fast processing
speed.

The rest of this paper is organized as follows. Section II
reviews the typical k-NCN, and SRC algorithms. Section III
explains the proposed kNCN-SRC algorithm and also dis-
cusses the differences between the proposed method and
the previously proposed methods. Section IV presents the
experimental results of the proposed algorithm on four dif-
ferent finger vein data sets. Finally, in Section V the paper is
concluded.

II. k-NCN AND SRC
A. k-NEAREST CENTROID NEIGHBOR (k-NCN)
NCN is an enhanced version of NN classification. The basic
concept of NCN is to find the nearest neighbor for the given
test sample based on the centroid (mean) point. The nearest

centroid neighbor is similar to NN except that along with
the proximity, the symmetric distribution is also accounted
for [24]. Consequently, for the given test sample y, the NCN
algorithm is liable to the following compulsions [25]:
• The distance criterion: The centroid neighbors must be
close to the test sample y.

• The symmetric criterion: The centroid neighbors must
be spatially distributed over the test sample y, as closely
as possible.

Mathematically, the NCN concept can be explained as
follows. For the given set of training images
X= { X1, X2, . . . , Xi, . . . , XC } with C classes, and

Xi = { x1, x2, . . . , xj, . . . , xn} where Xi ∈ R(m×n) has n
number of images in the ith class. Each image is assumed to
be of dimension m = p× q. The centroid for the set of points
of class Xi can be computed as in (1).

xCn =
1
n

n∑
j=1

xj (1)

In this paper, the training and the test images are normal-
ized to unit L2 norm. The normalization is done to transform
the features of the images to range from 0 to 1. The k Nearest
Centroid neighbors (k-NCN) for the given test sample y can
be obtained by Algorithm 1(a) [26], [27].

Algorithm 1(a).
1) The first nearest centroid neighbor TNCN1 is selected

based on theminimumdistance between the test sample
y and all the train samples. This distance can be com-
puted by Euclidean distance as in (2).

d(y, xj) =
√
(y− xj)T (y− xj) (2)

2) The ith nearest centroid neighbor, TNCNi (2 ≤ i ≤ k)
is selected such that the present and the previously
selected nearest centroid neighbors, i.e., { TNCN1 ,
TNCN2 , . . . , TNCNi−1 } are as close to y as possible. The i

th

centroid is given as the sum of the new point in X i and
all the previous centroid neighbors {TNCN1 , TNCN2 , . . . ,

TNCNi−1 } divided by i. The distance between the test
sample y and the ith centroid point is given by (3).

d(y, xi) =
√
(y− xci )

T (y− xci ) (3)

where xci is the i
th centroid point.

3) The ith nearest centroid neighbor TNCNi is decided by
the shortest distance computed by (3).

4) Steps 2 and 3 are repeated until i is equal to k
Consequently, the k-NCN classification concept can be

applied in pattern recognition as follows.
Algorithm 1(b).
1) The k nearest centroid neighbors for the test sample y

are determined by algorithm 1(a) asGNCNk (y) = { TNCN1 ,
TNCN2 , . . . , TNCNi , . . . , TNCNk } .

2) The test sample y is assigned to the class C with the
maximum number of votes from the set GNCNk (y).
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(resolve ties randomly)

C = argmax
Ci

k∑
i=1(TNCNi ∈GNCNk (y))

δ(Ci = YNCNi ) (4)

where the class of ith nearest centroid neighbor ( TNCNi )
is YNCNi and δ(Ci = YNCNi ) is the kronecker delta
function with the assumptions as 1 for Ci = YNCNi
when the test sample is correctly classified and 0 for
Ci 6= YNCNi when the test sample is wrongly classified.

B. SPARSE REPRESENTATION CLASSIFICATION (SRC)
In recent years, SRC has gained much importance in the field
of pattern recognition. A finger vein recognition technique
using the SRC algorithm was proposed by Xin et al. [11].
In this section, a brief review of the concept of SRC is
explained. Sparse representation is a technique of represen-
tation of the image from the linear combination of atoms
from a dictionary matrix. The test image is represented with
respect to the atoms of the dictionary matrix, called the sparse
coefficients.

Assume that there are C classes in the given train set X =
{ X1, X2, . . . , Xi, . . . , XC }. Each class consists of n number
of images with the dimension of m = p× q. Let Xi = { x1,
x2, . . . , xn}, where Xi ∈ R(m×n) , be the n number of training
images in the ith class. A test image y from an unidentified
class can be represented by the linear combination of the train
set as,

y ≈ Xα (5)

where α = {α1,α2, . . . ,αi, . . . ,αC } and αi is the coefficient
vector for the ith class.
Hence the test sample y is represented by the linear coef-

ficients of the training images. This coefficient vector α

is the sparse solution of the training images for the given
test sample y. It is referred to as sparse coefficient vector.
Suppose if the test sample y is from the ith class with n images
Xi = { x1, x2, . . . , xn} then the sparse coefficient vector is
given as,

α = {0, 0, . . . , 0|αi,1, αi,2, . . . , αi,n|0, 0, . . . , 0} (6)

In the sparse solution, most of the coefficient vectors are
zero, but the coefficients which are non-zero are the epochal
entries. The class with which the test sample is associated has
an approximate linear value and is zero otherwise [11], [13].
The sparse solution for the linear equation is achieved
by L1 norm optimization. The optimization problem can
be resolved by the Greedy Pursuit Algorithms such as
Basic Matching Pursuit, Basis Pursuit, Orthogonal Matching
Pursuit, Lp norm regularization-based algorithms and Itera-
tive Shrinkage Algorithms [19]. In this paper, the optimiza-
tion problem is resolved by using the Basis Pursuit method.
The SRC methodology can be explained as in Algorithm 2
[28], [29]. Algorithm 2.

1) The columns of the train images X are normalized to
unit L2 norm.

2) The sparse solution for normalized test sample y over
train samples X is computed by L1 norm optimization
as in (7).

α̂ = argminα‖α‖1subjectedto‖y− Xα‖1 < ε (7)

where ε is a non-negative value, and in this paper
ε = 0.001.

3) The residual values are computed as,

<i(y) = ‖y− X iα̂i‖1 (8)

where α̂i is the coefficient vector for ith class.
4) The class for y is determined as,

Class(y) = argmini{<i} (9)

III. PROPOSED METHOD
A. THE PROPOSED kNCN-SRC METHOD
As mentioned earlier, the main objective of our proposed
method kNCN-SRC is to enhance the recognition rate of SRC
by overcoming its limitations. The principal objective of the
proposed method is to classify finger vein images not only by
the distances but also by spatial distribution. This is achieved
by the combination of the two classification techniques
k-NCN and SRC. The proposed kNCN-SRC algorithm com-
prises two phases.
• First phase: The NCN classification selects the k nearest
train images for the given test sample y.

• Second phase: The test sample y is classified by sparse
representation over the k nearest train images.

The first phase of classification is achieved by the k-NCN
classification method. As discussed earlier this classification
method has two main objectives. It finds the k nearest train
samples for the test sample on the basis of distance and also
takes into consideration that it is spatially distributed as close
as possible. These objectives can be obtained by comput-
ing the centroid distances between the images. The centroid
points are computed as in (1). Subsequently, in the second
phase, the selected k nearest centroid neighbors from the
first stage are the train images for the classification by the
SRC method.
Let X= { X1, X2, . . . , Xp, . . . , XC } be the training images

with C classes. Assume Xp = { x1, x2, . . . , xn} ∈ R(m×n) is
the n number of images in the pth class. Let v be the total
number of training images from all the C classes. In this
paper, the training and the test images are normalized to unit
L2 norm, in order to range the features of the images from 0
to 1. For a given test sample y, the two stages of classification
in the proposed kNCN-SRC are as follows.
In the first stage, the k nearest centroid neighbors are

obtained by Algorithm 1(a). Let Z= { q1, q2, . . ., qk} where
k � v be the selected NCN for the given test sample y.
In the second phase, the test sample y is represented by the
linear combination as,

y ≈ Zβ (10)
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where β is the sparse coefficient vector obtained by L1 norm
optimization. Assuming that the test sample y is associated
with the pthclass then the coefficient vector is given as
β = {0, 0, . . . ,βp, 0, 0}.

The kNCN-SRC method can be summarized as in
Algorithm 3. Algorithm 3: kNCN-SRC Algorithm
1) For the test sample y, the k nearest centroid neighbors

are selected from the v training images based on the
steps in Algorithm 1(a). The selected k nearest centroid
neighbors are given as,

Z = {q1, q2, . . . , qk} (11)

2) The sparse solution for y over k nearest centroid neigh-
bors (k � v) is computed by L1 norm optimization.

β̂ = argmin‖β‖1subjected to‖y− Zβ‖1 < ε (12)

where ε is a pixel noise level which is non-negative.
In this paper ε = 0.001.

3) The residual values are computed as,

<p(y) = ‖y− Zpβ̂p‖1 (13)

where β̂p is the coefficient vector for the p
th class.

4) The class for y is determined as the class with minimum
residual value.

Class(y) = argmin
p
{<p} (14)

IV. COMPARISON OF kNCN-SRC WITH SRC,
kNN-SRC AND TPTSR
The main principle of classification in pattern recognition
is based on the closeness of the training sample to the test
sample. The train samples which are near to the test sam-
ple tend to have more importance in representing the test
sample than the other training samples [27]. When the
proposed kNCN-SRC method was employed on the test
sample, the representation results show higher sparsity than
by employing the other methods such as SRC, kNN-SRC,
and TPTSR. For illustration, the finger vein image from the
FV-USM database is considered [31]. Figure. 1 shows the
test finger vein image of the FV-USM database considered
for the analysis. The sparse coefficients and the residual
values for the test image for SRC, TPTSR, kNN-SRC and
the proposed kNCN-SRC classification methods are shown
in Figure 2. The maximum values of sparse coefficients
for the test image are 0.1859, 0.0269, 0.1589, and 0.2484
when SRC, TPTSR, kNN-SRC, and kNCN-SRC as shown
in Figure. 2(a), 3(a), 4(a) and 5(a) were tested, respectively.
The coefficient values show that the proposed kNCN-SRC
method is sparser than the other methods. It can also be
observed that the class with the minimum residual value is
the class of the test sample. Figures 2 (b), 3(b), 4(b) and 5(b)
show the minimum residual value and the classified class
for the test image considered. The minimum residual values
obtained are 0.8861, 0.8939, 0.8825, and 0.2940 for SRC,
TPTSR, kNN-SRC, and kNCN-SRC, respectively. The class

FIGURE 1. Test image from FV-USM database.

with the minimum residual value of 0.2940 obtained for the
kNCN-SRC method is the predicted class of the test sample,
which is the same as the actual class of the test sample under
consideration. This is achieved for most of the test samples
of the finger vein images from the other databases also.

The association of the test image with a class of the train
image occurs when the non-zero entries are focused on a
single train image. Hence, to estimate this distribution of the
sparse coefficients, the Sparsity Concentration Index (SCI)
is measured which is given as in (15) [13]. The SCI of the
coefficient vector β̂ is given as,

SCI (β̂) =
k × max i

‖δi(β̂)‖1
‖β‖1

−1

k − 1
∈ [0, 1] (15)

where δi(β̂) is a vector whose non zero coefficients are
from the sparse coefficient vector β for the ith class and k
is the total number of training images. The SCI (β̂) values
range from 0 to 1. If SCI (β̂) = 0, the coefficients are
considered to be spread all over the training images and
if SCI (β̂) = 1, the coefficients are concentrated over the
single class of image. The SCI values obtained for the test
image shown in Figure 1 are 0.0981, 0.0001, 0.1010, and
0.9351 for the SRC, TPTSR, kNN-SRC, and kNCN-SRC
classifiers respectively. It can be observed that the SCI is
higher for the proposed kNCN-SRC method when compared
to the other classifiers and hence it can be concluded that the
concentration of the coefficients is focused more towards one
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FIGURE 2. SRC. (a) Sparse coefficients. (b) Residual values representation.

FIGURE 3. TPTSR classifier. (a) Sparse coefficients. (b) Residual values representation.

FIGURE 4. kNN-SRC classifier. (a) Sparse coefficients. (b) Residual values representation.

class of training images as in Figure 5 (a), and in the other
classifiers it is spread over all the training images as observed
in Figures 2 (a), 3 (a) and 4 (a).

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, comparative analysis for the k-NN, k-NCN,
SRC, TPTSR, CFFR, kNN-SRC and kNCN-SRC classifiers
on the four public finger vein datasets are presented. In the
present study, an attempt is made to prove that kNCN-
SRC is comparatively an efficient classifier in finger vein
recognition systems. The four different finger vein databases
tested were Finger Vein Universiti SainsMalaysia (FV-USM)
Database [31], Shandong University (SDUMLA) set up

the Homologous Multi-modal Traits Database (SDUMLA-
HMT) [32], the Hong Kong Polytechnic University (HKPU)
Finger Image Database (finger vein) [33] and the Tsinghua
University Finger Vein and Finger Dorsal Texture Database
(THU-FVDT2) [34]. For comparison, the k-NN [35], [36],
k-NCN [12], [24], SRC [11], CFFR [22], TPTSR [21],
KCFR [23], and kNN-SRC [20], [37] classification methods
were tested. All the experiments were run on the platform
with a 2.6 GHz CPU and 4.0 GB RAM byMatlab 2015a soft-
ware. The results are presented in two parts: in the first part
findings of the individual classifiers are presented separately,
whereas in the second part a comparative analysis of the
tested classifiers is presented. In the first part, the experiments
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FIGURE 5. kNCN-SRC classifier. (a) Sparse coefficients. (b) Residual values representation.

on each classification method were conducted by selecting
different parameters, whereas, in the second part, the best
results obtained from the first part for the comparison of
the classification techniques were considered. As the SRC
classifier does not have variables, the overall results of SRC
were considered directly for comparison in the second part.
Similarly, results for all the four databases were analyzed
using the tested classifiers.

The experimental results were evaluated by accuracy and
the Kappa Coefficient (kc) values [38]. Accuracy is given
as the ratio of the total number of correctly classified test
samples to the total number of test samples. Cohen’s kappa
coefficient measures the inter-rater agreement between the
parameters. For the experimental analysis, the inter-rater
parameters are the actual class and the predicted class of
the test samples. The kappa value ranges from −1 to 1.
The higher the value of kc, the more agreement between the
raters [39].

A. RESULTS FOR THE FV-USM FINGER VEIN DATASET
In this section, the experimental results obtained for the
FV-USM database are discussed. For the FV-USM database,
the finger vein images were collected from 123 volunteers
who were the staff and students of Universiti Sains Malaysia.
Each person provided four fingers: left index, left middle,
right index and right middle finger with a total of 492 finger
classes. The finger image was captured in two sessions
with a gap of two weeks, and in each session, the finger
image was captured six times. In each session a total of
2,952 (123× 4× 6) images were collected. Therefore, a total
of 5,904 images from 492 finger classes were obtained. The
spatial and depth resolution of the captured finger images
were 640 × 480 and 256 grey levels respectively. This
database is available with the extracted ROI of the finger
vein images with the resolution of 300×100 pixels [31]. The
images were resized to a resolution of 30× 10 pixels before
applying to the classification methods. The images captured
at the first and second sessions were considered as the training
images and the testing images, respectively. Hence, a total of
492 finger vein classes in both the train and test classes were

considered. Therefore, a total of 2,952 training images and
2,952 test images were considered in the analysis. The region
of interest (ROI) of the finger vein images of this database
are shown in Figure 6.

FIGURE 6. ROI of the finger vein images of the USM database.

1) PARAMETER FINDINGS FOR THE FV-USM DATABASE
The results for the parameters such as the nearest neighbor
k in k-NN and k-NCN, the different number of classes (N)
for CFFR, the different number of candidate classes (M)
for KCFR, the different number of training images (k) for
TPTSR, kNN-SRC, and kNCN-SRC classification methods
are shown in Tables 1, 2, 3 and 4. From Table 1 it is
observed that the best accuracy of 77.64% with kc = 0.763
was obtained for k = 1 for k-NN and k-NCN classifiers.
Table 2 shows the results for CFFR classifier by considering
the different number of training classes (N). It is observed
that the best recognition rate of 15.48% with kc = 0.101
is obtained for N = 6. It can be observed from Table 3
that best recognition rate of 39.43% with kc = 0.393 for
M = 294 candidate classes is obtained for KCFR classifier.
The TPTSR, kNN-SRC and kNCN-SRC results are shown

TABLE 1. Recognition rate of k-NN and k-NCN classifiers for FV-USM
database.
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TABLE 2. Recognition rate of CFFR classifier for FV-USM database.

TABLE 3. Recognition rate of KCFR classifier for FV-USM database.

TABLE 4. Recognition rate of TPTSR, kNN-SRC and kNCN-SRC classifiers
for FV-USM database.

in Table 4 for the variable number of training images (k). The
maximum recognition rate of 88.38% with kc = 0.876 for
k = 500, 91.59% with kc = 0.910 for k = 500, and 94.41%
with kc = 0.940 for k = 600 was obtained for TPTSR,
kNN-SRC, and kNCN-SRC, respectively.

2) COMPARISON OF CLASSIFIERS FOR THE FV-USM
DATABASE
To compare the efficiency among the tested classifiers,
the best results obtained (as described in Section V-A.1)
were considered. Table 5 depicts the best results obtained in
each classifier along with the processing time. Table 5 also
includes the results of the SRC classifier. From the results,
it can be observed clearly that the highest recognition rate of
94.41% and kc=0.940were obtained for the proposed kNCN-
SRC method. In comparison with the conventional SRC,
the recognition rate is improved by 3.35% for the proposed
kNCN-SRC method.

TABLE 5. Comparison of the recognition results of the classifiers for
FV-USM database.

B. RESULTS FOR THE SDUMLA-HMT FINGER
VEIN DATASET
The second analysis was conducted on the SDUMLA-HMT
finger vein dataset. This database is composed of images of
the index, middle and ring fingers of both hands collected
from each subject. This was repeated six times to obtain
six replicates of finger vein images from each subject. The
database was composed of 6 × 6 × 106 = 3, 816 images.
All images were stored in ‘bmp’ format of 320 × 240 pixel
size [32]. For this experimental analysis, the images were
cropped into 300×100 pixel size. The images were resized to
a resolution of 30× 10 pixels before applying to the classifi-
cation methods. Among the six images for each finger, three
were considered as the training images and the remaining
three as the test images. Hence, a total of 1,908 training
images and 1,908 test images were analysed. The sample
of the ROI of finger vein images of this database is shown
in Figure 7.

FIGURE 7. ROI of the finger vein images of the SDUMLA-HMT database.

1) PARAMETER FINDINGS FOR THE
SDUMLA-HMT DATABASE
From Table 6 it is observed that the best accuracy of 50.00%
with kc = 0.497 was obtained for k = 1 for k-NN and
k-NCN classifiers. Tables 7, 8, and 9 show the results for
CFFR, KCFR, TPTSR, kNN-SRC and kNCN-SRC classi-
fiers, respectively. From these results, it can be observed that
the maximum recognition rates obtained are 51.99% with
kc = 0.517 for N = 1, 50.36% with kc = 0.501 forM = 381,
55.71% with kc = 0.554 for k = 200, 59.43% with
kc = 0.591 for k = 600, and 66.56% with kc = 0.662 for
k = 600, for CFFR, KCFR, TPTSR, kNN-SRC, and
kNCN-SRC, respectively.

TABLE 6. Recognition rate of k-NN and k-NCN classifiers for
SDUMLA-HMT database.

2) COMPARISON OF THE CLASSIFIERS FOR THE
SDUMLA-HMT DATABASE
For the comparison of the classifiers for the SDUMLA-
HMT database, the best results obtained from Section V-B.1
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TABLE 7. Recognition rate of CFFR classifier for SDUMLA-HMT database.

TABLE 8. Recognition rate of KCFR classifier for SDUMLA-HMT database.

TABLE 9. Recognition rate of TPTSR, kNN-SRC and kNCN-SRC classifiers
for SDUMLA-HMT database.

TABLE 10. Comparison of the recognition results of the classifiers for
SDUMLA-HMT database.

were considered. Tables 10 depicts the best results obtained
in each classifier including the SRC classifier. The highest
recognition rate of 66.56% and kc = 0.662 was obtained
for the proposed kNCN-SRC method. The recognition rate
is increased by 9.07% in comparison with the conventional
SRC.

C. RESULTS FOR THE HKPU FINGER VEIN DATABASE
The results of the experimental analysis for HKPUfinger vein
database are discussed in this section. This database consists
of images of finger vein and finger surface texture from male
and female volunteers. In this paper, the finger vein images
were considered for the experimental analysis. The database
had 6,264 images obtained from 156 subjects. The finger
images were taken in two different sessions. The second
session took place at an interval 11 months after the first
session. Six image samples of the index and middle fingers
of both hands were taken from each subject. Therefore, each
subject provided 24 images in one session. All images were

in bmp format of 580× 380 pixel size [33]. For the analysis,
a total of 2,520 finger vein images were considered, from
which 1,260 were from the first session and 1,260 were from
the second session. All the images were cropped manually to
300 × 100 pixel size. The images were resized to a resolu-
tion of 30 × 10 pixels before applying to the classification
methods. The first session images were considered to be the
training images and the second session were considered to be
the test images. The sample of the ROI of finger vein images
of this database is shown in Figure 8.

FIGURE 8. ROI of the finger vein images of the HKPU database.

1) PARAMETER FINDINGS FOR THE HKPU DATABASE
From Table 11 it is observed that the best accuracy of 27.77%
with kc = 0.255 was obtained for k = 1 for k-NN and
k-NCN classifiers. Tables 12, 13 and 14 show the results for
CFFR, KCFR, TPTSR, kNN-SRC and kNCN-SRC classi-
fiers, respectively. From the results, it can be observed that the
maximum recognition rate obtained was 66.66% with kc =
0.653 forN= 4, 51.58% with kc= 0.513 forM= 42, 45.79%
with kc = 0.424 for k = 300, 51.03% with k = 0.475 for
k= 500, and 69.52% with kc= 0.659 for k= 600 for CFFR,
KCFR, TPTSR, kNN-SRC, and kNCN-SRC, respectively.

TABLE 11. Recognition rate of k-NN and k-NCN classifiers for HKPU
database.

TABLE 12. Recognition rate of CFFR classifier for HKPU database.

2) COMPARISON OF THE CLASSIFIERS FOR THE
HKPU DATABASE
For the comparison of the classifiers for the HKPU database,
the best results obtained from Section V-C.1 were considered.
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TABLE 13. Recognition rate of KCFR classifier for HKPU database.

TABLE 14. Recognition rate of TPTSR, kNN-SRC and kNCN-SRC classifiers
for HKPU database.

TABLE 15. Comparison of the recognition results of the classifiers for
HKPU database.

Table 15 depicts the best results obtained in each classi-
fier along with the SRC classifier. The highest recognition
rate of 69.52% and kc = 0.659 was obtained for the pro-
posed kNCN-SRC method. An increase in recognition rate
of 20.23% is obtained for the proposed method in comparison
with the conventional SRC.

D. RESULTS FOR THE THU-FVDT2 FINGER VEIN DATABASE
The THU-FVDT2 database provides the ROI of the finger
vein images. The images were recorded in two different
sessions at an interval of three days to oneweek from 610 sub-
jects. The images from the first session are considered as
the train and the images from the other session as the test.
The resolution of the captured images is 720 × 576 pixels
with 96 dpi. The ROI of the images are normalized to
200 × 100 pixels [34]. For our analysis, the ROI images
are resized to 20 × 10 pixels before considering it for the
classification process. The sample finger vein images of this
database are shown in Figure 9.

1) PARAMETER FINDINGS FOR THE THU-FVDT2 DATABASE
From Table 16 it is observed that the best accuracy of 69.67%
with kc = 0.696 was obtained for k = 1 for k-NN and
k-NCN classifiers. Tables 17, 18 and 19 show the results for
CFFR, KCFR, TPTSR, kNN-SRC and kNCN-SRC classi-
fiers, respectively. From the results, it can be observed that
the maximum recognition rate obtained was 22.29% with

FIGURE 9. ROI of the finger vein images of THU-FVDT2 database.

TABLE 16. Recognition rate of k-NN and k-NCN classifiers for
THUFVDT2 database.

TABLE 17. Recognition rate of CFFR classifier for THU-FVDT2 database.

TABLE 18. Recognition rate of KCFR classifier for THU-FVDT2 database.

TABLE 19. Recognition rate of TPTSR, kNN-SRC and kNCN-SRC classifiers
for THU-FVDT2 database.

kc = 0.222 for N = 6, 26.72% with kc = 0.267 forM = 366,
95.24% with kc = 0.952 for k = 300, 95.73% kc = 0.957 for
k= 200, and 96.88% with kc= 0.968 for k= 300 for CFFR,
KCFR, TPTSR, kNN-SRC, and kNCN-SRC, respectively.

2) COMPARISON OF THE CLASSIFIERS FOR THE
THU-FVDT2 DATABASE
In order to compare the tested classifiers for the
THU-FVDT2 database, the best results obtained from
Section V-D.1 were considered. Table 20 depicts the best
results obtained in each classifier along with the SRC
classifier. The highest recognition rate of 96.88% with
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TABLE 20. Comparison of the recognition results of the classifiers for
THU-FVDT2 database.

kc = 0.968 for k = 300 was obtained for the proposed
kNCN-SRC method. An increase 0.81% of recognition rate
is obtained for the proposed method in comparison with the
conventional SRC.

E. PROCESSING TIME
To analyse the processing time comparatively, the time for
the best recognition rate for each classifier is taken into con-
sideration. Tables 5, 10, 15 and 20 depict the computational
time of each algorithm for all the tested databases. Among all
the tested algorithms, the k-NN and k-NCN algorithms based
on Euclidean distances were computationally efficient. The
algorithm TPTSR is based on L2 normwhich is computation-
ally efficient. The CFFR algorithm is also based on L2 norm,
but it is computationally inefficient for large databases. The
KCFR algorithm based on kernel feature space representation
is also computationally inefficient for large databases. The
algorithms SRC, kNN-SRC and the kNCN-SRC were all
implemented based on L1 norm; however, SRC was found to
be computationally time-consuming and kNN-SRC showed
improved computational efficiency, whereas kNCN-SRC dis-
played most computational efficiency compared to both SRC
and kNN-SRC. The main reason for the highest efficiency of
kNCN-SRC could be attributed to the reduction of the train
samples by considering the nearest centroid neighbors for the
SRC computation in the second stage. By the overall com-
parison, it can be concluded that the proposed kNCN-SRC
method is computationally faster than the SRC algorithms
and is nearly equal to kNN-SRC.

VI. CONCLUSION
In this paper, a new classification method called kNCN-SRC
algorithm for efficient recognition of finger vein images is
proposed. Themain objective of this algorithm is to determine
the nearest centroid neighbors for the SRC computation,
thereby reducing the training images during SRC classifi-
cation. The kNCN-SRC algorithm considers the distance
factor as well as the spatial distribution factor during the
classification of images. The recognition rate of the pro-
posed kNCN-SRC method was found to be most efficient
compared to the other tested algorithms. The efficiency of
the kNCN-SRC method could be due to the consideration
of the spatial distribution factor. Additionally, the processing
time is fast due to the reduction of the training samples for

SRC classification in the second stage. Compared with the
other tested algorithms such as SRC, TPTSR, CFFR, KCFR,
and kNN-SRC, the proposed kNCN-SRC algorithm performs
more efficiently with a higher recognition rate as demon-
strated in the present experiments.
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