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ABSTRACT Matrix transposition plays a critical role in digital signal processing. However, the existing
matrix transposition implementations have significant limitations. A traditional design uses load and store
instructions to accomplish matrix transposition. Depending on the amount of load/store units, this design
typically transposes up to one matrix element per clock cycle. More seriously, this design cannot perform
matrix transposition and data calculations in parallel. Modern digital signal processors integrate the support
for matrix transposition into the direct memory access (DMA) controller; the matrix can be transposed
during data movements. It allows the parallel execution of matrix transposition and data calculations. Yet,
its bandwidth utilization is limited; it can only transfer one matrix element per clock cycle. To address the
limitations of the existing designs, we propose matrix transposition DMA (MT-DMA), to support efficient
matrix transposition in DMA controllers. It can transpose multiple matrix elements per clock cycle to
improve the bandwidth utilization. Compared with the existing designs, MT-DMA achieves a maximum
23.9 times performance improvement for micro-benchmarks. It is also more energy efficient. Since MT-
DMA effectively hides the latency of matrix transposition behind data calculations, it performs very closely
to an ideal design for real applications.

INDEX TERMS Digital signal processing, DMA controller, matrix transposition, ping-pong scheme.

I. INTRODUCTION
The performance of numerous important digital signal pro-
cessing algorithms, including linear algebra routines, audio
processing and image processing kernels, depends heavily
on the efficiency of matrix transposition. For example, three
of the six steps in the most widely used Cooley-Tukey Fast
Fourier Transform (FFT) algorithm involve matrix transpo-
sition [1]–[3]. Also, matrix transposition constitutes a sig-
nificant portion in the synthetic-aperture radar (SAR) image
processing [4]. Although the permutation pattern of matrix
transposition is simple, its poor temporal and spatial local-
ity dramatically improve the difficulty of achieving efficient
implementations, especially for large matrices.

A traditional design uses load and store instructions to
accomplish matrix transposition. Each element of the source
matrix is first loaded from the source address, and then stored
in the destination address according to the transpose permuta-
tion. The performance of this approach is limited. Depending
on the amount of load/store units, it generally transposes

at most one element per clock cycle. More seriously, this
approach occupies the precious load/store units, and prohibits
the simultaneous execution of computation tasks. The matrix
transposition and computation tasks can only be executed
serially.

To alleviate this issue, several digital signal processors
(DSPs) and general purpose processors, including Texas
Instruments (TI) TMS320C6678 [5], TMS320C54x [6],
TMS320C6000 [7], FT-Matrix [8], Godson-3 [9] and
Godson-T [10], integrate the support for matrix transposi-
tion into direct memory access (DMA) controllers. Since the
DMA controller can work independently of the computation
units, this design allows the parallel execution ofmatrix trans-
position and computation tasks. Yet, these DMA controllers
have a limitation; they can only transfer one matrix element
per clock cycle. It is due to that the matrix elements with con-
tinuous source addresses are transposed into non-continuous
destination addresses. This is acceptable when the bit width
of one element is comparable to the bit width of on-chip
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bus. However, modern processors extensively deploy wide
on-chip bus to boost the system throughput and latency. For
example, Intel’s Xeon [11], Larrabee [12] and Xeon Phi pro-
cessors [13] all leverage 512-bit width on-chip bus.With such
a wide on-chip bus, only transferring one 32-bit or 64-bit
element at each clock cycle significantly wastes the
bandwidth.

In this paper, we propose a novel design, matrix transpo-
sition DMA (MT-DMA), to support efficient matrix transpo-
sition in DMA transfers. Unlike previous designs, MT-DMA
can transpose multiple matrix elements at each clock cycle;
this significantly improves the bandwidth utilization. The key
module of MT-DMA is the multi-bank transposition buffer
(MBTB). We propose the block matrix transposition using
the MBTB. A large matrix is partitioned into several basic
matrices. The transposition of a large matrix is achieved by
sequentially transposing all basic matrices. The transposition
of a basic matrix is accomplished by conducting row-wise
write operations and column-wise read operations in the
MBTB. In order to read out all data of the same column
in one clock cycle, a row shift write strategy is applied to
distribute multiple data of the same column into different
banks. To further improve the performance, MT-DMA uses
two MBTBs to deploy the ping-pong scheme to overlap
write and read operations. When one MBTB performs write
operations, the other one performs read operations.

Our evaluation results show that MT-DMA performs best
in both micro-benchmarks and real applications. For micro-
benchmarks, it achieves at most 23.9 times performance
improvement against existing designs. Although MT-DMA
consumes more power than existing designs due to its high
bandwidth utilization, it is much more energy efficient than
existing designs. Existing designs consume up to 7.64 times
more energy thanMT-DMA. For real applications, MT-DMA
can effectively hide the latency of matrix transposition behind
data calculations, and achieves a performance very close to an
ideal design. Its hardware overhead is minor and acceptable
considering the high performance improvement provided by
MT-DMA.

In summary, we make the following main contributions:

• Observe that existing designs for matrix transposition
have significant limitations due to the waste of on-chip
bandwidth.

• Propose an efficient matrix transposition design which
can transpose multiple matrix elements per clock cycle
to improve the bandwidth utilization.

• Comparedwith existing designs, the proposedMT-DMA
significantly improve the performance and is muchmore
energy efficient.

II. BACKGROUND AND MOTIVATION
In this section, we first describe the system architecture
of X-DSP, which is leveraged as an example platform to
demonstrate the proposed MT-DMA. Then, we analyze the
limitation of existing designs.

FIGURE 1. The system architecture of X-DSP.

A. SYSTEM ARCHITECTURE
The X-DSP is a multi-core DSP designed for high per-
formance processing of applications for software defined
radio (SDR) wireless base station. Fig. 1 shows the sys-
tem architecture. This architecture has some similarities to
other widely used DSPs, including TI’s TMS320C6678 [14],
AnySP [15] and FT-Matrix [8]. Multiple processing cores,
I/O controllers and DDR controllers are connected with a
network-on-chip (NoC). We apply a 512-bit wide ring bus to
boost the throughput. A 4 MB on-chip global memory (GM)
is deployed to be shared by all cores. The GM can be also
configured as a memory-side shared cache. The core includes
a scalar processing unit (SPU) and a vector processing unit
(VPU) to perform the scalar task and vector computation,
respectively. It applies a very long instruction word (VLIW)
instruction architecture; multiple instructions can be issued
to independent execution units at the same time. A 64 KB
scalar memory and a 768 KB vector memory are employed
for the SPU and VPU, respectively. Each core adopts a DMA
controller to move data among different memories, including
the scalar memory, vector memory, global memory and off-
chip memory. The DMA controller works independent of the
SPU and VPU; when the SPU and VPU perform computation
tasks, the DMA controller can transfer data simultaneously.

B. MATRIX TRANSPOSITION BY LOAD/STORE UNITS
The most straight forward approach to accomplish the
matrix transposition is using load and store instructions.

FIGURE 2. The space-time graph of matrix transposition using two
load/store units in the VPU.
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This approach sequentially loads each matrix element from
the source address, and then stores the element into the
destination address according to the transpose permutation.
The performance of this design depends on the amount of
load/store units. Use the X-DSP as an example. The VPU has
two load/store units. The latency of load operation is 8 clock
cycles, and the latency of store operation is 4 clock cycles.
We can use one load/store unit to perform load operations,
and use the other unit to perform store operations. As shown
in Fig. 2, after 8 clock cycles of the pipeline setup delay,
the VPU can transpose one matrix element per clock cycle.
In contrast, due to the low performance requirement for scalar
computing, the SPU has only one load/store unit; it can only
transpose one matrix element every two clock cycles.

A more serious limitation of this approach is that it occu-
pies the load/store units, and prohibits the parallel execution
of computation tasks since the computation operand can-
not be loaded. For example, before conducting the butterfly
operation in FFT computation, two complex numbers are
needed to be loaded from the memory. These load operations
cannot be executed until the matrix transposition releases
the load/store units. Thus, the computation tasks and matrix
transposition can be only executed serially.

C. MATRIX TRANSPOSITION BY TRADITIONAL
DMA CONTROLLERS
To address the limitation of matrix transposition using
load/store units, modern DSPs integrate the support for
matrix transposition into DMA controllers [5]–[7]. The DMA
controller accomplishes the matrix transposition during data
movements. Since the DMA controller works independently
of the computation units, this design allows the parallel
execution of matrix transposition and computation tasks. As
shown in Fig. 3, the matrix transposition is realized by mov-
ing rows of the source matrix into columns of the destination
matrix. The data movement is composed of multiple trans-
fers, and each transfer moves one row of the source matrix.
Each transfer is generally triggered with one event. Some

sophisticated DMA controllers leverage the chaining scheme
to allow all transfers to be triggered by only one event [5], [6].
In either case, there are startup and cleanup overheads for
each transfer, such as copying the transfer parameters and
cleaning the finite-state machine (FSM) status registers.

The main limitation of these designs is the low band-
width utilization for the on-chip bus. Generally, the matrix
is stored in the memory in the row-major order; consecutive
elements in the same row are stored in continuous memory
addresses, while elements in the same column are separated
by large address gaps. For the elements moved by one trans-
fer, although their source addresses are continuous, their
destination addresses are non-continuous. Non-continuous
destination addresses result in that only one element can be
moved into the destination memory per clock cycle. This is
acceptable when the width of on-chip bus is similar to the
width of one element [6]. However, with a wide on-chip bus,
there is significant bandwidth loss. Take the X-DSP as an
example. Its on-chip bus width is 512 bits, while a matrix
element is generally 32 bits or 64 bits.When only moving one
matrix element per clock cycle, the bandwidth utilization of
on-chip bus can atmost be 6.25%or 12.5% for 32-bit or 64-bit
elements, respectively. To address this limitation, we propose
a novel design, MT-DMA, to improve the on-chip bandwidth
utilization.

III. MATRIX-TRANSPOSITION DMA (MT-DMA)
Here, we delve into the design of the proposed Matrix-
Transposition DMA (MT-DMA). We first introduce its over-
all structure. Then, we focus on the transposition of basic
matrices. Finally, we describe the transposition of large
matrices.

A. OVERALL STRUCTURE
The MT-DMA controller is modified based on a traditional
DMA controller used in current DSPs [5]–[8]. Fig. 4 shows
its structure. TheDMAcontroller receives the transfer param-
eters from the SPU, and stores them into the parameter RAM.

FIGURE 3. The matrix transposition using multiple DMA transfers. We use an 8× 8 matrix as an
example.
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FIGURE 4. The structure of the Matrix-Transposition DMA (MT-DMA).

These parameters generally include the initial source address,
the initial destination address, the count of the data array, and
other transfer features.

The DMA controller is mainly composed of two parts. The
first part sends read requests. It includes the transfer FSM,
source address generator, and destination address generator.
The transfer FSM controls the overall status. Once a DMA
transfer finishes, it sends out an interrupt to the SPU. Based
on the configured transfer parameters, the source and des-
tination address generators calculate the current source and
destination addresses, which are used to access the source
and destinationmemories, respectively. To allow out-of-order
arrival of data replies, the read request carries both the cur-
rent source address and destination address. The data replies
fetches the destination address from its corresponding read
request. The second part of the DMA controller processes
data replies. It configures a first-in, first-out (FIFO) buffer to
synchronize the transfer between the source and destination
memories. The received data reply is first stored into the FIFO
buffer, and then sent out to the destination memory.

To support the matrix transposition, as shown in Fig. 4,
an additional matrix transposition module (MT module) is
added. For regular transfers that do not require matrix trans-
pose operations, the MT module is bypassed. For matrix

transposition transfers, the data out of the FIFO buffer is sent
into the MT module to accomplish the matrix transposition.
We later describe the matrix transposition procedure.

B. THE TRANSPOSITION OF BASIC MATRICES
We use the block matrix transposition algorithm. The corner-
stone of this algorithm is the transposition of basic matrices.
Here, we focus on this issue.

C. THE TRANSPOSITION OF A BASIC MATRIX
The transposition of a basic matrix is accomplished by the
MTmodule. Fig. 5 shows its structure, which mainly consists
of the matrix transposition controller and two multi-bank
transposition buffers (MBTBs). The capacity of an MBTB is
decided based on the tradeoff between the performance and
hardware overheads. We configure the MBTB with 8 banks,
and each bank has 8 slots. Each slot is 64 bit wide. As
shown in Section IV, this capacity is enough to offer high
performance, while only induces low hardware overheads.
The MBTB supports multiple transposition granularities; it
allows the matrix element to be 32 bits, 64 bits or 128 bits.

Here, we use 64-bit elements as a study case. This element
size is widely used in the FFT computation for complex
numbers. Each complex number contains a real part and an

FIGURE 5. The structure of the MT module.
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imaginary part, and both are 32-bit single-precision floating-
point numbers. With 64-bit elements, the size of a basic
matrix is 8×8. As shown in Fig. 5, a basicmatrix is transposed
with two steps: row-wise write operations and column-wise
read operations.

1) Step 1: Row-wise write operations. All rows of a basic
matrix are sequentially written into the MBTB. As
shown in Fig. 5, the 8 elements of the same row are
distributed to different banks; there is no bank con-
flict. Therefore, these elements can be written into
the MBTB in one clock cycle. For example, the write
operations of Row0 and Row1 only takes two clock
cycles.

2) Step 2: Column-wise read operations. All columns of
a basic matrix are sequentially read out of the MBTB.
To read out elements of the same column in one clock
cycle, a row shift write strategy is applied in Step 1 to
distribute elements of the same column into different
banks; the starting elements of adjacent rows are writ-
ten into neighboring banks. For example, the starting
element of Row0 (D00) is written into bank0, and the
starting element of Row1 (D10) is written into bank1.
This eliminates the bank conflict when reading ele-
ments of the same column out of the MBTB.

After the elements of the same column are read out by
the column-wise read operations, they are sent into the des-
tination memory to compose a row of the destination matrix.
Therefore, the columns of the source matrix are transposed
into rows of the destination matrix; this accomplishes the
matrix transposition for a basic matrix.

D. PING-PONG SCHEME
To further improve the performance, we apply the ping-pong
scheme to overlap the write operations and read operations of
MBTBs. Fig. 6 shows the execution procedure. Two MBTBs
are leveraged. At first, the received data replies are writ-
ten into MBTB0 with row-wise write operations. After all
rows are written, MBTB0 begins to perform column-wise
read operations to read out all columns. At the same time,
the newly received data replies are written into MBTB1.
The remaining process is similar; when one MBTB performs
write operations, the other MBTB performs read operations.

FIGURE 6. The space-time graph of ping-pong scheme.

The ping-pong scheme is managed with two finite state
machines (FSMs) implemented in the matrix transposition
controller; one FSM is deployed for each MBTB. Fig. 7
shows their state transition diagrams. The state transition

FIGURE 7. The state transition diagram of MBTBs. (a) MBTB0. (b) MBTB1.

diagrams of the two MBTBs are similar. Both have three
states. The Idle is the initial state. Once a data reply arrives
(the DataArrive signal is valid), the MBTB goes into the
Write state to perform row-wise write operations. The Sel
signal selects the MBTB for arrived data replies. If the Sel
signal is ‘0’, the arrived data reply is written into MBTB0.
Otherwise, the arrived data reply is written into MBTB1.
After all rows of a basic matrix are written into anMBTB (the
WriteOver signal is valid), the current MBTB goes into the
Read state, and the Sel signal flips to select the other MBTB
for arrived data replies. The Read state performs the column-
wise read operations. Once all columns of a basic matrix are
read out, the MBTB goes back into the Idle state.

E. OUT-OF-ORDER ARRIVAL OF DATA REPLIES
Depended on the characteristics of the memory, there are two
types of arrival order for replies: in-order arrival and out-
of-order arrival. With in-order arrival, the replies arrive in
the same order that the requests were sent out. In this case,
the above-mentioned ping-pong buffer scheme can work at a
full speed: it can receive a row of a basic matrix at each clock
cycle, and send out a column of a basic matrix at each clock
cycle. This makes full utilization of the on-chip bandwidth.

When the replies arrive out-of-order, there is a subtle but
critical issue. The reply of a later request may arrives ear-
lier, and blocks the write operations for replies of earlier
requests, and finally causes the system to enter a deadlock.
For example, assume Row8 arrives earlier than Row0. Since
the depth of each MBTB is 8, Row0 will be written into
MBTB0, and Row8 will be written into MBTB1. According
to the management of ping-pong buffer scheme, only after
all expected rows are written into MBTB0, the Sel signal
flips to allow newly received rows to be written into MBTB1.
SinceRow0 is blocked byRow8, MBTB0 does not received all
expected rows, and the Sel signal maintains as ‘0’. Therefore,
Row8 cannot be written into MBTB1, and continues to block
Row0. There is a cyclic dependency. The write operation of
Row8 depends on the write operation of Row0, while Row0 is
blocked by Row8; the system enters a deadlock.
Modifying the FSMs of ping-pong scheme cannot address

the deadlock issue. Instead, we put some restrictions on the
request sending to avoid the deadlock. Once requests for
all rows of an MBTB have been sent out, we stop sending
requests until all replies corresponding to previous requests
arrive. Then, the requests for rows of the other MBTB can
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be sent out. This restriction guarantees that the replies of the
other MBTB will not block the replies of the current MBTB;
this avoids the deadlock.

The restriction may degrade the performance. Two factors
mitigate the negative effect. First, not all memories in a
system are out-of-order memories. The monolithic memories
are generally in-order memories. For example, in the X-DSP,
although the distributed global memory is an out-of-order
memory, the scalar memory and the vector memory are in-
order memories. Performing matrix transposition on these
in-order memories can make full utilization of the on-chip
bandwidth. Second, the proposed MT module can transpose
all elements of a column at each clock cycle; this improves
the bandwidth utilization. As shown in Section IV, our cur-
rent design meets the performance requirements of several
important applications, including FFT calculation and SAR
image processing. For other applications which need much
higher performance, we can improve the capacity of MBTB
to mitigate the negative effect of the restriction on request
sending.

F. SUPPORTING MULTIPLE TRANSPOSITION
GRANULARITIES
In addition to the 64-bit elements, the MT module allows
the matrix element to be 32 bits and 128 bits wide as well.
The transposition with these two element sizes is similar the
case of 64-bit elements. The difference is the size of the basic
matrix. For 32-bit elements, the size of a basicmatrix is 8×16.
For 128-bit elements, the size of a basic matrix is 8× 4.
We first analyze the case of 32-bit elements. The total

width of 16 elements in the same row of a 8×16 basic matrix
is 512 bits; these elements can be written into the MBTB
in one clock cycle. Every two adjacent elements are located
to a different bank. Similar to the case of 64-bit elements,
a row shift write strategy is applied during the row-wise write
operations. It guarantees that the 8 elements of the same
column can be read out in the same clock cycle.

Then, we discuss the case of 128-bit elements. The total
width of 4 elements in the same row of a 8 × 4 basic matrix
is also 512 bits; they can also be written into the MBTB in
one clock cycle. Every element occupies two adjacent banks.
The row shift write strategy distributes every 4 consecutive
elements in the same column to different banks. These ele-
ments can be read out in the same clock cycle. Since the total
width of 4 elements is 512 bits, reading out these elements per
clock cycle makes full utilization of the on-chip bandwidth.
Reading out the total 8 elements of a column takes two clock
cycles.

G. THE TRANSPOSITION OF LARGE MATRICES
The transposition of large matrices is fulfilled by the block
matrix transposition algorithm, which consists of three steps.
First, the large matrix is partitioned into several basic matri-
ces. Assume the size of a basic matrix is BN1 × BN2 (For
example, BN1×BN2 is 8×8 for 64-bit elements). AnN1×N2
matrix is partitioned into BR × BC basic matrices, where

FIGURE 8. The transposition of a 16× 24 matrix containing 2× 3 basic
matrices.

BR = N1/BN1 and BC = N2/BN2. Second, each basic
matrix is viewed as an element of a BR×BC matrix. And this
BR× BC matrix is transposed. This transposition only needs
to calculate the starting destination address for each basic
matrix. The basic matrix at the position (i, j) is transposed
into the position (j, i). And its starting destination address is
calculated as initDest+ j×BN2×N1×8+ i×BN1×8, where
initDest is the initial destination address of the transposed
matrix. Third, each basic matrix is transposed with the MT
module described in Section III-B by setting the starting
destination address of this basic matrix as the one calculated
in the second step. Fig. 8 shows the transposition procedure
of a 16×24 matrix. This matrix is partitioned into 2×3 basic
matrices. The 2×3matrix is transposed by viewing each basic
matrix as an element. Finally, each basic matrix is transposed.

IV. EVALUATION
A. METHODOLOGY
We implement the proposed MT-DMA with synthesizable
RTL Verilog and integrate it into the X-DSP. We conduct
the evaluation with the Cadence NC-Verilog simulator on the
RTL simulation environment of the X-DSP. We compare the
MT-DMAwith two other designs. The first one uses load and
store instructions to transpose amatrix (See Section II-B). For
brevity, we label it as ‘load/store’ in this evaluation section.
The second design accomplishes matrix transposition with
traditional DMA controllers (See Section II-C). It consists of
multiple DMA transfers, and each transfer moves a row of
the source matrix into a column of the destination matrix. We
label this design as ‘R2C-DMA’. We evaluate these designs
with both micro-benchmarks and real applications.

The micro-benchmarks perform matrix transposition
between the memory inside the core and the memory outside
the core. The memory inside the core includes the scalar
memory (SM) and the vector memory (VM). The memory
outside the core is the global memory (GM). The load/store
design first moves the data from the source memory into the
destination memory with a regular DMA transfer, and then
uses load and store instructions to perform matrix transposi-
tion in the destination memory. Both the R2C-DMA design
and MT-DMA design fulfill the matrix transposition during
data movements. The real applications include two important
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FIGURE 9. The performance of matrix transposition. (a) GM→VM. (b) GM→SM. (c) VM→GM. (d) SM→GM.

kernels for digital signal processing: the FFT calculation and
the SAR image processing. We evaluate both applications
with several workload sizes.

To evaluate the hardware overhead, we synthesize the
designs by Synopsys Design Compiler with a commercial
40 nm standard cell library. After conducting the back-
end physical design, the proposed MT-DMA can work at a
1 GHz frequency. The processor can also work at a 1 GHz
frequency. The power consumption is estimated with the
Cadence Encounter tool based on the value change dump
(VCD) file under the typical corner (25 ◦C, 0.9 V).

B. THE PERFORMANCE OF MICRO-BENCHMARKS
Fig. 9 shows the latency of matrix transposition for micro-
benchmarks. The latency is measured as the time interval
between the start of a DMA transfer and the receipt of
the last reply. We evaluate matrix transposition for four
directions, including transposing the matrix from the GM
to the VM (‘GM→VM’ in Fig. 9a), from the GM to the
SM (‘GM→SM’ in Fig. 9b), from the VM to the GM
(‘VM→GM’ in Fig. 9c), and from the SM to the GM
(‘SM→GM’ in Fig. 9d). For each direction, we experiment
several matrix sizes. The capacity of the VM is 768 KB
in the X-DSP; the evaluated matrix sizes for the direc-
tions ‘GM→VM’ and ‘VM→GM’ are 64 KB, 256 KB,
512 KB and 768 KB. Similarly, the evaluated matrix sizes for

the directions ‘GM→SM’ and ‘SM→GM’ include 16 KB,
32 KB, 48 KB and 64 KB, since the capacity of SM is 64 KB.
The R2C-DMA induces one transfer for each row; for the
same matrix size, the performance of R2C-DMA varies with
the row sizes. We evaluate the R2C-DMA with several dif-
ferent row sizes. For example, ‘128E/Row’ and ‘256E/Row’
in Fig. 9a mean that each row have 128 matrix elements and
256 matrix elements, respectively.

The proposed MT-DMA achieves the lowest latencies and
performs best in all evaluations. Its performance advantage
comes from the high bandwidth utilization. MT-DMA can
transpose multiple matrix elements per clock cycle, while the
load/store and R2C-DMA designs can only transpose up to
one matrix element per clock cycle. MT-DMA’s performance
is 1.4-5.0 times of the other two designs when transposing
the matrix from the GM (‘GM→VM’ and ‘GM→SM’). By
comparison, MT-DMA’s performance is 8.9-23.9 times of
the other two designs when transposing the matrix from the
VM and SM (‘VM→GM’ and ‘SM→GM’). This perfor-
mance gain difference is due to the restriction on request
sending. The data replies from the GM arrive out-of-order;
to avoid deadlock, the MT-DMA stops sending new requests
until all replies to the current MBTB arrive (See Section III-
B). This restriction limits the performance ofMT-DMAwhen
transposing the matrix from the GM. Yet, the data replies
from the VM and SM arrive in-order. There is no restriction

5814 VOLUME 7, 2019



S. Ma et al.: MT-DMA: DMA Controller Supporting Efficient Matrix Transposition for Digital Signal Processing

FIGURE 10. The power and energy of matrix transposition. (a) Power (GM→VM). (b) Energy (GM→VM).
(c) Power (VM→GM). (d) Energy (VM→GM).

on the request sending, and the MT-DMA can make full
utilization of the on-chip bandwidth. The MT-DMA takes
12481 cycles when transposing a 768 KB matrix from the
VM; the achieved bandwidth is 504 Gbps since theMT-DMA
works at a 1 GHz frequency. This bandwidth is very close
to the theoretical maximum bandwidth of 512 Gbps. The bit
width of the bus is 512 bits, so the theoretical maximum
bandwidth is 512 Gbps. The minor bandwidth loss comes
from the startup and cleanup overhead for DMA transfers.

The R2C-DMA performs better with more matrix ele-
ments per row. For the same matrix size, the more ele-
ments per row, the less the row count. The R2C-DMA uses
one transfer for each row, and there are some startup and
cleanup overheads for each transfer. Therefore, for the same
matrix size, the latency of R2C-DMA decreases with more
elements per row. The load/store design is superior to the
R2C-DMA when transposing the matrix from the GM to
the VM (‘GM→VM’). The VPU has two load/store units,
and can transpose one matrix element per clock cycle from
the VM (See Section II-B). The R2C-DMA can transpose
one matrix element per clock cycle as well. Yet, the startup
and cleanup overhead for the transfers of R2C-DMA deterio-
rate its performance. For the other three matrix transposition
directions, the performance of load/store is poorer than the
R2C-DMA, except for the cases where the R2C-DMA has
very few matrix elements per row. For these matrix transposi-
tion directions, the load/store operations are performed by the

SPU, which has only one load/store unit. It can only transpose
one matrix element every two clock cycles. This significantly
limits the performance of load/store design.

C. POWER AND ENERGY REQUIREMENTS
We evaluate the power and energy consumption of matrix
transposition. Fig. 10 shows the results for two matrix trans-
position directions: ‘GM→VM’ and ‘VM→GM’. The trends
for the other two directions are similar; they are omitted
for brevity. The MT-DMA consumes the most power for
all evaluations since it makes the highest utilization of on-
chip bandwidth. Its power consumption of the ‘VM→GM’
direction is higher than the ‘GM→VM’ direction, since
the bandwidth utilization of the ‘GM→VM’ direction is
limited by the restriction on request sending. Although the
load/store design provides higher performance than the R2C-
DMA design for some cases (‘GM→VM’ in Fig. 9a), it
consumes the least power in all evaluations due to the sim-
ple structure of the load/store units. The energy consump-
tion is the product of the power consumption and latency.
It highlights the advantages of MT-DMA since MT-DMA
optimizes the latency. MT-DMA consumes the least energy
as its latency is significantly lower than other designs. On
average, the energy consumption of the load/store design is
1.15 times and 7.64 times of MT-DMA for the ‘GM→VM’
and ‘VM→GM’ directions, respectively. The energy
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FIGURE 11. The performance of real applications. (a) FFT calculation. (b) SAR image processing.

consumption of R2C-DMA is 1.46 times and 5.6 times of
MT-DMA for these two directions.

D. PERFORMANCE IN APPLICATIONS
We evaluate the performance of the designs with two impor-
tant digital signal processing applications: the FFT calcula-
tion and the SAR image processing. The FFT calculation
leverages the widely used Cooley-Tukey algorithm. This
algorithm consists of six steps, and three of them involve
matrix transposition, including matrix transposition before
column FFT calculation, matrix transposition after the col-
umn FFT calculation, and matrix transposition after the row
FFT calculation. In the X-DSP, the data set is initially located
in the GM, and all calculations are performed in the VMusing
vector processing units. Therefore, the matrix transposition
direction before the column FFT calculation is ‘GM→VM’,
and the matrix transposition direction after the column FFT
and row FFT calculation is ‘VM→GM’. The SAR image pro-
cessing applies the chirp scaling algorithm, which includes
four batches of FFT calculation: azimuth FFT, range FFT,
range IFFT, and azimuth IFFT. All these FFT calculations
apply the Cooley-Tukey algorithm.We evaluation both appli-
cations with several workload sizes. The sizes for FFT calcu-
lation include 64K, 128K, 256K, 512K and 1M points. The
image sizes for SAR processing include 256×256, 512×512,
1K × 1K, 2K × 2K, and 4K × 4K.

Since the DMA controller works independently of the
computation units, we divide the VM into two parts to apply
the ping-pong scheme for both theMT-DMA and R2C-DMA.
When one part performs matrix transposition, the other one
performs data calculations. This can overlap matrix transpo-
sition and data calculations. We also evaluate an ideal design,
assuming that it can completely hide the latency of matrix
transposition behind data calculations.

Fig. 11 shows the runtime normalized to the ideal design
for the applications. The load/store design performs poor-
est for all evaluations, since it only allows serial execution
of matrix transposition and data calculations, and totally
exposes the latency of matrix transposition. In contrast,
the R2C-DMA and MT-DMA designs can hide some of
the latency of matrix transposition behind the calculation.

For both the FFT calculation and SAR image process-
ing, R2C-DMA performs better with larger workload sizes.
Larger workload sizes can more efficiently amortize the
startup and cleanup overheads for R2C-DMA. The load/store
design performs worse with large workload sizes. Larger
workload sizes increases the latency of matrix transposition,
and reduces the performance of load/store design.

The MT-DMA’s performance advantage is more signifi-
cant in the FFT calculation than the SAR image process-
ing. It average performance gains against R2C-DMA are
85.2% and 43.4% for the FFT calculation and SAR image
processing, respectively. Similarly, its average performance
gains against the load/store design are 215.2% and 94.4%
for these two applications. The matrix transposition plays a
more important role in the FFT calculation, since the SAR
image processing has several factor compensation steps that
does not involve matrix transposition. For both applications,
MT-DMA performs very closely to the ideal design. On aver-
age, its performance is only 5.2% and 3.8% lower than
the ideal design for the FFT calculation and SAR image
processing, respectively. This demonstrates the efficiency of
MT-DMA.

E. HARDWARE OVERHEAD
Here, we discuss the hardware overhead of MT-DMA. First,
we consider the implementation of MBTB. We evaluate two
choices. One is implemented by registers synthesized from
the RTL Verilog description, and the other one is imple-
mented with SRAMs generated by the Synopsys Embed-It!
Integrator. Since the capacity of a MBTB is small, the reg-
ister implementation is more area efficient than the SRAM
implementation. The area of the former is 30964 µm2, and
the area of the latter is 65472 µm2. Therefore, we implement
the MBTB with registers. Then, we synthesize a regular
DMA controller and an MT-DMA controller. The area of a
regular DMA controller is 976806 µm2, and the area of an
MT-DMA controller is 1064718 µm2. Therefore, the area
of the additional hardware for supporting the MT-DMA is
87912 µm2, which is 9.1% of the area of a regular DMA
controller. The majority of the additional area is induced by
the two MBTBs; they occupy 63.2% of the additional area,
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and the remaining area is the control logics. Considering
the performance improved by the MT-DMA, these minor
hardware overheads are acceptable.

V. RELATED WORK
Thematrix transposition plays a critical role in several impor-
tant fields, including digital signal processing and scien-
tific computing. There are numerous work on the efficient
implementation of matrix transposition on different comput-
ing platforms. Chatterjee and Sen propose cache efficient
matrix transposition for general purpose processors [16], and
Ruetsch and Micikevicius research high performance matrix
transposition for GPGPUs [17]. The matrix transposition
on both the general purpose processors and GPGPUs are
implemented with load and store instructions. They do not
allow the parallel execution of matrix transposition and cal-
culations. To address this issue, modern DSPs, such as TI
TMS320C6678 [5], TMS320C54x [6], TMS320C6000 [7],
FT-Matrix [8], integrate the support of matrix transposition
into the DMA controller; a matrix is transposed during the
data movement. This approach allows the parallel execution
ofmatrix transposition and calculation. Several work leverage
this feature to achieve high performance for several important
workloads, including SAR image processing [18], signal pro-
cessing kernels [19] and BLAS routines [20]. A limitation of
these DMA controllers [5]–[10], [21] is that they can only
transfer one matrix element per clock cycle, which signif-
icantly degrades the bandwidth utilization. In contrast, our
proposed MT-DMA can transpose multiple matrix elements
per clock cycle to improve the bandwidth utilization.

VI. CONCLUSION
This paper delves into the design of efficient matrix transpo-
sition for digital signal processors. By leveraging the MBTB,
the proposed MT-DMA can transpose multiple matrix ele-
ments per clock cycle to improve the bandwidth utilization.
We also apply the ping-pong scheme to overlap write and read
operations for theMBTB to further improve the performance.
The evaluation results show that MT-DMA performs much
better than existing designs. Meanwhile, it is more energy
efficient. MT-DMA can efficiently hide the latency of matrix
transposition behind data calculations, and performs very
closely to an ideal design for real applications. Our future
work include performing further optimizations of the imple-
mentation of MT-DMA, such as conducting physical custom
designs for the MBTB. We will also work on integrating
support for other critical kernels of digital signal processing,
such as matrix multiplication, in DMA controllers.
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