
Received December 5, 2018, accepted December 19, 2018, date of publication December 24, 2018,
date of current version January 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2889533

Fast Generation of Collision-Free Trajectories
for Robot Swarms Using GPU Acceleration
MICHAEL HAMER , (Member, IEEE), LINO WIDMER, AND
RAFFAELLO D’ANDREA , (Fellow, IEEE)
Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland

Corresponding author: Michael Hamer (mike@mikehamer.info)

ABSTRACT As the capabilities of robots and their control systems improve, we see an increasing number of
use cases where the simultaneous operation of robots within a space is advantageous. Although trajectories
for individual robots can be computed quickly using the existing methods, when robots operate simultane-
ously and in close proximity, the requirement for collision avoidance introduces a coupling between robot
trajectories and makes the trajectory generation problem difficult to solve quickly. In this paper, we propose
a parallelizable formulation of such problems and a method for solving them quickly on modern graphics
processing units, using momentum-based gradient descent. We demonstrate the proposed framework in
simulation using two case studies: a swarm of 200 quadcopters traversing a maze and a fleet of 100 bicycle
robots changing their formation. In both the cases, our method requires just seconds to generate feasible,
collision-free trajectories for the entire swarm.

INDEX TERMS Collision avoidance, motion planning, robot control, trajectory optimization.

I. INTRODUCTION
We consider a swarm of robots working simultaneously and
in close proximity, and where each robot in the swarm is
tasked with transitioning from its given initial state to a
given goal state without colliding and while satisfying other
constraints placed on the trajectories. Using existingmethods,
feasible trajectories that transition each robot from its initial
state to its goal state can quickly be generated. However,
when robots operate simultaneously and in close proximity,
the requirement for collision avoidance introduces a coupling
between the trajectories of individual robots and makes the
problem non-convex and difficult to solve in a time-efficient
manner.

In this paper we propose a parallelizable formulation of
such problems, as well as a method for solving such problems
efficiently on modern tensor or graphics processing units
(GPUs). We initialize the trajectory for each robot indepen-
dently without considering inter-robot collisions, and then
use momentum-based gradient descent to iteratively improve
robot trajectories until feasibility. Given the non-convexity of
the problem and the usage of gradient descent, our method
yields solutions in the local neighborhood of the initialization,
and is not guaranteed to find an optimal solution; however,
our primary concern and the primary focus of this paper
is on quickly generating feasible and objectively ‘‘good’’

trajectories, which is itself not an easy task given the number
of robots interacting.

As we later demonstrate, our method requires just sec-
onds to generate collision-free, dynamically feasible trajec-
tories for hundreds of robots operating in close proximity
and within a densely-cluttered environment. These trajec-
tories are fully-defined state and input trajectories, and
we assume that these nominal trajectories are provided
as reference to and are tracked by a controller on each
robot.

After reviewing related literature in Section II, we present
a general formulation of our method in Section III, before
discussing two case studies in Section IV:

1) In Section IV-A, we solve the ‘‘Sort 200’’ quadcopter
maze-traversal benchmark problem [1] (see Fig. 1)

2) In Section IV-B, we address a ground robot transition
problem using a fleet of ground robots with bicycle
dynamics (see Fig. 2).

We conclude the paper in Section V with a discussion of
the method’s current limitations and possibilities for future
research.

II. RELATED WORK
The method presented in this paper builds upon prior work
in trajectory generation for individual robots, optimization of

VOLUME 7, 2019
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6679

https://orcid.org/0000-0003-4380-4714
https://orcid.org/0000-0001-5287-7849

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

FIGURE 1. An example of the type of problem that we address in this
paper. In this benchmark example, 200 quadcopters are tasked with
finding their way out of a maze without colliding with each other or with
the maze. Our method takes roughly 2.3 seconds to generate feasible,
collision-free trajectories for all 200 quadcopters. Further details to this
example are presented in Section IV-A.

swarm trajectories, and the application of GPUs to the evalu-
ation of robot trajectories and constraints.

A. ROBOT TRAJECTORY GENERATION
Trajectory generation for individual robots is a well estab-
lished field of research, with high-performance algorithms
existing for most classes of robots. Many methods of tra-
jectory generation express trajectories as the piecewise con-
nection of basis functions. In [2], for example, trajectories
are described using a piecewise constant jerk and generated
for time-optimality using a bang-bang approach. In [3]–[6],
trajectories are represented as polynomials generated to yield
minimum jerk or minimum snap motions.

In cluttered environments, collisions with obstacles often
prevent the direct application of the above methods. In such
situations, graph-search methods can be used to plan trajecto-
ries in a discretized state- or action-space [7], [8]; or sampling
based methods, for example Rapidly-exploring Random
Trees (RRT) [9], RRT* [10] or Probabilistic Roadmaps
(PRM) [11], can be used to find a feasible path through a
continuous space.

Such search-based methods scale poorly with the dimen-
sionality of the space and are thus often used to find feasible
paths through a lower-dimensional space, before smoothing
trajectories (for example, piecewise polynomials or splines)
are fit through the sequence of waypoints that define the
path [12], [13].

Since our method uses gradient descent, the convergence
speed and overall quality of the solution is very dependent on

FIGURE 2. A further example of the type of problem addressed in this
paper. In this example, 100 robots with bicycle dynamics (e.g. cars,
warehouse robots, etc.) are tasked with exchanging positions in a ‘‘smiley
face’’ formation without colliding. To exemplify the application of our
method to heterogeneous fleets of robots, we constrain the steering
angle of 50 robots (colored black) to 20◦, and the steering angle of the
other 50 robots (colored orange) to 70◦. As elaborated upon in
Section IV-B, our method takes roughly 1.6 seconds to generate feasible,
collision-free trajectories for the 100 robots.

the quality of the initialization. Which approach is best used
to initialize individual trajectories is highly problem specific.
In the case study presented in Section IV-A, we show an
example where graph search in a discretized environment is
used to find a feasible path through a cluttered environment
before splines are used to smooth this path and initialize the
robots’ trajectories. In the second case study presented in
Section IV-B, we initialize robot trajectories using fifth-order
polynomials optimized to minimize trajectory jerk.

B. SWARM TRAJECTORY GENERATION & COLLISION
AVOIDANCE
Generating collision-free trajectories for robot swarms
has historically proven to be a highly combinatorial and
high dimensional problem. Previous approaches have used
convex approximations or reformulations of the problem
to improve computational tractability. Examples of such
convex-optimization-based approaches include [14], who
solve the problem by iteratively solving mixed-integer linear
programs; [13] and [15]–[18], who employ sequential con-
vex programming to iteratively refine the solution towards
feasibility; [19], who formulate and solve the problem as a
mixed-integer quadratic program; and [20], who solve the
problem using a variation of the alternating direction method
of multipliers.

The application of these aforementioned methods to large
swarms is limited by their computational complexity. This is

6680 VOLUME 7, 2019

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

addressed in [21], who demonstrate that a significant increase
in computation speed can be achieved by only including colli-
sion constraints for pairs of robots in each other’s vicinity, and
by formulating the problem such that robot trajectories can
be optimized in parallel. A further improvement in compu-
tational speed can by achieved by optimizing both trajectory
and robot assignment in parallel, leveraging the fact that an
optimal assignment of robots to goals will require far fewer
collisions to be avoided, than a non-optimal assignment.
This property is exploited by Agarwal and Akella [22], who
reformulate the optimization problem to be solved as a linear
sum assignment problem and apply their method to swarms of
hundreds of robots; and by Preiss et al. [1], Debord et al. [23],
and Hönig et al. [24], who iterate a search-based roadmap
planner with a trajectory smoothing step until feasible robot
trajectories are found, and who demonstrate their method
by planning collision-free trajectories for hundreds of robots
through densely cluttered environments.

The approach we present in this paper builds upon this
existing work, and allows trajectories to be initialized using
a large range of existing methods, depending on what is
suitable for the given problem domain. This paper advances
the current state of the art by allowing the non-convex tra-
jectory generation problem to be solved directly on the GPU
using gradient descent, allowing our algorithm to leverage the
computational power of modern GPUs.

C. GPU-BASED TRAJECTORY GENERATION
The use of GPUs for accelerating computation is widespread
in many fields; however, the potential application to robot
trajectory generation problems remains largely unexplored.

The majority of papers to date use the GPU to par-
allelize the search for feasible trajectories for a single
robot. Approaches include, for example, variations of
genetic algorithms [25]–[29]; parallel implementations of
PRM [30], [31]; and a parallel implementation of R*
search [32], [33].

More in line with the approach of this paper are
[34] and [35], within which the GPU is used to parallelize
the evaluation of dynamics and collision constraints. Both
papers, however, only deal with trajectories for a single robot.
The non-convex trajectory generation problem is solved
in [34] directly; however in this case the GPU is used only
for parallel constraint evaluation with results then transferred
to a CPU-based solver.

Our paper advances the aforementioned in both the
intended problem domain: swarms of hundreds of robots; and
in our approach: we employ standard methods for the initial-
ization of feasible trajectories for individual robots within the
swarm, utilize the GPU for parallel evaluation of constraints,
and iteratively solve the non-convex trajectory generation
problem using gradient descent on the GPU.

III. PROBLEM FORMULATION
In this paper, we address the problem of generating feasible,
collision-free trajectories for robots operating simultaneously

and in close proximity. We initialize each robot’s trajectory
independently without considering inter-robot collisions, and
we model constraints on the trajectories (e.g. state and col-
lision constraints) as soft constraints and include them in
an objective function. We then employ momentum-based
gradient descent to iteratively improve robot trajectories until
all constraints are satisfied. Given the non-convexity of the
problem and the usage of gradient descent, our method is
not guaranteed to find an optimal solution, rather yielding
feasible solutions in the local neighborhood of the initial-
ization. We assume that the reference state and input trajec-
tories generated by our method are tracked by each robot’s
controller.

In this section, we formalize the above problem, introduce
notation, outline assumptions and requirements, and present
the method formally in Algorithm 1.

A. ROBOT STATES AND INPUTS
Consider a swarm of R robots. We number these robots
sequentially from 1 to R, and use indices i and j to refer
to robots within the swarm. For simplicity of the following
explanation, we assume that all robots in the swarm are
identical; however, this method can be trivially extended for
swarms of different robots, an example of which is shown
in the case study presented in Section IV-B. We let each of
the R robots have an input space of dimension M , and a
state space of dimension N . We assume inputs are issued
to each robot at discrete times k = 0, . . . ,K −1, and that
inputs are held constant between time instants. We denote
robot i’s input trajectory by Ui ∈ RK×M , and it’s state
trajectory by Si ∈ R(K+1)×N . We require that each robot’s
initial state Si[0] and desired goal state Gi ∈ RN are known
and feasible. Our method generates a feasible and collision-
free trajectory for each robot, which transitions it from its
initial state to within a user-defined threshold of its goal state
(e.g. a 5 cm final position tolerance is used in the case studies
in Section IV).

B. ROBOT DYNAMICS
Robot i’s input trajectory is mapped to its state trajectory
through the known robot dynamics f (·, ·) as

Si[k+1] = f (Ui[k], Si[k]) for all k ∈ [0, K− 1]. (1)

Iterating f across the entire input trajectory, we write

Si = F(Ui, Si[0]) (2)

to express the relationship between robot i’s input and state
trajectory.

For notational simplicity, we stack the input and state
trajectories of all robots into the tensors U ∈ RK×M×R and
S ∈ R(K+1)×N×R respectively. This is not always possible in
the case of heterogenous swarms; however, in such cases,
operations can be performed on trajectories individually,
while incurring minimal computational overhead. This stack-
ing is therefore without loss of generality. We overload nota-

VOLUME 7, 2019 6681

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

Algorithm 1 Our Method Uses Momentum-Based Gradient
Descent to Iteratively Improve Robot Input Trajectories U
Until the Corresponding State Trajectories S Are Collision-
Free and Feasible With Respect to the Given Constraints
Require:
• Initialization of robot input trajectoriesU , which are fea-
sible for individual robots if robot collisions are ignored

• Initial state of each robot S[0]
• Robot dynamics F(·, ·) which maps the robots’ inputs
and initial states to their state trajectories as in (3)

• Set of constraints C , where each constraint c ∈ C
is defined by a loss function Lc(·, ·) and satisfaction
check Sc(·, ·)

• Weighting parameter wc for each constraint c ∈ C
• Gradient descent optimizer OPT(·, · | η), parameterized
by a given learning rate η and which takes a gradient
and momentum state, and returns a step and updated
momentum.

Optimization Procedure:
1: Reset optimizer momentum ρ

2: loop
Calculate robot state trajectories as in (3)

3: S← F(U,S[0])
Calculate loss gradient as in (5)

4: ∇UL←
∑

c wc
(
∂Lc
∂U +

∂Lc
∂S

∂S
∂U

)
(U, S)

Check constraint satisfaction
5: if Sc(U, S) is false for any c ∈ C then

Run optimizer
6: 1U, ρ ← OPT(∇UL, ρ | η)

Update robot input trajectories
7: U ← U +1U
8: else
9: return U, S

10: end if
11: end loop
Returns: leftmargin=17pt, labelsep=7pt
• Input trajectories U that are feasible with respect to all
input constraints

• State trajectories S that are collision free and feasible
with respect to all state constraints

tion to write the relationship between the input and state
trajectories of the swarm as

S = F(U, S[0]), (3)

and note that S is a function of both the robots’ initial
states S[0] and the robots’ input trajectoriesU . Hidden behind
this notation are a number of performance caveats, which we
discuss in Section III-F.

C. CONSTRAINTS & OPTIMIZATION OBJECTIVE
The robots’ input and state trajectories are subject to con-
straints, which can include inter-robot and environmental

collision constraints; constraints on the final state (e.g. goal
constraints); bounds on the state trajectory (e.g. minimum and
maximum velocity); as well as actuator limits (e.g. minimum
andmaximum input). Our general formulation also allows for
coupled input and state constraints (e.g. state-dependent input
bounds), or for constraints which are only active on specific
robots.

We model these constraints as soft constraints and denote
by C the set of all constraints. We model each con-
straint c ∈ C as consisting of two components:

1) A loss function Lc(U, S), which is included in the
optimization objective function (detailed below) and
whose negative gradient provides a direction towards
a feasible solution.

2) A satisfaction function Sc(U, S), whose boolean out-
put indicates whether the constraint c is satisfied.
IfSc(U, S) is true for all c ∈ C , trajectories are deemed
feasible and the optimization terminates.

Weighting each loss by a parameter wc, the optimization
objective is to minimize

L(U, S) :=
∑
c

wcLc(U, S) (4)

with respect to the input trajectories U . We achieve this by
descending the loss gradient

∇UL(U, S) :=
∑
c

wc

(
∂Lc
∂U
+
∂Lc
∂S
·
∂S
∂U

)
(U, S), (5)

where we recall that S is a function ofU . This gradient calcu-
lation and back-propagation can be automated using the auto-
differentiation functionality of tensor arithmetic libraries
such as Tensorflow [36] or PyTorch [37], or can be com-
puted manually. In the case studies presented in Section IV,
we show the implementation of a number of common
constraints.

D. OPTIMIZATION
Since our method uses gradient descent, the speed of the algo-
rithm and quality of the solution are dependent on the quality
of the initialization. Robot input trajectories should therefore
be initialized to transition the robot from its initial state to
its goal state, while satisfying individual robot constraints,
and in a manner that is appropriate for the problem (e.g. time
optimal, minimum jerk, etc.). This initialization is performed
for each robot independently and without considering inter-
robot collisions.

The requirement for collision-avoidance between robots
introduces a coupling between the trajectories of individual
robots and makes the problem non-trivial to solve. Using
a (potentially momentum-based) gradient descent optimizer,
for example Adam [38], our method iteratively improves
the input tensor U by descending the loss function’s gradi-
ent (5). When trajectories are found to satisfy all constraints
(Sc(U,S) is true for all c ∈ C) the algorithm terminates. This
optimization procedure is formalized in Algorithm 1.

6682 VOLUME 7, 2019

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

E. HYPERPARAMETER TUNING
With respect to (5), we observe that the gradient and there-
fore the direction and size of the gradient descent update
are dependent on the set of constraint weighting factors
{wc | c ∈ C }. In addition, the size of each update step is
proportional to the so-called ‘‘learning rate’’ of the gradient
descent optimizer. The learning rate, together with the con-
straint weights are the hyperparameters of our method.

The selection of appropriate hyperparameters is specific to
the class of problem being addressed. Selecting appropriate
hyperparameters is critical to achieving fast convergence to
reasonable results. Hyperparameters should be chosen such
that the number of collisions is quickly reduced, while ensur-
ing that other constraints which may be violated during the
optimization process are quickly reoptimized to feasibility.
To select hyperparameters for the problem classes presented
in Section IV, we employed an automated hyperparame-
ter search [39]. This search involves running hundreds of
thousands of simulations with different hyperparameter val-
ues, and selecting those hyperparameters that minimize the
90th-percentile convergence speed of the algorithm.

The effects of hyperparameter tuning are investigated in
more detail in Section IV-B5.

F. PERFORMANCE CONSIDERATIONS
The speed of our method comes from the ability to paral-
lelize many of the algorithm’s steps and thus leverage the
computational power of a modern GPU. With reference to
Algorithm 1, the two major steps of the algorithm are the
calculation of state trajectory (line 3), and the calculation of a
loss gradient (line 4). It is important to ensure that these steps
are implemented in such a way as to enable their effective
parallelization.

1) CALCULATION OF STATE TRAJECTORY
When computing the state trajectory of each robot from
its input trajectory, it is important to note that we define
the dynamics F(U, S[0]) to operate on the input trajectory
as a whole, rather than iterating the dynamics across time
(as in (1)).

Significant performance gains can be realized when the
dynamics are implemented using cumulative sums or cumu-
lative products, since these cumulative operations can be
efficiently parallelized to run in logarithmic time [40]. In the
case studies presented in Section IV, we show two examples
of how robot dynamics expressed as standard difference equa-
tions can be implemented using cumulative sums.

2) CALCULATION OF LOSS GRADIENT
Losses are typically independent across time and across
robots, and can be effectively implemented using tensor
operations, for example as provided by libraries such as
Tensorflow [36] or PyTorch [37]. Tensor operations are
inherently parallelizable and thus enable the evaluation of
losses in parallel. Likewise, the evaluation of the loss gradient

follows through back-propagation, which is based on tensor
multiplications and additions and is thus also inherently
parallelizable.

IV. CASE STUDIES
In this section, we demonstrate the application of our method
to two different scenarios. An example implementation of
each scenario is available at http://mikehamer.info/swarm-
trajectories.

Results presented in this section were generated using
an Nvidia GeForce GTX 1080 Ti GPU, a widely-available
consumer GPU costing roughly $700 at the time of writing.
Implementations were programmed using Python 3.6,
PyTorch version 0.4.1, CUDA version 9.2.148 and cuDNN
version 7.1.4. Tensor arithmetic was performed using 32-bit
floating point.We note that the throughput could bemore than
doubled if 16-bit floating point were used on a more recent
GPU.We also note that the GPU utilization was between 20%
and 40% in all scenarios, implying that further performance
may be achievable through amore optimized implementation.

A. ‘‘SORT200’’ QUADCOPTER MAZE BENCHMARK
In the ‘‘Sort 200’’ benchmark scenario [1], 200 quadcopter
robots begin at random (x, y) locations within a maze and
must fly to a goal location outside the maze without colliding.
Initial and goal positions all lie on the z = 0 plane. As in
the original benchmark scenario, quadcopters are allowed to
move in the z dimension if required to avoid collisions.

An example of the Sort 200 scenario is shown in Fig. 1,
where the initial and final positions of 200 quadcopters are
shown connected by their collision-free trajectories.

1) ROBOT MODELING
The dynamic model of a quadcopter is differentially flat [41],
a property which is often exploited to allow trajectories
to be planned in each of the inertial axes independently
(see, e.g. [2]–[5]). We take a similar approach and plan jerk
trajectories for each quadcopter in each axis independently.
These trajectories can at a later stage be converted to nom-
inal thrust and body-rate inputs, or could be provided to a
trajectory-tracking controller.

Denoting the three inertial axes with subscripts x, y and z,
we respectively denote the position, velocity, acceleration and
jerk of the quadcopter in the inertial frame using

p := (px , py, pz), (6)

v := (vx , vy, vz), (7)

a := (ax , ay, az), and (8)

j := (jx , jy, jz). (9)

We define theM = 3 dimensional input space of a quadcopter
as

U := (jx , jy, jz) (10)

VOLUME 7, 2019 6683

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

and its N = 9 dimensional state as

S := (px , py, pz, vx , vy, vz, ax , ay, az). (11)

Discretizing using the Euler forwardmethod for a sampling
period of T = 50ms, the quadcopter’s state in the inertial
frame evolves as

a[k+1] = a[k]+ T j[k] (12)

v[k+1] = v[k]+ T a[k]+ 1
2T

2j[k] (13)

p[k+1] = p[k]+ T v[k]+ 1
2T

2a[k]+ 1
6T

3j[k], (14)

where we assume that the input j[k] is held constant dur-
ing timestep k . These recursive difference equations can be
rewritten to express the state at time k + 1 in terms of the
input and state history:

a[k+1] = a[0]+ T
k∑
κ=0

j[κ] (15)

v[k+1] = v[0]+ T
k∑
κ=0

a[κ]+ 1
2T

2
k∑
κ=0

j[κ] (16)

p[k+1] = p[0]+T
k∑
κ=0

v[κ]+ 1
2T

2
k∑
κ=0

a[κ]+ 1
6T

3
k∑
κ=0

j[κ].

(17)

Lifting the above in time, we observe that the state
trajectory can be computed using cumulative summation
(denoted CS):

a[1 :K] = a[0]+ T ·CS(j)

v[1 :K] = v[0]+ T ·CS(a[0 :K−1])+ 1
2T

2
·CS(j)

p[1 :K] = p[0]+ T ·CS(v[0 :K−1])

+
1
2T

2
·CS(a[0 :K−1])+ 1

6T
3
·CS(j). (18)

This implementation can be effectively parallelized to run
in logarithmic time, which in this case-study executes an
order of magnitude faster than the linear-time, recursive
implementation.

2) ASSIGNMENT OF ROBOTS TO GOALS
Prior to trajectory generation, the 200 quadcopters must be
assigned one of 200 goal positions located on the perimeter of
the maze. We begin by transforming the given 2D maze into
a graph representation by discretizing the graph coordinates
and connecting points with an unobstructed line of sight
using an edge with weight equal to the points’ Euclidean
distance. The path length between all (discretized) positions
within the maze can now be computed using, for example,
Dijkstra’s algorithm [42]. This step is only required if the
maze changes.

Using these computed path lengths and the known initial
quadcopter positions, we use the Hungarian method [43]
to compute an allocation of quadcopters to goal positions
that minimizes the sum of squared distance traveled by the
swarm.

3) INITIALIZATION OF INDIVIDUAL TRAJECTORIES
Once the allocation of initial positions to goal positions is
known, we fit splines to the shortest path connecting these
positions (as given by Dijkstra’s algorithm in the previous
step). As in the original benchmark problem, we give quad-
copters 10 seconds to exit the maze. Splines are scaled to
have this duration, and are then sampled at the desired rate
(in our case 20Hz) to yield the initial trajectories for each
quadcopter.

The results of this stage are 200 jerk trajectories in x and y,
which quickly and smoothly transition robots from an ini-
tial to a goal state. We initialize the z component of each
trajectory to zero. At this stage, quadcopters are treated
independently and as such the initial trajectories will cause
collisions between quadcopters. This and the previous step
are computed on the CPU due to the availability of centralized
solvers for Dijkstra’s algorithm and the Hungarian method.

4) CONSTRAINTS
Our constraint set consists of constraints based on the
quadcopters’ physical capabilities, constraints on quadcopter
collisions with each other and with the maze walls, and
constraints on the final state of each quadcopter. Based on
these constraints, we define the loss function to be

L(U,S) := wthrust Lthrust(U,S)

+wbody-rate Lbody-rate(U,S)

+wquad-collision Lquad-collision(U,S)

+wmaze-collision Lmaze-collision(U,S)

+wgoal-pos Lgoal-pos(U,S)

+wgoal-vel Lgoal-vel(U,S). (19)

In the following, we define and discuss the implementation
of these constraints and their respective loss functions.

a: DYNAMICS CONSTRAINTS
In line with [1], we set the quadcopter dynamic limits
based on a Crazyflie 2.0 quadcopter [44]. These limits
include the minimum andmaximummass-normalized thrusts
fmin = 5m s−2 and fmax = 15m s−2, and the maximum tilt-
ing body-rate ωmax = 30 rad s−1 [45].

Letting g denote the vector of gravitational acceleration,
quadcopter i’s thrust at time step k is

fi[k] = ‖ai[k]− g‖2, (20)

which we constrain to the feasible range using the loss func-
tion

Lthrust(U,S) :=
K∑
k=1

R∑
i=1

max {0, fi[k]− fmax}

+

K∑
k=1

R∑
i=1

max {0, fmin − fi[k]} . (21)

As shown in [5], the magnitude of quadcopter i’s tilting
body-rates ωx,i[k] and ωy,i[k] at timestep k can be

6684 VOLUME 7, 2019

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

upper-bounded by a function of its jerk and thrust as:√
ωx,i[k]2 + ωy,i[k]2 ≤

‖ji[k]‖2
fi[k]

. (22)

We use this upper bound to constrain the quadcopters’ tilting
body-rates using the loss function

Lbody-rate(U,S) :=
K−1∑
k=0

R∑
i=1

max
{
0,
‖ji[k]‖2
fi[k]

− ωmax

}
.

(23)

A quadcopter’s thrust and body-rates are defined to satisfy
their respective constraints if the associated loss function is
zero.

b: QUADROCOPER COLLISION CONSTRAINTS
We define two quadcopters as colliding if their centers are
within a certain distance D, which we refer to as the collision
distance and define asD := 0.25m in line with [1].We define
the collision loss function as

Lcollision(U,S) :=
K∑
k=1

R∑
i=1

R∑
j=i+1

2 ·max
{
0, D− dij[k]

}
,

(24)

where dij[k] := ‖pi[k] − pj[k]‖2 is the center-to-center
distance between quadcopters i and j at timestep k . Note
that due to the pairwise nature of collisions, we only check
quadcopters with a higher index and we therefore add twice
the collision loss.

Checking for robot-robot collisions is one of the most
time consuming steps in the optimization pipeline. Directly
computing the above loss requires that for each step in time,
the positions of all robots are checked against the positions
of all other robots to determine whether the robots collide.
As noted in [21], the time required for this step can be
significantly reduced if pairs of quadcopters are only checked
for a collision if they are closer than a given threshold.

We take a similar approach in Algorithm 2 and leverage the
time-efficiency of parallel sorting to order quadcopter posi-
tions according to their position pα,i in the axis α ∈ {x, y, z}.
It is then possible to compare each robot only with those
robots having similar α coordinates. By choosing α to be
an axis with a large position variance (e.g. in this case
study x or y are good choices), we significantly reduce the
number of checks required.

c: MAZE COLLISION CONSTRAINTS
We implement the maze collision loss function as a two-
dimensional lookup. For every quadcopter and at every
timestep we check the robot’s x and y position to determine
whether it collides with the maze boundaries. If a collision is
found to occur, that is if the quadcopter’s position is closer
to a maze wall than its collision distance allows, a loss with
a gradient normal to the boundary is added to the global
loss.

Algorithm 2 This Algorithm Drastically Improves the Speed
of Collision Checks by Leveraging the Efficiency of Parallel
Sorting Algorithms. Robot Positions Are Sorted Along an
Axis αWith High Position Variance, Thus Enabling Collision
Checks to be Performed in the Robot’s Local Neighbor-
hood Rather Than Across All Robots in the Swarm. This
Algorithm Implements the Loss Function Given in (24)
Require:
• Robot positions pi[k] := (px,i[k], py,i[k], pz,i[k])
• Axis α ∈ {x, y, z} with large position variance
• Minimum allowed center-to-center distance D

Robot collision detection procedure:
1: for k ∈ [1,K] in parallel do

Order robots at time k by their position in axis α
2: Idx[k, :]← ParallelArgsort({pα,i[k] | i ∈ [1,R]})
3: end parallel for
In parallel, check collisions for all robots at all timesteps

4: for i ∈ [1, R] and k ∈ [1,K] in parallel do
Sequentially (to allow early stopping), check for
collisions for all pairs with the current robot i

5: for j ∈ [i+ 1, R] sequentially do
Indexes of robot pair

6: ri← Idx[k, i]; rj← Idx[k, j]
7: if pα,rj [k]− pα,ri [k] > D then

Since pα,rj+1 [k] ≥ pα,rj [k] we can stop early
8: break
9: end if

Compute pairwise distance
10: d ← ‖prj− pri‖2

Compute loss and loss gradients
11: if d ≤ D then
12: atomic

{
Lcollision← Lcollision + 2 · (D− d)

}
13: atomic

{
∇pri

L← ∇priL+ (prj− pri)/d
}

14: atomic
{
∇prj

L← ∇prjL− (prj− pri)/d
}

15: end if
16: end sequential for
17: end parallel for
18: return Lcollision, {∇piL | i ∈ [1,R]}
Returns: leftmargin=17pt, labelsep=7pt
• Collision loss Lcollision
• Collision loss gradient ∇piL for each robot i

We find it useful to distinguish between the case of a quad-
copter’s trajectory traveling too close to a wall, and the case
of the trajectory moving into a wall. During the optimization
process, quadcopter state trajectories are perturbed in order
to avoid collisions and to satisfy other constraints. This is an
iterative process, and satisfying one constraint may require
temporarily violating another constraint during an intermedi-
ate iteration of the optimization. Such temporary constraint
violations are resolved in later iterations. As an example,
it is often unavoidable that in trying to avoid a collision with
another quadcopter, a quadcopter’s trajectory is temporarily

VOLUME 7, 2019 6685

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

perturbed to travel too close to a wall. This situation can
be resolved in later iterations; however, if a quadcopter’s
trajectory is perturbed so significantly as to enter a wall, it is
possible that the gradient descent optimization will force the
trajectory through the wall, and will thus optimize towards an
inescapable and infeasible local minimum. For this reason,
we lightly penalize being too close to a wall, while applying
significantly more penalty to trajectory steps that enter a wall.

d: GOAL CONSTRAINTS
As previously mentioned, during individual iterations of
the optimization, satisfying one constraint might require
temporarily violating another. As a further example of this,
perturbing trajectories to avoid collisions often results in tra-
jectories that no longer end at the desired goal state. In order
to ensure the final feasibility of the trajectories the deviation
of the final state from the goal state must be penalized.
In this case study, we penalize the squared deviation of
the final position and final velocity from the desired values
(Gp,i and 0 respectively) using the loss functions

Lgoal-pos :=

R∑
i=1

‖pi[K]− Gp,i‖
2
2 (25)

Lgoal-vel :=

R∑
i=1

‖vi[K]‖22; (26)

we do not penalize the final acceleration.
We deem robot i’s final state constraints to be satisfied if

‖pi[K]− Gp,i‖2 ≤ Dgoal-pos, and

‖vi[K]‖2 ≤ Dgoal-vel (27)

where Dgoal-pos and Dgoal-vel define an acceptable devia-
tion of the final position and velocity around the desired
goal states. In this case study we set Dgoal-pos = 0.05m and
Dgoal-vel = 0.05m s−1, a deviation that is well within the
ability of a hover controller to stabilize.

5) OPTIMIZATION & RESULTS
We used the Adam gradient descent method [38] for mini-
mization of the loss function (19). Using an automatic hyper-
parameter search [39] yielded the hyperparameter values
shown in Table 1.

Fig. 3 shows a histogram of the time required to gener-
ate feasible, collision-free trajectories for 200 quadcopters
exiting the maze. These results are based on 1000 random
initializations of this case study. These results show that 50%
of initializations were solved in under 2.28 seconds, and 90%
of initializations in under 3.38 seconds.

B. GROUND ROBOT TRANSITIONS
In this scenario, a fleet of 100 ground robots with bicycle
dynamics is tasked with changing its formation. We assume
that robots begin and end in rest and require that robots arrive
at their goal positions at the same time. As an example of
our method’s applicability to heterogenous swarms, we select

TABLE 1. Hyperparameters for the ‘‘Sort 200’’ case study, as optimized
by a hyperparameter search aiming to minimize the algorithm’s
90th-percentile convergence time.

FIGURE 3. A histogram showing the time required for the generation of
feasible, collision-free trajectories for a swarm of 200 quadcopters. This
histogram summarizes the results of 1000 trials. The median calculation
time of 2.28 seconds is shown as a solid line. The 10th and 90th
percentiles (1.52 and 3.38 seconds respectively) are shown as dotted
lines, and the 25th and 75th percentiles (1.83 and 3.03 seconds
respectively) are shown as dashed lines.

50 robots to have a maximum steering angle of 20◦, and the
other 50 robots to have a maximum steering angle of 70◦.
An example initialization of this problem is shown in Fig. 2,
where each robot in the fleet changes its position within a
‘‘smiley face’’ formation.

1) ROBOT MODELING
We model each ground robot using the kinematic model
of a bicycle [46], which is a common choice for modeling
front-steer vehicles. We assume that dynamics not modeled
by the kinematic model (e.g. inertia) are compensated for
by a controller able to track the state and input trajectories
generated by our method.

With reference to Fig. 4, we model each robot as a bicycle
with a fixed rear wheel located lr = 0.5m from its center and
a steerable front wheel located lf = 0.5m from its center.
We denote the angle of its front wheel with respect to its
longitudinal axis by δ. We denote the location of each robot’s
center in the two-dimensional inertial frame by px and py,
the angle of its longitudinal axis relative to the inertial frame
by ϕ, its forward velocity and acceleration by vb and ab, and
the angle of its forward velocity relative to its longitudinal
axis by β. The continuous-time kinematics of a bicycle robot

6686 VOLUME 7, 2019

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

FIGURE 4. An illustration of a robot with bicycle dynamics. Such robots
have a steerable front wheel and a fixed rear wheel located at distances
lf and lr from the robot’s center. We denote by δ the steering angle of the
front wheel, by ϕ the angle of the robot with respect to the inertial frame,
and by β the angle of the robot’s velocity vb with respect to its
longitudinal axis. We use px and py to denote the location of the robot in
the inertial frame. Adapted from [46].

are then

ṗx = vb cos(ϕ + β) (28)
ṗy = vb sin(ϕ + β) (29)

ϕ̇ =
vb
lr

sin(β) (30)

v̇b = ab, (31)

where

β := tan−1
(

lr
lf+lr

tan(δ)
)
. (32)

We discretize the above using the Euler forward method
with a sampling period of T = 50ms to arrive at the discrete-
time model

px[k+1] = px[k]+ T vb[k] cos(ϕ[k]+ β[k]) (33)
py[k+1] = py[k]+ T vb[k] sin(ϕ[k]+ β[k]) (34)

ϕ[k+1] = ϕ[k]+ T
vb[k]
lr

sin(β[k]) (35)

vb[k+1] = vb[k]+ T ab[k] (36)

where

β[k] = tan−1
(

lr
lf + lr

tan(δ[k])
)
. (37)

Based on the above model, we define the N = 4 dimensional
state space of a robot as

S := (px , py, vb, ϕ) ∈ RK+1×N . (38)

As in the previous case study, these recursive difference
equations can be implemented using cumulative summation:

β[0 :K−1] = tan−1
(

lr
lf + lr

tan(δ[0 :K−1])
)

vb[1 :K] = vb[0]+ T ·CS(ab[0 :K−1])

ϕ[1 :K] = ϕ[0]+ T ·CS
(
vb[0 :K−1]

lr
sin(β[0 :K−1])

)
vx[0 :K−1] = vb[0 :K−1] cos(ϕ[0 :K−1]+ β[0 :K−1])

vy[0 :K−1] = vb[0 :K−1] sin(ϕ[0 :K−1]+ β[0 :K−1])

px[1 :K] = px[0]+ T ·CS(vx[0 :K−1])

py[1 :K] = py[0]+ T ·CS(vy[0 :K−1]), (39)

where the ordering of equations indicates the necessary order
of calculation.

2) INITIAL AND FINAL CONDITIONS
We assume that robot i begins at the known position

pi[0] := (px,i[0], py,i[0]), (40)

and at standstill, such that

vb,i[0] = 0. (41)

We randomly assign robot i a goal location

Gp,i := (Gx,i, Gy,i), (42)

and assume that it begins facing this goal

ϕi[0] = arctan2
(
py,i − Gy,i, px,i − Gx,i

)
. (43)

We require robot i to finish at its goal and at rest, that is

px,i[K] ≈ Gx,i
py,i[K] ≈ Gy,i
vb,i[K] ≈ 0, (44)

where tolerances around the goal state are defined below.
We leave the robot’s final orientation ϕi[K] unconstrained.

3) INITIALIZATION OF INDIVIDUAL TRAJECTORIES
Since each robot begins facing its goal, the trajectory gen-
eration problem is reduced to a one-dimensional problem of
generating a straight-line trajectory, which is feasible under
the dynamic constraints (discussed below). We parameterize
the position trajectory using a fifth-order polynomial opti-
mized to minimize trajectory jerk [5]. Trajectory duration
is calculated such that the robot with the furthest distance
to travel will reach its goal as quickly as is allowed by its
acceleration limits and by the trajectory parameterization.
We sample the polynomial corresponding to each robot’s
acceleration trajectory with the desired sampling period (in
our case, 50ms), and use this to initialize its acceleration
trajectory. We initialize each robot’s steering trajectory with
zero. This stage can be computed entirely on the GPU.

4) CONSTRAINTS
The constraint set consists of constraints on the robots’
acceleration and steering angle, constraints prohibiting
robot collisions, and constraints on the final state of each
robot.

a: INPUT CONSTRAINTS
In this case-study, we constrain robot i’s acceleration to

ab,i ∈ (−amax, amax), (45)

where amax := 2m s−2, and its steering angle to

δi ∈ (−δi,max, δi,max), (46)

where δi,max := 20◦ if i ≤ 50 or otherwise 70◦.

VOLUME 7, 2019 6687

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

As demonstrated in the previous case-study, constraints
can be implemented using loss functions and added to the
objective function. Although input constraints can also be
modeled in this way, it is often easier to enforce simple
input constraints directly by expressing a robot’s constrained
input as a function of an unconstrained optimization variable.
In this case study, we use the tanh(·) function to map an input
on the domain of (−∞, ∞) to an output on the range (−1, 1).
The input constraints can then be directly expressed as

ab,i = amax tanh(āb,i) (47)

δi = δi,max tanh(δ̄i), (48)

where āb,i and δ̄i are the unconstrained targets of the optimiza-
tion routine. We amend the robot state update equations (39)
with the above transformations, and define theM = 2 dimen-
sional input space of each robot as

Ui := (āb,i, δ̄i), (49)

fromwhich the actual, constrained robot inputs ab,i and δi can
later be recovered.

b: ROBOT COLLISION CONSTRAINTS
In this case study we model robots as circles and require a
minimum center-to-center distance of D := 1.0m. We again
use Algorithm 2 to compute the corresponding collision
loss (24) and associated gradients.

c: GOAL CONSTRAINTS
We penalize the deviation from the desired goal position
and velocity as in (25), and again set Dgoal-pos = 0.05m and
Dgoal-vel = 0.05m s−1.

5) OPTIMIZATION & RESULTS
We use the Adam gradient descent method [38] for mini-
mization of the global loss. Using an automatic hyperparam-
eter search [39] yielded the hyperparameter values shown
in Table 2.

TABLE 2. Hyperparameter values for the ground robot transition case
study, as determined by a hyperparameter search [39] aiming to minimize
the algorithm’s 90th percentile convergence time.

Fig. 5 shows a histogram of the time required to gener-
ate feasible, collision-free trajectories for 100 ground robots
based on 1000 random initializations of this case study.
These results show that 50% of initializations were completed
in under 1.6 seconds, and 90% of initializations in under
3.34 seconds.

As described in Section III-E, the hyperparameter values
(loss weights, as well as the learning rate of the optimizer)

FIGURE 5. A histogram showing the time required for the generation of
feasible, collision-free trajectories for a fleet of 100 ground robots. This
histogram summarizes the results of 1000 trials. The median calculation
time of 1.6 seconds is shown as a solid line. The 10th and 90th
percentiles (0.88 and 3.34 seconds respectively) are shown as dotted
lines, and the 25th and 75th percentiles (1.18 and 2.22 seconds
respectively) are shown as dashed lines.

play an important role in determining the speed of conver-
gence. We investigate the effects of hyperparameter tuning
in Fig. 6 by plotting the the number of collisions (orange) and
the root-mean-squared distance violation of the final position
constraint (black), against the optimization iteration. Each
plot begins from an identical initial state, and we are therefore
able to reason about how variations in hyperparameter values
affect convergence.

The center plots of Fig. 6 show the convergence toward
feasibility when using the optimal hyperparameters (Table 2),
which strike a balance between quickly decreasing the num-
ber of collisions, while keeping the final positions close to
their goals. In Fig. 6(ai) we observe that by reducingwcollision,
the number of collisions is not reduced as quickly, however
the final positions remain closer to their goals. By increasing
wcollision in Fig. 6(aiii) we observe the opposite: the number
of collisions is quickly reduced (by drastically perturbing
robot trajectories), thus causing an increase in the violation of
the final position constraint. In Fig. 6(bi) the effect of a low
learning rate, which causes a slow convergence to feasibility,
is contrasted against the optimal learning rate in Fig. 6(bii),
and against a high learning rate in Fig. 6(biii), which fails to
converge.

V. FUTURE WORK
In this paper we introduce an approach for quickly generating
feasible, collision-free trajectories for robot swarms. Our
method leverages the computational power of modern GPUs
to directly solve the non-convex optimization problem using
gradient descent. As experimentally shown in the case-studies
of Section IV, our method is capable of generating feasible,
collision-free trajectories for swarms of hundreds of robots
in just seconds, and can easily be extended to heterogenous
swarms. Given the parallel nature of the problem, we reason
that our method’s performance will increase with progressive
advances in GPU processing power.

6688 VOLUME 7, 2019

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

FIGURE 6. In this figure we investigate the effects of hyperparameter tuning by plotting the root-mean-squared distance violation of the final
position constraint (black) and the number of collisions (orange) against the optimization iteration. Each plot begins from an identical initial state,
thus allowing us to reason about how variations in hyperparameter values affect convergence. These plots exemplify the importance of
hyperparameter selection, demonstrating how the optimal selection of hyperparameters strikes a careful balance between quickly decreasing the
number of collisions and ensuring that other constraints are not too drastically violated. (a) The effect of varying wcollision, the weight given to
reducing quadcopter collisions. (b) The effect of varying the ‘‘learning rate’’ of the gradient descent optimizer.

A. REAL-TIME, MODEL PREDICTIVE CONTROL
Although not touched upon in this paper, the speed with
which our method can generate trajectories for large swarms
of robots suggests a possible application to real-time refer-
ence generation. Warm starting the algorithm should only
improve its speed and allow for trajectories to be quickly
replanned to account for situational changes and compensate
for unmodeled effects.

B. FACTORIZATION INTO LOCAL POLICIES
The centralized method we present is efficient at computing
trajectories, but communication bottlenecks may limit its
application to large swarms if trajectories need to be commu-
nicated or updated in real time. Despite the complexity of the
swarm trajectory generation problem, once a feasible solution
is found, the collision avoidance behaviors demonstrated by
individual robots are largely predictable. This suggests that
such behavior could be encoded in a local policy and run on
each robot independently.

REFERENCES
[1] J. A. Preiss, W. Hönig, N. Ayanian, and G. S. Sukhatme, ‘‘Downwash-

aware trajectory planning for large quadrotor teams,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017, pp. 250–257.

[2] M. Hehn and R. D’Andrea, ‘‘Quadrocopter trajectory generation and con-
trol,’’ IFAC Proc. Volumes, vol. 44, no. 1, pp. 1485–1491, 2011.

[3] D. Mellinger and V. Kumar, ‘‘Minimum snap trajectory generation and
control for quadrotors,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2011, pp. 2520–2525.

[4] D. Mellinger, N. Michael, and V. Kumar, ‘‘Trajectory generation and
control for precise aggressive maneuvers with quadrotors,’’ Int. J. Robot.
Res., vol. 31, no. 5, pp. 664–674, 2012.

[5] M. W. Mueller, M. Hehn, and R. D’Andrea, ‘‘A computationally efficient
motion primitive for quadrocopter trajectory generation,’’ IEEE Trans.
Robot., vol. 31, no. 6, pp. 1294–1310, Dec. 2015.

[6] C. Richter, A. Bry, and N. Roy, ‘‘Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,’’ in Robotics
Research. Cham, Switzerland: Springer, 2016, pp. 649–666.

[7] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, ‘‘Search-based motion
planning for quadrotors using linear quadratic minimum time control,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017,
pp. 2872–2879.

[8] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, ‘‘Search-based motion
planning for aggressive flight in SE(3),’’ IEEE Robot. Autom. Lett., vol. 3,
no. 3, pp. 2439–2446, Jul. 2018.

[9] S. M. LaValle, ‘‘Rapidly-exploring random trees: A new tool for path
planning,’’ Dept. Comput. Sci., Iowa State Univ., Ames, IA, USA, Tech.
Rep. 98-11, 1998.

VOLUME 7, 2019 6689

M. Hamer et al.: Fast Generation of Collision-Free Trajectories

[10] S. Karaman and E. Frazzoli, ‘‘Incremental sampling-based algorithms for
optimal motion planning,’’ in Proc. Robot. Sci. Syst. Conf. VI, Zaragoza,
Spain, vol. 104, 2010, p. 2.

[11] L. E. Kavraki, P. Svestka, J.-C. Latombe, andM.H.Overmars, ‘‘Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,’’
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[12] M. E. Flores, ‘‘Real-time trajectory generation for constrained nonlinear
dynamical systems using non-uniform rational B-spline basis functions,’’
Ph.D. dissertation, California Inst. Technol., Pasadena, CA, USA, 2008.

[13] S. Tang and V. Kumar, ‘‘Safe and complete trajectory generation for robot
teams with higher-order dynamics,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2016, pp. 1894–1901.

[14] M. G. Earl and R. D’Andrea, ‘‘Iterative MILP methods for vehicle-control
problems,’’ IEEE Trans. Robot., vol. 21, no. 6, pp. 1158–1167, Dec. 2005.

[15] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, ‘‘Generation of collision-
free trajectories for a quadrocopter fleet: A sequential convex program-
ming approach,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2012, pp. 1917–1922.

[16] Y. Chen, M. Cutler, and J. P. How, ‘‘Decoupled multiagent path planning
via incremental sequential convex programming,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2015, pp. 5954–5961.

[17] J. Alonso-Mora, S. Baker, and D. Rus, ‘‘Multi-robot navigation in forma-
tion via sequential convex programming,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Sep. 2015, pp. 4634–4641.

[18] D. Morgan, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh, ‘‘Swarm
assignment and trajectory optimization using variable-swarm, distributed
auction assignment and sequential convex programming,’’ Int. J. Robot.
Res., vol. 35, no. 10, pp. 1261–1285, 2016.

[19] D. Mellinger, A. Kushleyev, and V. Kumar, ‘‘Mixed-integer quadratic pro-
gram trajectory generation for heterogeneous quadrotor teams,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2012, pp. 477–483.

[20] J. Bento, N. Derbinsky, J. Alonso-Mora, and J. S. Yedidia, ‘‘A message-
passing algorithm for multi-agent trajectory planning,’’ in Proc. Adv. Neu-
ral Inf. Process. Syst., 2013, pp. 521–529.

[21] C. E. Luis and A. P. Schoellig. (2018). ‘‘Trajectory generation for multi-
agent point-to-point transitions via distributed model predictive control.’’
[Online]. Available: https://arxiv.org/abs/1809.04230

[22] S. Agarwal and S. Akella, ‘‘Simultaneous optimization of assignments
and goal formations for multiple robots,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2018, pp. 6708–6715.

[23] M. Debord, W. Hönig, and N. Ayanian, ‘‘Trajectory planning for het-
erogeneous robot teams,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), 2018.

[24] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
‘‘Trajectory planning for quadrotor swarms,’’ IEEE Trans. Robot., vol. 34,
no. 4, pp. 856–869, Aug. 2018.

[25] D. Lucas and C. Crane, ‘‘Development of a multi-resolution parallel
genetic algorithm for autonomous robotic path planning,’’ in Proc. 12th
Int. Conf. Control, Autom. Syst. (ICCAS), Oct. 2012, pp. 1002–1006.

[26] U. Cekmez, M. Ozsiginan, and O. K. Sahingoz, ‘‘A UAV path planning
with parallel ACO algorithm on CUDA platform,’’ in Proc. Int. Conf.
Unmanned Aircr. Syst. (ICUAS), May 2014, pp. 347–354.

[27] P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, ‘‘A GPU-enabled parallel
genetic algorithm for path planning of robotic operators,’’ in GPU Com-
puting and Applications. Singapore: Springer, 2015, pp. 1–13.

[28] P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, ‘‘Parallel genetic algorithm
based automatic path planning for crane lifting in complex environments,’’
Automat. Construct., vol. 62, pp. 133–147, 2016.

[29] V. Roberge, M. Tarbouchi, and G. Labonté, ‘‘Fast genetic algorithm path
planner for fixed-wing military UAV using GPU,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 54, no. 4, pp. 2105–2117, Oct. 2018.

[30] J. Pan, C. Lauterbach, and D. Manocha, ‘‘g-planner: Real-time motion
planning and global navigation using GPUs,’’ in Proc. AAAI, 2010,
pp. 1–7.

[31] J. Pan, C. Lauterbach, and D. Manocha, ‘‘Efficient nearest-neighbor com-
putation for GPU-based motion planning,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2010, pp. 2243–2248.

[32] J. T. Kider, M. Henderson, M. Likhachev, and A. Safonova, ‘‘High-
dimensional planning on the GPU,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2010, pp. 2515–2522.

[33] M. Likhachev and A. Stentz, ‘‘R* search,’’ in Proc. Nat. Conf. Artif.
Intell. (AAAI), 2008, pp. 1–9.

[34] B. Chretien, A. Escande, and A. Kheddar, ‘‘GPU robot motion planning
using semi-infinite nonlinear programming,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 10, pp. 2926–2939, 2016.

[35] J. Pan and D. Manocha, ‘‘GPU-based parallel collision detection for fast
motion planning,’’ Int. J. Robot. Res., vol. 31, no. 2, pp. 187–200, 2012.

[36] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’
in Proc. OSDI, vol. 16, 2016, pp. 265–283.

[37] A. Paszke et al., ‘‘Automatic differentiation in PyTorch,’’ in Proc. 31st
Conf. Neural Inf. Process. Syst. (NIPS), 2017, pp. 1–4.

[38] D. P. Kingma and J. Ba. (2014). ‘‘Adam: Amethod for stochastic optimiza-
tion.’’ [Online]. Available: https://arxiv.org/abs/1412.6980

[39] J. Snoek, H. Larochelle, and R. P. Adams, ‘‘Practical Bayesian optimiza-
tion of machine learning algorithms,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 2951–2959.

[40] W. D. Hillis and G. L. Steele, Jr., ‘‘Data parallel algorithms,’’ Commun.
ACM, vol. 29, no. 12, pp. 1170–1183, 1986.

[41] R. Mahony, V. Kumar, and P. Corke, ‘‘Multirotor aerial vehicles,’’ IEEE
Robot. Autom. Mag., vol. 19, no. 3, pp. 20–32, Sep. 2012.

[42] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[43] H. W. Kuhn, ‘‘The Hungarian method for the assignment problem,’’ Naval
Res. Logistics Quart., vol. 2, nos. 1–2, pp. 83–97, Mar. 1955.

[44] Bitcraze AB. (2018). Crazyflie 2.0. [Online]. Available: https://www.
bitcraze.io/crazyflie-2/

[45] J. Förster, ‘‘System identification of the crazyflie 2.0 nano quadrocopter,’’
B.S. thesis, Dept. Mech. Eng., Inst. Dyn. Syst. Control, ETH Zürich,
Zürich, Switzerland, 2015.

[46] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, ‘‘Kinematic and
dynamic vehicle models for autonomous driving control design,’’ in Proc.
Intell. Vehicles Symp., 2015, pp. 1094–1099.

MICHAEL HAMER received the B.Eng. degree
in computer engineering and the B.Sc. degree
in computer science from Curtin University,
WA, Australia, in 2009, and the M.S. degree in
robotics, systems, and control from ETH Zurich,
Switzerland, in 2013, where he is currently pursu-
ing the Ph.D. degree with the Institute for Dynamic
Systems and Control. His research focuses on
robot localization, and the application of machine
learning to physical systems.

He is with the Institute for Dynamic Systems and Control, ETH Zurich,
where he is involved in various public quadcopter exhibitions, including
quadcopter task scheduling for the Flight Assembled Architecture installa-
tion, in 2011, and an artistic quadcopter exhibit for TEDGlobal, in 2013. He is
also an active Contributor of the Crazyflie Open-Source Project, with major
contributions made to the control, estimation, and localization systems.

LINO WIDMER received the B.Sc. degree
in mechanical engineering from ETH Zurich,
Switzerland, in 2015, where he is currently pur-
suing the M.S. degree in mechanical engineering,
with a focus on optimization and machine learn-
ing. He has focused on mitigating numerical issues
that arise when solving second-order cone pro-
grams, optimization-based trajectory generation,
and using machine learning to improve the accu-
racy of radio-based localization.

RAFFAELLO D’ANDREA received the B.Sc.
degree in engineering science from the Uni-
versity of Toronto, in 1991, and the M.S. and
Ph.D. degrees in electrical engineering from the
California Institute of Technology, in 1992 and
1997, respectively.

He was an Assistant and then an Associate
Professor with Cornell University, from 1997 to
2007. While on leave from Cornell University,
from 2003 to 2007, he co-founded Kiva Systems

(nowAmazon Robotics), where he led the systems architecture, robot design,
robot navigation and coordination, and control algorithms development.
He is currently a Professor of dynamic systems and control with ETH Zurich
and also the Chairman of the Board with Verity Studios AG.

6690 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	ROBOT TRAJECTORY GENERATION
	SWARM TRAJECTORY GENERATION & COLLISION AVOIDANCE
	GPU-BASED TRAJECTORY GENERATION

	PROBLEM FORMULATION
	ROBOT STATES AND INPUTS
	ROBOT DYNAMICS
	CONSTRAINTS & OPTIMIZATION OBJECTIVE
	OPTIMIZATION
	HYPERPARAMETER TUNING
	PERFORMANCE CONSIDERATIONS
	CALCULATION OF STATE TRAJECTORY
	CALCULATION OF LOSS GRADIENT

	CASE STUDIES
	``SORT200'' QUADCOPTER MAZE BENCHMARK
	ROBOT MODELING
	ASSIGNMENT OF ROBOTS TO GOALS
	INITIALIZATION OF INDIVIDUAL TRAJECTORIES
	CONSTRAINTS
	OPTIMIZATION & RESULTS

	GROUND ROBOT TRANSITIONS
	ROBOT MODELING
	INITIAL AND FINAL CONDITIONS
	INITIALIZATION OF INDIVIDUAL TRAJECTORIES
	CONSTRAINTS
	OPTIMIZATION & RESULTS

	FUTURE WORK
	REAL-TIME, MODEL PREDICTIVE CONTROL
	FACTORIZATION INTO LOCAL POLICIES

	REFERENCES
	Biographies
	MICHAEL HAMER
	LINO WIDMER
	RAFFAELLO D'ANDREA

