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ABSTRACT The design and development of a high-performance, dual-polarization, hybrid aperture-coupled
microstrip patch antenna are presented. In the presented design, the horizontal and vertical polarizations are
excited using the aperture coupling method. The isolation level of better than 51 dB and cross-polarization
level of less than —30 dB are achieved from the measurement results of the designed single element.
To achieve better cross-polarization levels, the 2 x 2 element subarrays of the proposed unit cell, while
the horizontal polarization ports are mirrored, are designed and fabricated, and a lower than —39-dB
cross-polarization level is achieved in the measurement results. Finally, to characterize the scan performance
of the unit cell and subarray, a4 x 10 element array of the proposed single element is fabricated and a better
than —45-dB cross-polarization level is observed while scanning up to 45°.

INDEX TERMS Dual-polarized, aperture coupled, high isolation, array antenna, differential feed, phased

array radar, cross-polarization suppression, image arrangement.

I. INTRODUCTION

There is an interest and practical value in utilizing polar-
ization diversity for a radar to obtain more target informa-
tion or for a communication system to carry more signal
information without occupying more frequency band. This is
because frequency bands are getting crowded in microwave
frequencies due to the recent advancement in cellular com-
munications. For example, the Spectrum Efficient National
Surveillance Radar Program (SENSR) is started to study the
feasibility of replacing the four radar networks that service
the U.S with a single network of Multifunction Phased Array
Radar (MPAR) [1]-[3].

Candidates being considered for future MPAR include
Cylindrical Polarimetric Phased Array  Radar
(CPPAR) [4], [5], and Planar Polarimetric Phased Array
Radar (PPPAR) [6]. To have desired accurate weather mea-
surements with a PPPAR or CPPAR, a high-performance
phased array antenna with dual-polarization capability is
required. The array antenna is required to possess matched
main beams, high input isolation, and low cross-polarization

level at broadside and scan angles up to 45°[7]. The
beam mismatch should be within 5% of the beamwidth,
the input isolation needs to be better than 40 dB, and the
cross-polarization level needs to be lower than —20 dB
and —40 dB for alternate and simultaneous transmission,
respectively [7]. These are a very stringent requirement for
antenna design and development.

The required antenna performance can be realized through
different designs in which the microstrip patch antenna is the
most popular choice due to its low profile and fabrication
cost [8]. Also, other microwave components, such as filters,
can be readily integrated into the antenna array structure [9].
Different methods for exciting two orthogonal polarizations
using microstrip patch antennas are proposed. Dual-polarized
hybrid feed antennas [10]-[17] with high polarization purity
could be an ideal choice for MPAR applications. One of the
advantage of using hybrid feed technique to excite the single
element include increasing the geometrical symmetry of the
antenna without having a complicated multilayer design [10].
Although with proper design the coupling between two
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FIGURE 1. Layer stack up of the designed unit cell.

polarizations and cross-polarization of the antennas excited
with this method are very low, this type of patch antenna has
a very compact design. Numerous methods are previously
proposed for improving the antenna pattern and increasing the
isolation of between array elements [18]. Also, it is possible
to further improve the polarization purity of antenna radiation
pattern using image configuration [19], [20].

Also, it is worth noting that, the antenna perfor-
mance and the accuracy of weather measurement could be
affected by radome conditions (e.g., wet radome) and sev-
eral investigations have been conducted to illustrate these
effects on antenna radiation pattern and the polarimetric
biases [21]-[23].

Section II discusses the structure of the proposed unit
cell and all design parameters. In section III, the subarray
configuration is presented and simulated, and the measured
results are provided. In section IV, the 4 x 10-element array
radiation pattern at broadside and different scan angles are
presented. Finally, the summary and conclusion of this work
are given in Section V.

Il. SINGLE ELEMENT DESIGN

The layer stack up and the design parameters of the proposed
unit cell are presented in Fig. 1 and Fig. 2. On the front side of
the first laminate, the feed lines for both horizontal and verti-
cal polarizations are laid. To achieve the maximum bandwidth
and to have the minimum surface wave effect, it is always
desired to implement a material with low dielectric constant.
However, using materials with a low relative permittivity will
increase the unit cell dimensions. Also, since materials with
low relative permittivity, for instance, Rogers 5880, are based
on PTFE composites, special treatment for metalized holes is
required. In this design, a RO4534 laminate with the relative
permittivity of 3.4 and a thickness of 0.813 mm is chosen
for the first substrate which contains feed lines and metalized
holes for connectors. The ground plane which includes three
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TABLE 1. Parameters and values of the proposed antenna.

Parameter Value Parameter Value Parameter Value
I 7.9mm w1 1.7 mm 1 4.5 mm
lo 5.56 mm wa 0.95 mm l12 7Tmm
I3 11.45 mm w3 0.76 mm l13 4mm
la 8.85 mm wy 0.6 mm l14 2.7 mm
ls 14.5 mm ws 1.8 mm l15 8.4mm
le 29.85 mm we 0.9 mm hsuprt  0.813mm
l7 4.6 mm wr 3.1mm hsube  3.175mm
ls 4.2 mm wg 1.5mm hsups  3.175mm
lg 7.4 mm wo 27.7mm  hpopdply 0.076 mm
l1o 9.5 mm w10 289 mm Wantenna DD MM

slots is located on the back side of the Rogers 4534 laminate.
The radiating and parasitic patches are located on the back
side of the second and third laminates which are 3.175 mm
thick Rogers 5880. In the proposed design, a low dielectric
material (Rogers 5880) is used to achieve the required band-
width for multifunction applications, and Rogers 4534 with
the higher dielectric material is used for reducing the size of
the transmission lines and ease of fabrication [13].

FIGURE 2. Parameters of the proposed antenna.

As seen in Fig. 2, the horizontal polarization feed line,
and the corresponding H-shaped slot are placed in the middle
of the antenna. The horizontal polarization slot is symmetric
with respect to horizontal and vertical planes, and it is posi-
tioned in the middle of the ground plane.
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One of the key points in the design and development of
the low cross-polarization and high-isolation patch antennas
is to increase the symmetry of design. As mentioned above,
the horizontal polarization slot is designed to be in the middle
of the ground plane. Therefore the only way to maintain
the symmetry of the design without having a complicated
multilayer design is to excite the vertical polarization through
differential feed method. To implement the differential feed-
ing method, two similar H-shaped slots are placed beside
the horizontal polarization slot. In the presented differential
feed method, to suppress the higher order modes and reduce
the cross-polarization level, the two slots are excited with
180° phase shift. As seen in Fig. 1, the required 180° phase
shift for differential feed method is produced through the
length difference of the two branches of vertical polarization
excitation feed line.

The allocated bandwidth for MPAR operation when replac-
ing Airport Surveillance Radar (ASR) and Terminal Doppler
Weather Radar (TDWR) is 2.7-2.9 GHz [10]. The typical
bandwidth of microstrip patch antennas is 3% percent. Dif-
ferent bandwidth enhancement methods have been proposed,
and the multilayer configuration approach is implemented in
this design [24]. In the proposed design, a parasitic patch is
placed on top of the radiating square patch. For bonding three
different laminates, a 0.076 mm thick Rogers 2929 Bondply is
utilized. The photograph of the fabricated unit cell is shown
in Fig. 3 and the simulated and measured S-parameters are
provided in Fig. 4. Fig. 4 demonstrates a perfect agreement
between the simulation and measurement results.

FIGURE 3. Photograph of the fabricated unit cell.
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FIGURE 4. Simulated and measured S-parameters of the proposed
antenna.

5028

For horizontal and vertical polarizations, below —12.1 dB
return loss has been achieved from simulated and measured
results in the entire bandwidth (2.7-2.9 GHz). Also, it is worth
noting that the horizontal and vertical polarization return loss
results are pretty similar, which decreases the gain mismatch
between the two polarizations. As seen in Fig. 4, the isolation
between polarizations is better than 52 dB in simulations.
To measure such low coupling between ports, the S-parameter
measurements are conducted in shielded anechoic chambers
designed for S-parameter measurements. As seen in Fig. 4,
we managed to measure a higher than 51 dB input isolation
in the entire bandwidth.

In phased array antennas, scan blindness could result in
limited scanning angle range. One explanation for the scan
blindness is the presence of dielectric or metallic material in
the antenna plan which can support surface waves. The exact
location of the occurrence of scan blindness depends on the
spacing between elements, array configurations, and element
design. Using high dielectric constant material, increasing the
spacing between elements or using subarrays could move the
blind angle towered the broadside [25], [26].
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FIGURE 5. Simulated active S-parameters of the proposed patch antenna
under periodic boundary conditions.

Fig. 5 shows the S-parameters versus scan angles in ¢ = 0°
and ¢ = 90° planes. As seen in Fig. 5, at the MPAR oper-
ating frequency, the simulated return loss results stay below
—10 dB while scanning up to 45° in both principal planes.
The isolation between two orthogonal polarization in the
required scanning range is better than 45 dB.

The measured radiation pattern of the fabricated hybrid
feed patch antenna is provided in Fig. 6. The antenna radi-
ation patterns are measured in the far field chamber of
Advanced Radar Research Center (ARRC). The measured
cross-polarization patterns of horizontal polarization in prin-
ciple planes are presented in Fig. 6a and Fig. 6b. For the
horizontal polarization, the single element cross-polarization
level at 2.8 GHz is below —36 dB in ¢ = 0° plane and better
than —35dB in ¢ = 90° plane. As seen from Fig. 6¢ and
Fig. 6d, the measured cross-polarization level while vertical
polarization is excited at 2.8 GHz is better than —30 dB
in ¢ = 0° plane and less than —36 dB in ¢ = 90°
plane. Although this level of cross-polarization is very low,
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FIGURE 6. Measured radiation pattern of the proposed unit cell in (a) ¢ = 0° plane, H-pol, (b) ¢ = 90° plane, H-pol, (c) ¢ = 0° plane, V-pol, (d) ¢ = 90°

plane, V-pol.

to satisfy MPAR requirements, polarization purity of higher
than —40 dB is required.

Ill. CROSS-POLARIZATION SUPPRESSION

AND SUBARRAY DESIGN

Any dual-polarized antenna requires two individual ports
for exciting orthogonal polarizations, and more or less in
any dual-polarized antenna, the low cross-polarization level
is desired. A microstrip patch antenna with dual polariza-
tion functionality can be realized while each polarization is
excited with two 180° out phase ports which is called ideal
differential feed patch antenna. The advantage of using the
ideal differential feed patch antenna is its extremely low
cross-polarization level, especially in the principal planes.
However, an ideal differential feed requires external 180°
phase shifters. In a phased array radar, the increased quan-
tity of connectors, cables, and phase shifters would signif-
icantly increase fabrication costs. An alternative solution
for reducing cross-polarization level is to arrange the ele-
ments of the array into the groups of 2 x 2-element iden-
tical subarrays in which the horizontal polarization ports
are mirrored [19]. In the presented design, this method of
improving the cross-polarization level is implemented. The
photograph of designed subarray configured according to
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FIGURE 7. Fabricated 2 x 2-element subarray.

the image configuration is shown in Fig. 7. Similar to an
ideal differential feed antenna a 180° phase difference will
be applied for exciting the mirrored ports.

The measured radiation patterns of the fabricated
2 x 2-element subarray of the designed unit cell are shown
in Fig. 8. According to the measurement results, for both
polarizations in the E-plane and H-plane form 2.7 GHz to
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FIGURE 8. Measured radiation patterns of the designed 2 x 2-element subarray in (a) ¢ = 0° plane, H-pol, (b) ¢ = 90° plane, H-pol, (c) ¢ = 0° plane,

V-pol, (d) ¢ = 90° plane, V-pol.

2.9 GHz, the cross-polarization level is around —40 dB. At the
center frequency, with H-pol excitation cross-polarization
level is better than —40 dB in ¢ = 0° and less than —41 dB
in ¢ = 90° plane. For vertical polarization at 2.8 GHz,
the maximum cross-polarization level is less —37 dB in
¢ = 0° planes and less than —41 dB in ¢ = 90° plane. Also,
not presented here, the simulated cross-polarization level for
both principal planes is better than —51 dB. The discrepancy
between simulated and measured cross-polarization level
is the result of unideal measurement environments such as
cross-polarization of the transmitting antenna and backscat-
tering of the antenna cable and positioner and possible fabri-
cation errors.

IV. ARRAY DESIGN

To characterize the scan radiation pattern of the proposed
unit cell and subarray, a 2 x 5-element array of the pre-
sented subarray is fabricated. The geometry of the fabricated
4 x 10-element array which is made for characterizing the
scan characteristics of the proposed unit cell at different
scan angles in the ¢ = 0° plane, is shown in Fig. 9a. For
measuring low cross-polarization levels, the alignment of the
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antenna under test (AUT) with a transmitter antenna, plays
a key role. Considering perfect condition in the anechoic
chamber, any misalignment between AUT and transmitter
antenna will result in measuring the cross-polarization level
in off principle planes. For a perfect alignment between AUT
and the transmitter antenna, the antennas are installed on the
fixture which is fabricated from plexiglass. These plexiglass
components of the antenna fixture are precisely processed by
a laser cutting machine. The two white components of this
fixture are made from ABS by using a 3-D printer. As seen
in Fig. 9b, to characterize the array scanning performance in
¢ = 90° plane, the 2 x 2-element subarrays are rotated 90°.

Although a 4 x 10-element array antenna is fabricated
for characterizing the performance of the designed sin-
gle element, for MAPR applications final array dimensions
could be as large as a cylindrical array antenna with 10 m
diameter. Therefore, to decrease the edge elements effect
on the array radiation characteristics, one element from
each side is terminated. It is worth noting that the simu-
lated realized gain of the proposed unit cell at 2.8 GHz is
6.7 dB and 6.8 dB with the H-pol and V-pol excitations,
respectively. With the 2 x 8-element array configuration,
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FIGURE 9. Fabricated 4 x 10-element array for characterizing the antenna performance; (a) in ¢ = 0° plane; (b) in ¢ = 90° plane.
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FIGURE 10. Measured scan radiation pattern of the central 2 x 8-element array in the fabricated 4 x 10-element array at 2.7 GHz, 2.8 GHz, and 2.9 GHz;
(a) H-pol, ¢ = 0°; (b) H-pol, ¢ = 90°.
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FIGURE 11. Measured scan radiation pattern of the central 2 x 8-element array in the fabricated 4 x 10-element array at 2.7 GHz, 2.8 GHz, and 2.9 GHz;
(a) V-pol, ¢ = 0°; (b) V-pol, ¢ = 90°.

the simulated realized gain will be increased to 17.26 dB

and

16.88 dB for horizontal and vertical polarizations,

respectively.
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The array antenna radiation patterns are measured accord-
ing to Unit Excitation Active Element Pattern (UEAEP)
method [27], [28]. In this method, every element pattern is
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measured separately while all other remaining elements were
terminated. The magnitude and phase of all the measured
active element patterns are imported into Matlab, and the
required phase shift between elements is applied to steer the
array radiation pattern. It has not escaped our notice that the
active reflection coefficient magnitude of the entirely excited
antenna array at the steering angles is contributing to the
measured realized gain while measuring the active element
pattern. Therefore, using UEAEP method for characterizing
the array scan radiation pattern can be used to decrease the
cost and risk of failure in the measurements of the prototypes.

Following the UEAEP method, the array antenna measured
scan pattern in principle planes at MPAR operating frequency
are shown in Fig. 10 and Fig. 11. Also, the array elements
excitation amplitude is adjusted according to 25 dB Tay-
lor amplitude tapering to decrease the sidelobe level. With
the H-pol excitation, the array cross-polarization level while
scanning up 45° remains less than —40 dB in ¢ = 0° plane.
Also, the cross-polarization level of less than —44 dB is
achieved in the ¢ = 90° plane with the H-pol excitation. It is
seen that the cross-polarization levels of V-pol excitation, are
better than —40 dB in ¢ = 0° and —39 dB in ¢ = 90° planes
with scanning up to 45°. The reported cross-polarization
values are the peak of the cross-polarization at 2.8 GHz from
(—90° < 6 < 90°). For the scanning up to 20°, which is the
maximum required beam steering for cylindrical geometry,
the cross-polarization levels in the main beam area are mostly
below —45 dB. This level of the cross-polarization pattern
could satisfy the MPAR requirements.

V. CONCLUSION

Design and development of a dual-polarized microstrip patch
antenna array for multifunction radar application are pre-
sented. A higher than 51 dB horizontal to vertical ports
isolation and a better than —30 dB cross-polarization level is
achieved form the fabricated single element measurements.
To improve the cross-polarization level, a2 x 2-element
subarray, which is configured according to image feed
method, is designed and fabricated and a better than —39 dB
cross-polarization level is observed from measurements
results. The return loss and coupling between horizontal and
vertical port are simulated using periodic boundary con-
ditions in CST Microwave Studio. The simulation results
showed that the return loss of H and V ports stay below
—10 dB while scanning up to 45° and a less than —45 dB hor-
izontal to vertical port coupling is achieved at 45° scan angle.
Using UEAEP method, the 4 x 10-element array antenna
radiation pattern is measured at 4 different scan angles and
in the main beam area, better than —45 dB cross-polarization
level is achieved with H-pol and V-pol excitations in both
principal planes while scanning up 45°.
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