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ABSTRACT Incentive-based demand response can fully mobilize a variety of demand-side resources
to participate in the electricity market, but the uncertainty of user response behavior greatly limits the
development of demand response services. This paper first constructed an implementation framework for
incentive-based demand response and clarified how load-serving entity aggregates demand-side resources
to participate in the power market business. Then, the characteristics of the user’s response behavior were
analyzed; it is found that the user’s response behavior is variable, and it has a strong correlation on the
timeline. Based on this, a prediction method of user response behavior based on long short-term memory
(LSTM) is proposed after the analysis of the characteristics of the LSTM algorithm. The proposed prediction
method was verified by simulation under the simulation environment setup by TensorFlow. The simulation
results showed that, compared with the traditional linear or nonlinear regression methods, the proposed
method can significantly improve the accuracy of the prediction. At the same time, it is verified by further
experiments that the proposed algorithm has good performance in various environments and has strong
robustness.

INDEX TERMS Artificial neural networks, machine learning algorithms, state estimation, power demand,
activity recognition, consumer behavior.

I. INTRODUCTION
As one of the important means for resource scheduling on
the demand side, the demand response can fully invoke the
resources on the demand side so as to alleviate the problem
of decreased flexibility of power system caused by large-scale
penetration of renewable energy resource [1]–[3]. Incentive-
based demand response can integrate demand side resources
flexibly and extensively, and then participate in the business
of the electricity market [4]–[7]. Load Serving Entity(LSE)
can deliver appropriate incentives for target users based on
user’s response flexibility, which is obtained by analyzing
the user’s historical data, so that the profit of LSE can
be maximized on the premise of completing the response
goal [8], [9].

In its 2016 report [10], the International Energy Agency
proposed to integrate home users and participate in the
electricity market. Coincidentally, in the long-term planning
of the PJM power market, it also proposed the need to

further expand the scope of demand response to participate
in the power market business [7]. Demand response can
significantly improve the efficiency and economy of grid
operation [11]. Demand response potential typically amounts
to around 15% of peak demand. The International Energy
Agency (IEA) assessed that the potential could exceed
150 gigawatts (GW) by 2050 in the European Union [10].
Demand response programs could also be an alternative to
investment in network capacity upgrades to address con-
gestion. In the case of the United Kingdom, it has been
estimated that the cost of network reinforcement could be
around one-third less in a system with optimal demand
response combined with 100% penetration of electric vehi-
cles and heat pump space heating [13]. In PJM, over 2 million
end use customers across almost every segment (residen-
tial, commercial, industrial, government, education, agricul-
tural, etc.) participate as Load Management resources [6].
A large number of distributed residential users have a huge

3170
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2342-4917
https://orcid.org/0000-0002-2643-4822


D. Liu et al.: Analysis and Accurate Prediction of User’s Response Behavior

demand response potential. It is able to form a large-scale
demand response capacity through the aggregation of a large
number of small resident users, and then participate in the
demand response business of the electricity market [14], [15].
However, the distributed residents’ electricity consumption
and response behavior are diversified and distributed, which
makes LSE face great uncertainty in implementing demand
response services, and it is difficult for LSE to accurately esti-
mate the actual effect of demand response [16], which greatly
limits the ability of demand-side aggregated resources to par-
ticipate in the power market business. With the development
of intelligent information collection technology [17] and the
development of user information analysis technology [18],
it is possible to analyze and predict user behavior.

Based on this, the recognition and prediction of the
response behavior of users under different incentives have
become the primary conditions for LSE to successfully aggre-
gate demand side resources and participate in Electricity
market.

A. LITERATURE REVIEW
There has been a lot of research on the prediction and
optimization of user behavior. Gao et al. [19] propose a
novel cross-domain recommendation model for the infor-
mation processing and computing in CPS(Cyber-physical
systems), alleviated the sparsity problems in individual
domain and improved across recommendation accuracy.
Qiao et al. [20] studied domain-independent prediction algo-
rithms and spatio-temporal based prediction method, search-
ing for low cost and simple location/place prediction methods
that can be implemented onmobile device. Xie et al. [21] pro-
posed a combined model STL-ENN-ARIMA (SEA), based
on the combination of the Elman neural network (ENN)
and the autoregressive integrated moving average (ARIMA)
model, improved the performance of heat demand predic-
tion. Zeng et al. [22] propose a new methodological frame-
work to assess the potential reliability value of DR in smart
grids, to deal with the the uncertainty on the demand side.
Liu et al. [23] optimized the incentive function of the tradi-
tional Elman neural network model, introduced the influence
factors of demand response, and improved the accuracy of
short-term power load forecasting. Zhang et al. [24] proposed
an effective model predictive control method that can mini-
mize the operating cost of residential microgrid and is robust
to the uncertainty of the prediction. Garulli et al. [25] com-
pared the prediction performance of several linear and non-
linear load forecastingmodels, including the black boxmodel
that does not require preprocessing of the original data, and
the gray box model that is applied after a certain preprocess-
ing of the original input signal. Li et al. [26] abstracted the
user’s response cost into a quadratic function and uses a least-
squares method to train the user’s cost function. Fei et al. [27]
proposed a synchronous pattern matching principle based
residential customer baseline load estimation approach with-
out historical data requirement. Campos and Wei [28] formed
a mixed-integer linear programming model for short-term

decisions of power retailers and solved the model to maxi-
mize profits, the user’s response under different incentives is
reported by the user beforehand. Jindal et al. [29] proposed a
novel data analytical demand response management scheme
for residential load with an aim to reduce the peak load
demand after analyzing the smart user’s home load data.
Yu et al. [5] viewed DR as a multi-interest game process and
used game theory to analyze the coordination among decision
makers. The user’s response cost function was abstracted
to a quadratic function. Dadkhah and Vahidi [30] provided
demand-side flexibility by using an optimal real-time pricing
scheme. Different levels of rationality are given by extend-
ing demand-price elasticity matrices for different types of
consumers. Paterakis et al. [31] predicted the load curve
of residential load under the price signal based on artificial
neural network and wavelet transform methods.

From the analysis of the above literatures, it can be seen
that most of the behavioral analysis of users in demand
response focuses on the prediction of user load, and lack of
analysis and prediction of the user’s response behavior under
different environments and incentive signals. Therefore, this
paper analyzed this issue.

B. CONTRIBUTION OF THIS PAPER
The main contributions of this paper are summarized as
follows:

Firstly, the architecture of the incentive-based demand
response is constructed and analyzed, providing a reference
for the implementation of incentive-based demand response
business.

Secondly, the user’s response behavior is analyzed
economically. Based on the existing user’s response cost
abstract formula, the user’s response elasticity is ana-
lyzed to provide support for the user’s response behavior
identification.

Finally, the characteristics of the Long Short-Term
Memory (LSTM) algorithm are analyzed, and the LSTM-
based user’s response behavior identification method is pro-
posed. Through simulation experiments, it is verified that the
method can accurately predict the user’s response behavior.
At the same time, it has good performance in different envi-
ronments and has strong robustness.

The remainder of this paper is organized as follows:
In Section II, the implementation framework and method
of the refined demand response are described. And the
user’s economic characteristics when participating in the
demand response are analyzed in depth at the same time. In
Section III, the characteristics and basic flow of the LSTM
algorithm are analyzed. Based on this, an accurate identifica-
tion method of user’s response behavior based on LSTM is
proposed. In Section IV, the accuracy of the proposed algo-
rithm for predicting the user’s response behavior is verified by
simulation experiments, and the performance of the algorithm
is analyzed from multiple perspectives. Section V concludes
the paper.
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II. IMPLEMENTATION ANALYSIS OF INCENTIVE-BASED
DEMAND RESPONSE
The implementation process of incentive-based demand
response is shown in Figure 1. LSE can integrate the resources
on the demand side to participate in the electricity market
as an independent entity. LSE obtains the target quantity
of demand response and corresponding subsidies from the
electricity market through bidding or other means. At the
moment of implementation of demand response, different
incentives are sent to users according to their status in order
to achieve the target response.

FIGURE 1. Incentive-based demand response implementation diagram.

The conventional services in the power market all have
requirements for deviations. Take PJM as an example,
in energy market, LSE need to participate real-time elec-
tricity trading or purchase ancillary services to make up for
the deviations between electricity obtained from day-ahead
market and the real electricity. Also, in ancillary market
and capacity market, LSE can provide load reduce through
demand response. In accordance with the provisions of the
PJM power market, all the load involved in load manage-
ment (Contains 4 types of demand response: Limited DR,
Extended Summer DR, Annual DR, and Capacity Perfor-
manceDR) that is not dispatched during its availability period
must perform a mandatory test to demonstrate it can meet
its capacity commitment or receive a penalty. If the load
capacity reported by the LSE is too small, the profit will
be reduced. On the contrary, it may be punished for failing
to achieve the goal. Therefore, when the LSE integrates the
demand side resources to participate in the regular business
of the power market, it needs to have a precise prediction of
the user’s response behavior. LSE delivers different demand
incentives I to the target users according to response require-
ment in each demand response service. Different from TOU,
RTP and other load adjustment methods, the incentive-based
demand response can make the adjustment of the LSE more

flexible and help to improve the precision of its business
development. For each user, the received incentive value I
from LSEmay be the same or different, so that highly flexible
users can participate more in the demand response business,
which can further improve the overall efficiency, the user
responds according to the incentive value, and transmits the
response R back to the LSE.

In the entire business process of incentive-based demand
response, the user’s response to different incentives is affected
by many factors. The response characteristics of different
users can be described using price elasticity. For different
users, the price elasticity may be different, for the same user,
the price elasticity may also change under different external
environments [32]. In general, the user’s response elasticity
is mainly affected by the following factors [16], [33]:

¬ Availability of similar alternatives. For example, the gas
stove can easily replace the role of the induction cooker when
the electric price is high if the home is equipped with both
of these, the gas water heater can also replace the electric
water heater to reduce the whole cost. In this case, the user’s
response flexibility may be high.

­ The current load status of the user. If the current load
is high and the interruptible or transferable load is relatively
large, the user will be more likely to respond to the incentive,
and the response elasticity will be high.

® The proportion of electricity consumption expendi-
ture in households’ total expenditure. In general, when the
user’s economic status is better, the proportion of electricity
expenses in its total expenditure is smaller, and the user may
be less sensitive to incentives. Conversely, users may be more
sensitive to incentives.

¯ External environment. For example, at high tempera-
tures during the summer noon, the user’s demand elasticity
may be low, so if the LSE wants to encourage the user
to change or shut down the temperature control device to
reduce the load through incentives, the higher cost is required,
and in the evening, as the external environment temperature
decreases, the user’s demand elasticity may increase. At this
time, the user may be more willing to respond to the load-
reducing demand at a lower price.

In economics, demand elasticity is used to characterize
the user’s sensitivity to a commodity price change. Similarly,
response sensitivity can also be used to characterize the user’s
responsiveness to incentive prices. The user’s response elas-
ticity formula is as follows:

ER =
1R

/
R

1I
/
I
=
1R
1I
·
I
R

(1)

where E is the elasticity of demand, R is the response amount
of the user in the demand response, and I is the amount of
incentive received by the user.

The participation of users in the demand response service
will be accompanied by a certain degree of loss of comfort.
Therefore, the user’s response is costly. Since the user’s com-
fort cost is a very abstract quantity, it is difficult to express
it in terms of physical models. According to the current
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research, the user’s comfort loss will increase at a faster rate
as the response volume increases and the change curve is
similar to a quadratic function and can be approximated by
a quadratic function. Therefore, the cost function that the
user participates in the demand response can be expressed
as [5], [26]:

U (R) =
1
2
βcos tR2 + αcos tR (2)

Formula (2) can reflect the response characteristics of
different users with different parameters (αcost and βcost ).
In general, the user is willing to respond when the incentive
received by the user can compensate for the loss of comfort,
if LSE wants the user’s response to be R, the incentive I
sent to the user should be greater than or equal to the user’s
response cost. In this paper, it is assumed that the user is
willing to respond when the amount of incentive received by
the user is higher than or equal to the cost of the response.
Maybe not all the users want to respond when the incentive
received is equal to the comfort loss(they may respond when
the incentive received higher than the comfort loss), but we
can find the critical point that the user is willing to respond
by adjusting the parameters α and β. It should be noted
that the actual maximum response of the user should not
exceed the current load. Therefore, it is necessary to add a
constraint on the amount of the user’s response. In this case,
the relationship between the user’s response and the incentive
can be expressed as:

Uad (R) =
1
2
βad (R+ ε)2 + αad (R+ ε)

s.t. R ≤ L (3)

where Uad is the user’s response cost, L is the user’s current
load, ε is the noise of the user response, αad and βad are
undetermined parameters, and their values depending on the
user’s response characteristics. Actually, the user’s participa-
tion in the demand response can be seen as the LSE purchase
response from the end user, that is, the user can be regarded
as the supplier and provide the ‘‘goods’’ to the LSE. In eco-
nomics, the price elasticity of supply is expressed as the ratio
of the percentage change in supply to the percentage change
in price. According to formula (3), the user’s supply elasticity
can be calculated, Since the noise of the user response is low-
order and random, we ignore the noise when analyzing the
user’s supply elasticity. The user’s response elasticity is as
follows:

ER =
dR
dUad

·
Uad
R
=

βadR+ 2αad
2βadR+ 2αad

(4)

where ER is the supply elasticity coefficient of user, reflects
the sensitivity of the user’s response to changes in incentives.
Different users have different response characteristics [34],
and these differences can be reflected by different α and β
values. Relationship between incentive and response of user
and the elasticity coefficient curve are shown in Figure 2:

As can be seen from the above figure, the user’s response
flexibility will gradually decrease, and the incentive cost will

FIGURE 2. User’s response cost curve and its elasticity curve.

increase rapidly with the increase of user’s response. It also
can be seen that the user’s response curve shows different
rising speeds for different user with different α and β values.
Under the same incentive, user1’s response is significantly
greater than user2’s response. In the incentive-based demand
response business model, the LSE can achieve the goal of
minimizing the incentive cost when the total response is
constant by providing different incentives for each user based
on incentive-based prediction of user’s response. Therefore,
it is very important to accurately predict the response of users
under different incentives.

The above description is only an approximation of the
user’s response behavior in an ideal environment. However,
in actual situations, the user’s response behavior (α and β val-
ues) may fluctuate [32]. Therefore, using a simple quadratic
function obviously cannot accurately describe the user’s
response behavior, and a more accurate method is needed to
predict the user’s response behavior.

III. PREDICTION METHOD OF USER RESPONSE
BEHAVIOR BASED ON LSTM
The response characteristics for the same user at different
times of a day may be different because the user’s response
characteristics are affected by the external environment and
the user’s response characteristics have a strong context on
the timeline because its electricity behavior has periodic
characteristics. Existing methods for predicting user behav-
ior, whether it is an approximate abstract function or a lin-
ear or nonlinear approximation, are difficult to describe the
relationship in time series, so it is difficult to accurately
predict the user’s response behavior. The LSTM network
has a powerful processing capability for time-series related
data. It stores historical response status through the cell, and
removes less relevant data through forget gates so the user’s
response behavior can be accurately predicted by using the
LSTM network [35], [36].

According to formula (3), the incentives received by the
user directly determines the response of the user, and different
external factors affect the parameters αad and βad of the user
response in formula (3).

For the incentives the user receives, in each demand
response business process, LSE will determine the amount
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of incentives to be sent to each user based on the different
total target response and the response status of each user, with
the goal of benefit maximization. If LSE knows the user’s
response state, that is the α and β values in formula (3),
LSE can optimize the amount of incentives sent to each
user using the Lagrangian multiplier method under the total
target response in each demand response business. But LSE
don’t know the relationship between external factors and user
response status.

There are many external factors (Such as temperature,
humidity, wind speed, sunshine conditions, etc.) that affect
the user’s response behavior. For LSTM networks, the more
relevant factors they input, the more accurate the training
results may be. However, in actual situations, some data
is difficult to collect or it is difficult to form continuous
structured data (such as real-time temperature, humidity,
wind speed, etc.) or its acquisition cost is high (such as
real-time power consumption data of a user’s individual
electrical equipment including air conditioners, electric water
heaters, lighting equipment, etc. , the collection of this data
requires the user’s authorization and requires the installa-
tion of electrical data acquisition and transmission devices).
Although external factors affecting user response behavior
are diverse, in similar days, all the external influence factors
of user response behavior will be similar. Considering that
the user’s load behavior has periodic characteristics, that is,
users have similar response behaviors in similar time periods
in similar day. In order to enable the algorithm to identify
historical similar days, we select the dailymaximum andmin-
imum load(these data can be acquired from load prediction
[37], [38]) as one of the inputs. Similarly, in order to enable
the algorithm to identify similar time periods, we choose time
as one of the inputs. The user’s current load status determines
the user’s maximum response potential, so select the user’s
current load as one of the inputs, too. In summary, the inputs
selected for the LSTM network is as follows: daily maximum
load, daily minimum load, current load, time, and incentives
received.

The structure of a typical LSTM is shown in the following
figure [35], [36], [39]:

FIGURE 3. LSTM structure diagram.

In the LSTM structure, what kind of information is dis-
carded is determined by the Forget Gate. The Forget Gate
reads the status information ht−1 at the last moment and the
input information xt at the current moment, and then outputs
a 0 to 1 digit ft to the Cell. The information stored in the
Cell is the state information of the previous time, and the
useful information is retained and the useless information is
discarded according to the input ft of the Forget Gate. During
the execution of the program, external environmental infor-
mation and incentives that are far apart from the current status
are discarded, and similar external environmental information
and incentives are retained. The Forget Gate update formula
is as follows:

ft = σ
(
Wf · [ht−1, xt ]+ bf

)
(5)

where, σ is the sigmoid function, Wf is the weight of the
Forget Gate, bf is the offset of the Forget Gate, ht−1 is the
output of the last moment, and xt is the input of the current
moment.

The Input Gate decides what kind of value will be used
to update the status of the Cell, replace non-similar day
information with similar day information. The input vector
is processed by the activation function sigmoid to generate it ,
and the candidate value vector C̃t is generated using the tanh
function at the same time. The Input Gate update formula is
as follows:

it = σ (Wi · [ht−1, xt ]+ bi) (6)

C̃t = tanh (WC · [ht−1, xt ]+ bC ) (7)

where, Wi, bi is the weight and offset of input, respectively.
WC , bC is the weight and offset of the candidate vector,
respectively. C̃t is a candidate value vector.
The status data of the previous time is recorded in the Cell.

After reading of the current input data, the status information
in the cell needs to be updated. The content to be discarded
is selected using the data input from the Forget Gate, and the
content to be updated is selected using the data input from the
Input Gate. The update formula for the Cell is as follows:

Ct = ft × Ct−1 + it × C̃t (8)

After updating the Cell state, it is necessary to determine
the content to be output according to the Cell state content and
the current input, that is, the user’s expected response amount.
The output gate update formula is as follows:

ot = σ (Wo [ht−1, xt ]+ bo) (9)

ht = ot × tanh (Ct) (10)

where, WO, bO is the weight and offset of the Output Gate,
respectively.

This paper simulates the LSTM network based on
TensorFlow. The algorithm flow is shown in Figure 4.

Step 1: read data. Input data include daily maximum load,
daily minimum load, daily average load, time and received
incentive, tag data is user response. Since the units of different
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FIGURE 4. TensorFlow-based LSTM algorithm flow chart.

input data are different, they need to be standardized. The
standardized formula is as follows:

Dataij =
Dataij0 − Data

j
mean

Datajstd
(11)

where, Dataij is the data after processing, Dataij0 is the orig-
inal data, Datajmean is the average value of the jth column
data, and Datajstd is the standard deviation of the jth column
data. Due to the requirements of the TensorFlow function,
the format of the input data needs to be converted into 2
dimensions, which can be implemented by calling the reshape
function of TensorFlow. After the above processing, the input
data xt shown in Fig. 3 is formed.
Step 2: Building LSTM network graph. The algorithmic

logic of TensorFlow determines that the graph of the LSTM
network needs to be built first, that is, establish the LSTMnet-
work shown in Figure 3. Calls ‘‘BasicLSTMCell’’ to define
Cell, the number of hidden layers is set to 10.

Step 3: Initialization parameters. After building graph, all
the variables (include all the weights and biases) involved
in Figure 3 need to be initialized. Initialize weights using
normal distribution with 0 as the mean and 1 as the standard
deviation, all initial biases are set to 0.1.

Step 4: Training LSTM model. When training the model,
the gradient descent algorithm can be used to train the param-
eters. If θ is used to represent the parameters (weights and
biases) of the neural network, LOSS(θ ) represents the loss
function of the whole network. The optimization process is
to find a parameter θ such that LOSS(θ ) is the smallest.
The gradient descent method updates the parameter θ in an
iterative manner along the opposite direction of the gradient
(that is, the direction in which the parameter is made smaller

toward the total loss):

θn+1 = θn − α
∂LOSS (θn)

∂θn
(12)

where, α is the learning rate, LOSS is the mean square error
between the predicted and actual values. In order to speed up
the training, a random gradient descent method can be used:
in each iteration, the loss function of the training sample is
randomly selected for optimization, thereby speeding up the
update speed of each iteration. However, the minimum loss
obtained by the stochastic gradient descent method may not
represent the minimum loss of all data. Therefore, combined
with the advantages of gradient descent and random gradient
descent, a small portion of the loss function of the training
data is calculated each time. We call this part of the data
batch. The use of batch makes the parameters optimized in
each iteration not too small, and it can reduce the number of
iterations to reach convergence, and make the convergence
result closer to the gradient. In TensorFlow, we can call
the function ‘‘tf.train.AdamOptimizer(α).minimize(LOSS)’’
to implement this process. Where learning rate α is set to
0.0006, batch size is set to 60.

Step 5: Predict the user’s response behavior. After n times
training on the LSTM network, the loss function will reduce
to a lower level. At this point, the training process is com-
pleted and then save the model. Use the method in step 1 to
standardize the input data, and then call the trained model to
predict the user’s response.

IV. SIMULATION RESULTS
As described in Section 2, a user’s response behavior can be
approximated by a quadratic function. The response elasticity
of the same user at different times of the day may be dif-
ferent [40], therefore, the user may have different values of
α and β at different time periods. Generate historical response
data of users according to [5], [26], and [41]. In order to
reflect the random noise ε in the user’s response behavior,
the α and β values are generated using a Gaussian distribu-
tion. The Parameter settings are shown in the following table:

TABLE 1. User’s response behavior parameters.

In the simulation, 20 sets of data are set as the test group.
These 20 sets of data are actually 20 demand response
events, so the number of times is used to represent each test
group. The incentives received by the test group are shown
in Figure 5:

Existing literature often uses linear or nonlinear regression
methods to fit the user’s response, Li et al. [26] use the least
square method, its assumption is that the user’s α and β
values are the same in each period. But in reality, the response

VOLUME 7, 2019 3175



D. Liu et al.: Analysis and Accurate Prediction of User’s Response Behavior

FIGURE 5. Incentives received by the test group.

flexibility of the user at different time periods may change,
under the condition of changing α and β, the least square
method may produce a large error.

At present, there are many prediction methods, mainly
including least squares method, k-nearest neighbors(KNN),
support vector regression(SVR), Neural Network and Ran-
dom Forest, etc.. In order to compare the accuracy of these
methods in prediction, take 1000 sets of data to train and
predict the user’s response behavior using the LSTM method
and other methods mentioned above. The first 980 groups
were used as the training set, and the last 20 groups were
used as the test set. The average error of each prediction
method is shown in Table 2 and the prediction results are
shown in Figure 6:

TABLE 2. Average errors of prediction results by different prediction
methods.

From Table 2 we can see that the average error (|predicted
value - actual value| / actual value) of different prediction
methods has a big difference. The least squares method has
the largest average error, reaching more than 50%, while the
LSTM average error is 12.81%. From Figure 6, we can see
that for all prediction methods, the largest error appears in
the first two test groups with the smallest response. This
may because the similar scenes in the training group appear
less. Among them, the maximum error of Least Squares,
Neural Network, SVR and KNN all reach or exceed 100%.
According to the average error, the performance gap between
random forest and LSTM is not very large, but the maximum
error of random forest exceeds 60%, while the maximum
error of LSTM is about 30%, indicating that the prediction
result given by LSTM has better stability.

Although LSTM has a large advantage in prediction accu-
racy compared to other methods, its prediction accuracy

FIGURE 6. Comparison of prediction results of different prediction
methods.

needs to be further improved. So further analysis of the
influencing factors of the algorithm is needed to improve the
accuracy of the proposed algorithm and to make it perform
well in any scenario.

The number of LSTM training times may have a greater
impact on the accuracy of the prediction. Too many train-
ing times will occupy too many computing resources, and
will greatly increase the calculation time, while fewer train-
ing times may make prediction errors increase significantly.
Therefore, this paper compared the prediction results under
different training times. Select 200 sets of historical data for
analysis, the result is shown in Figure 7:

FIGURE 7. Comparison of prediction results of different training times.
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As can be seen from Figure 7, training loss decreased
significantly with the increase in the number of training
and the prediction error of the user response behavior also
decreased. When the number of trainings is 20, the maximum
prediction error reaches nearly 300%, and the average error
of 20 tests is 58.55%. As the number of training increases,
the average training error decreases to 18.29% and 16.11%,
respectively, at training times of 200 and 800. Training loss
has the same trend as prediction error. At the early stage of
training, the error decreases rapidly. With the increase of the
number of trainings, the error tends to be stable. However,
the training error is still large, and unstable conditions may
occur. For example, in the case of 800 trainings, although the
average error is 16.11%, the error of the second test group still
exceeds 80%. Therefore, further analysis of factors affecting
prediction accuracy is needed.

The number of user history data may also affect the accu-
racy of LSTM prediction, especially if the user history data is
too small, the prediction accuracy of the LSTM method may
decrease significantly. However, in some cases, especially
in the early stage of demand response implementation, it is
difficult to collect a large amount of user historical data, so the
user response behavior can only be predicted using limited
historical data. Considering this reason, this paper analyzed
the impact of the number of historical data on the prediction
accuracy, as shown in Figure 8:

FIGURE 8. The effect of historical data quantity on prediction accuracy.

It can be seen from Figure 8 that under the same number
of training times, the loss of 100 sets of data is larger, while
the training error of 1000 sets of data and 4000 sets of data
are similar. The average prediction errors in the three cases
were 28.93%, 12.81%, and 9.53%, respectively. Although
the average error is acceptable, the volatility of the single
prediction error is still large, even in the case of sufficient
historical data, the maximum error still reaches 23.99%. The
error is mainly caused by the random fluctuation of the user.

Therefore, it is necessary to analyze the influence of the user’s
random fluctuation on the prediction error.

Increase the value of α and β from 0.2 to 2, take 1000 sets
of historical data and train 800 times, the prediction result is
shown in Figure 9:

FIGURE 9. Prediction results of high volatility users.

Figure 9 shows the result of 800 training times for 1000 sets
of user data. As can be seen from the figure, compared with
Figure 8(b), the predicted error has increased significantly,
the maximum error has risen from below 35% to nearly 90%,
and the average error has increased from 12.81% to 29.25%.
We can conclude that the user’s random volatility has a large
impact on the accuracy of the prediction.

In fact, from the previous simulation experiments, it can
be seen that there are positive and negative errors in the pre-
diction of user response behavior. Therefore, when the LSE
integrates the overall response behavior of the user group,
the positive and negative errors between different users cancel
each other, and the overall response error of the user group
will decrease. From formula (3), the response of a single user
can be solved, and then the expected response of the user
group is as follows:

E

(
n∑
i=1

Ri

)
= E

 n∑
i=1

−αi +
√
α2i − 2 · βi · Ii

βi
+ εi


= E

n∑
i=1

−αi +
√
α2i −2 · βi · Ii

βi

+E( n∑
i=1

εi

)
(13)

Since the user’s error is random (approximate to Gaussian
distribution), when the number n of users is large enough,

E
(

n∑
i=1
εi

)
approaches 0, so that the response of the user

group can theoretically be predicted unbiased [26]. In order
to verify this conclusion, we use 100 users to form a user
group to verify the accuracy of the algorithm proposed in this
paper(2000 sets of historical data, training 200 times). The
α and β values for each time period of each user are randomly
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generated. First, in the range of [0.2, 20], the desired centers
of α and β values are randomly generated, and then the
Gaussian distribution is used to generate the final α and β
values to simulate the random fluctuation of the user. The
Parameter settings are shown in the following table:

TABLE 3. User’s response behavior parameters.

The simulation results are as follows:

FIGURE 10. Comparison of user group prediction results and error
analysis (100 users, standard deviation 0.2).

FIGURE 11. Comparison of user group prediction results and error
analysis (100 users, standard deviation 2).

As can be seen from Figure 10 and Figure 11, whether it is
a high-volatility user or a low-volatility user, the error can be
kept at a low level. For a user group with a standard deviation
of 0.2, the error can be kept below 4%. For a user group with
a standard deviation of 2, the error can also be maintained
below 4.5%. The average error of the experimental results of
the two groups of users was 1.60% and 1.78%, respectively,
compared with the prediction results of single users, the accu-
racy has been greatly improved. Therefore, when the number

of users is large enough, the prediction result can control the
error within a small range.

V. CONCLUSION
In the incentive-based demand response, the current research
lacks accurate prediction of user response behavior, and it is
difficult for LSE to aggregate the demand-side users into the
regular business of the electricity market.

In this study, the user demand response characteristics and
influencing factors are deeply analyzed, and the applicability
of the LSTM algorithm is analyzed theoretically. Then the
user response behavior prediction method based on LSTM
network is designed and tested by TensorFlow. Through
simulation experiments, it can be seen that compared with
the linear regression method, the proposed algorithm in this
paper can improve the prediction accuracy of the response
behavior of a single user, and can accurately predict the
response behavior of user group. Also, the proposed algo-
rithm in this paper has a strong adaptability, even if the user
group behavior is volatile, it can also accurately predict its
behavior. The work of this paper can advance the precise
process of demand response and provide support for LSE
to aggregate the demand-side resources to participate in the
regular business of the electricity market.
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