
Received December 6, 2018, accepted December 13, 2018, date of publication December 24, 2018, date of current version February 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2889305

An Efficient Deadlock Recovery Policy for Flexible
Manufacturing Systems Modeled With Petri Nets
YUNYUN DONG1,2, YUFENG CHEN 1,2, (Senior Member, IEEE), SHAOYONG LI3,
MOHAMMED A. EL-MELIGY 4, AND MOHAMED SHARAF5
1School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
2Fujian Engineering Research Center of Motor Control and System Optimal Schedule, Huaqiao University, Xiamen 361021, China
3School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
4Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
5School of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Corresponding author: YuFeng Chen (chyf01@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61673309, Grant 61472295, Grant
61672400, and Grant 61873342, in part by the Fundamental Research Funds for the Central Universities under Grant JB190415, and in part
by the Deanship of Scientific Research at King Saud University under Grant RG-1440-048.

ABSTRACT This paper focuses on solving deadlock problems in flexible manufacturing systems modeled
with Petri nets by adding a set of recovery transitions. Different from the traditional deadlock control policies
that add control places to a net model, this paper employs transitions to recover all the deadlock markings to
be legal ones. A live net system can be obtained with all reachable markings. First, according to reachability
graph analysis, a set of recovery transitions is obtained for each deadlock marking to be recovered. Second,
we present a vector intersection approach to compute a recovery transition to recover multiple deadlock
markings. Then, an iterative method is developed to find a set of recovery transitions to recover all deadlock
markings. At each iteration step, a recovery transition is found to recover more than one deadlock markings.
This iterative method cannot obtain the minimal number of recovery transitions in theory, but it can usually
lead to a minimal one supported by extensive experimental studies. Finally, several widely used examples are
provided to demonstrate the presented approach. The experimental results show that the reported deadlock
recovery technique is effective and efficient.

INDEX TERMS Flexible manufacturing system, Petri net, deadlock, vector intersection.

I. INTRODUCTION
Flexible manufacturing systems (FMSs) [6], [15] are
designed to complete different kinds of jobs by using limited
and shared resources such as machines and robots. Deadlocks
are highly undesirable situations caused by the competition
for the shared resources in different processes, making the
whole system or a part of it blocked and some production
processes discontinuous. In FMSs, once a deadlock occurs,
it usually leads to considerable and inexcusable loss such
as long downtime and waste of resources. Hence, deadlock
problems must be analyzed and resolved in these systems.

Deadlocks in FMSs can be dealt with by several tools:
Graph theory [10], [11], [25], [47], automata [34], [35], [39],
[45], [46], and Petri nets [11], [21], [28], [40], [44]. As a
mathematical and graphical modeling tool, Petri nets are
widely used to model and analyze the behavior of FMSs [6],
[15], [22], [32], [36], [38]. They can detect deadlocks and
develop a policy to prevent deadlocks. Many researchers

prefer to use Petri nets to deal with deadlock problems [11],
[11], [13]. Generally, there are three approaches for deadlock
resolution: Deadlock avoidance [1], [14], [16], [25], [31],
deadlock prevention [4], [7], [12], [14], [19], [57]–[63] and
deadlock detection and recovery [20], [29], [33]. This work
belongs to the last category, i.e., deadlock detection and
recovery. The main idea of this approach is adding a set
of recovery transitions such that all deadlock markings are
recovered to legal ones.

In order to prevent the undesired states of a system from
being reached, a variety of policies are developed by adding a
set of control places to a Petri net model to be controlled [50],
[54], [56]. Different from the traditional deadlock prevent
policies, this work attempts to find a set of control transi-
tions [53], [55], aiming to recover the deadlock states of a
Petri net to be legal ones.

Generally, two analysis techniques are considered to
deal with deadlock problems in Petri nets: Structural
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analysis [1], [17], [19], [49] and reachability graph analy-
sis [30], [38], [41], [51], [52]. Structural analysis usually
exploits special structural objects of a Petri net, siphons,
place invariants, and resource-transition circuits, for exam-
ples, since some substructures have a close relationship with
deadlocks. However, the optimality of permissive behavior
cannot be guaranteed as partial legal markings are always
prohibited. Reachability graph analysis is very specific and
visual since it can completely show the behavioral evolution
of a Petri net model. From the reachability graph, we can find
the deadlock markings, bad markings, dangerous markings,
and good markings [9], [30], [40], [48]. For the deadlock
control purpose, the bad and deadlock markings should not
appear in the controlled system.

Uzam and Zhou [38] and Uzam et al. [42] define an impor-
tant class of markings, namely, the first-met bad markings
(FBMs). First, they classify a reachability graph into two
groups: A live-zone (LZ) and a deadlock-zone (DZ). The
LZ contains all legal markings and the DZ contains all dead-
lock markings and bad markings. An illegal marking is called
an FBM if it represents the first entry from the LZ to the DZ.
Obviously, if no FBM is reached in the controlled system,
the bad or deadlock markings cannot be reached anymore.
Then, Chen et al. [2] and Chen and Li [3] improve Uzam
and Zhou’s work by proposing a vector covering approach to
reduce the number of legal markings and FBMs that need to
be considered. More importantly, an optimal supervisor can
be designed by making all legal markings reachable but all
FBMs unreachable if such a supervisor exists.

In [18], a transition-controlled deadlock recovery policy
is proposed for a subclass of Petri nets, namely systems
of simple sequential processes with resources (S3PR for
short) [4], [41], [45]. Different from deadlock prevention
policies, the transition-controlled approach computes a set of
transitions for a Petri net model. In an FMS, deadlocks are
caused by the competition for shared resources when some
processes keep waiting indefinitely for the other processes to
release resources. Once a deadlock occurs, the system should
be recovered to be some safe states. In this sense, recov-
ery transitions can be considered as the recovery actions.
By firing these transitions, all deadlock markings can be
transformed to legal markings, resulting in a live net model.
However, the work has at least two disadvantages. One is that
it is applied to S3PR only, a subclass of Petri nets. The other
is that it usually obtains too many transitions, which means
that it suffers from the structural complexity problem.

In order to overcome the structural complexity problem,
Chen et al. [8] present an improved transition-based dead-
lock recovery policy. This study proposes two approaches
to design recovery transitions. The first one is an iterative
approach. At each iterative step, an integer linear program-
ming problem (ILPP) is formulated to design a recovery tran-
sition, aiming to maximize the number of deadlock markings
recovered by the obtained transition. The second one is a non-
iterative approach that can find all recovery transitions at a
time. The objective function of the ILPP aims to minimize the

number of selected recovery transitions and the constraints
can ensure that each deadlockmarking is recovered by at least
one selected recovery transition. Then, a minimal number of
recovery transitions are obtained by solving one ILPP only.
Although this policy can be applied to all classes of
FMS-oriented Petri net models, it suffers from the computa-
tion complexity problem, since there are too many constraints
and variables in the formulated ILPPs, leading to a long
calculation time.

In this paper, we propose a transition-based deadlock
recovery policy without solving ILPPs. First, we compute
the reachability graph of a Petri net model and find all legal
and deadlock markings. Then, a vector covering approach
is introduced, which can greatly reduce the number of legal
markings that are required to be considered. As a result,
the computational overhead can be greatly reduced. A vector
intersection approach is designed to compute all recovery
transitions that can be fired at deadlock markings and their
firing leads the system to legal markings. In fact, it is an
iterative process. At each iteration step, we acquire a recovery
transition to recover as many deadlock markings as possible.
At the first step, we compute the shared recovery transitions
called intersection of the first two deadlock markings. If the
intersection is empty, it means that the two deadlockmarkings
have no shared recovery transition, i.e., there is no transition
to recover the two deadlock markings at the same time.
Then, we compute the intersection of all possible recovery
transitions of the first and third deadlock markings. If the
intersection is not empty, it means that the recovery transition
can simultaneously recover the first two deadlock markings.
Then, we compute the intersection of the obtained intersec-
tion and all possible recovery transitions of the third deadlock
marking, and so on. After each deadlock has been calculated
once, we compute the intersection of the remaining deadlock
markings according to the above method. The process ends
when all deadlock markings are recovered. Finally, a small
number of recovery transitions are obtained.

For economy of space, some basics of Petri nets [24]
and the vector covering approach in [2] are outlined in [9].
The rest of the paper is organized as follows. In Section 2,
reachability graph analysis and a vector covering approach
are recalled. In Section 3, we present the derivation process
called vector intersection to find a set of recovery transitions.
A simple example is also presented to illustrate the proposed
method. Some widely used examples from the literature
are provided to demonstrate the performance of the pro-
posed method in Section 4. Finally, Section 5 concludes this
paper.

II. TRANSITION-CONTROLLED DEADLOCK RECOVERY
A. DEADLOCK RECOVERY BY TRANSITIONS
In this section a concrete design method of recovery transi-
tions is shown, which leads all of the deadlock markings to
legal ones. As mentioned previously, the basics of Petri net
are referred to [10], where ML and MD denote the sets of
legal and deadlock markings, respectively.
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Definition 1: Let Md be a deadlock marking of a net sys-
tem (N ,M0) with N = (P,T ,F,W ) and tr 6∈ T be an
external transition. If tr is enabled at Md and its firing at Md
leads to a legal marking of (N ,M0), tr is said to be a recovery
transition of Md , i.e., there exits a legal marking Ml ∈ ML
such that Md [tr 〉Ml . The set of recovery transitions is denoted
as Tr , i.e., Tr = {tr | ∃Ml ∈ML , ∃Md ∈MD,Md [tr 〉Ml}.
Definition 2: Let (N ,M0) be a net model system, and

(Nr ,M0) be the resulting net model system after adding a set
of recovery transitions Tr , where Nr = (P,T ∪ Tr ,Fr ,Wr )
with Fr ⊆ (P × T ∪ Tr ) ∪ (T ∪ Tr × P) (the flow relation
of Nr ) and Wr : (P×T ∪Tr )∪ (T ∪Tr ×P)→ N (the weight
of the arcs in Nr ). The set of recovery transitions Tr is said to
be behaviorally optimal if R(Nr ,M0) = R(N ,M0).
A recovery transition is defined as a transition tr with the

incidence vector [Nr ](P, tr ) = [x1, x2, x3, . . . , xn]T , a col-
umn in [Nr ], where n denotes the number of places in a net
system with n = |P|, which is enabled at Md and its firing
yields a legal marking. For a given system, the number of
deadlock markings is fixed and our purpose is to recover
all deadlock markings. However, the consideration of all
legal markings undoubtedly increases the computational cost.
According to [9, Corollary 1], if all markings in the minimal
covering set M∗

L of legal markings can be reached, all legal
markings can also be reached. Therefore, we can recover a
deadlock markingMd into a marking of the minimal covering
set of legal markings M∗

L instead of all legal markings ML .
According to Definition 1, a deadlock marking Md can be

guided to a legal makingM ′ after firing a recovery transition
tr , that is to say, there exists a marking M ∈ M∗

L with
Md + [Nr ]

−→tr = M ′ ≤A M [9]. M ′ ≤A M means that
the marking M ′ is A-covered by marking M if for all places
p ∈ PA, M (p) ≥ M ′(p). For the sake of simplicity, the mark-
ings inM∗

L are considered instead of all legal markingsML .
Generally, the places in a Petri net model of an FMS

are classified into three parts: Idle, activity (operation), and
resource places. Their sets are denoted as P0, PA, and PR
(P = P0 ∪ PA ∪ PR), respectively, and their basis of clas-
sification is outlined in [9].

Assume that there is a net system (Nr ,M0) and a sub-
vector of [Nr ](P, tr ) with restriction to PA ⊆ P, denoted by
[Nr ](PA, tr ). The recovery transition tr is used to transform
a deadlock marking Md into a marking A-covered by some
markings in M∗

L . That is to say, if the recovery transition
tr is enabled at a deadlock marking Md and its firing leads
to a marking Ml1, i.e., Md [tr 〉Ml1, there exists a marking
Ml2 ∈M∗

L , Ml1 ≤A Ml2. Hence,

∃Ml ∈M∗
L , 0 ≤ Md (pi)+ xi ≤ Ml(pi), ∀pi ∈ PA (1)

We can derive Eq. (2) by Eq. (1)

∃Ml ∈M∗
L , −Md (pi) ≤ xi ≤ Ml(pi)−Md (pi), ∀pi ∈ PA

(2)

The theoretical method of calculating xi’s for all places
pi ∈ PA is represented by Eq. (2). In order to obtain the com-
plete incidence relation of a recovery transition tr , we need

to compute xi’s for all places pi ∈ P \ PA. The analysis and
derivation process is shown in below.
Theorem 1 [24]: A Petri net is conservative iff there exists

a P-vector I of positive integers such that IT [N ] = 0T .
There is a property in [24]: If a Petri net is structurally

bounded and structurally live, then it is both conservative and
consistent. Combined with Theorem 1, it indicates that con-
servativeness is a necessary condition for structural bounded-
ness and liveness of a Petri net. That is to say, if a net model
is not conservative, it is either not structurally bounded or not
structurally live. As a result, the addition of recovery tran-
sitions must guarantee the conservativeness of a Petri net.
Meanwhile, there are two assumptions as follows in the con-
sidered class of Petri net model.
Assumption 1: Each idle place pid ∈ P0 is associated with

a minimal P-semiflow Ipid , such that for all places p ∈ ‖Ipid ‖\
{pid }, p ∈ PA holds, where PA is the set of operation places
in the Petri net model.
Assumption 2: Each resource place pr ∈ PR is associ-

ated with a minimal P-semiflow Ipr , such that for all places
p ∈ ‖Ipr ‖ \ {pr }, p ∈ PA holds.
In summary, the above two assumptions are used to com-

pute xi’s for all places pi ∈ P \ PA. Since the set of places is
P = P0∪PA∪PR, we have pi ∈ P0 or pi ∈ PR if pi ∈ P \PA.
Therefore, the places associated with xi’s can be partitioned
into two subsets P1x ⊆ P0 and P2x ⊆ PR. In fact, the calcula-
tion method for each recovery transition is the same. To ease
the description, the following derivation is exemplified by
the case of adding only one recovery transition tr to a net
model.

First, we only need to consider xi’s for all places pid ∈ P0.
According to Assumption 1, a minimal P-semiflow Ipid is
obtained with ‖Ipid ‖ ⊆ PA ∪ {pid }. Hence, it is easy to
find Ipid

T
= [Ipid

T (PA), Ipid
T (pid ), Ipid

T (P0 \ {pid })] where
Ipid

T (P0 \ {pid }) = 0. In order to guarantee the conservative-
ness of the Petri net model after adding a recovery transition
tr , we have Ipid

T
·[Nr ](P, tr ) = 0, i.e., Ipid

T
·[Nr ](PA∪{pid }∪

(P0 \ {pid }), tr ) = 0. Since Ipid
T (P0 \ {pid }) = 0, we have

Ipid
T (PA) · [Nr ](PA, tr )+ Ipid

T (pid ) · [Nr ](pid , tr ) = 0. Hence,
[Nr ](pid , tr ) = −Ipid

T (PA) · [Nr ](PA, tr )/Ipid
T (pid ). That is

to say, xid = −
∑

pi∈PA Ipid (pi) · xi/Ipid (pid ) for all places
pid ∈ P0.
Second, we consider xi’s for all places pr ∈ PR.

According to Assumption 2, we can obtain a minimal P-
semiflow Ipr with ‖Ipr ‖ = PA ∪ {pr }. Let Ipr

T
=

[Ipr
T (PA), Ipr

T (pr ), Ipr
T (PR \ {pr })]. Similarly to the compu-

tation of xi’s for all places pid ∈ P0, we have [Nr ](Pr , tr ) =
−Ipr

T (PA)·[Nr ](PA, tr )/Ipr
T (pr ), i.e., xr = −

∑
pi∈PA Ipr (pi)·

xi/Ipr (pr ) for all places pr ∈ PR.
Eventually, we can find xi’s for all places pi ∈ P. That is

to say, the complete incidence of a recovery transition can be
obtained.

B. THE DERIVATION OF RECOVERY TRANSITIONS
This section introduces the specific calculation process
of xi’s for all places pi ∈ PA. To describe expediently,
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we consider operation places only since the computa-
tion for idle and resource places has been introduced in
Section II-A.
Definition 3: Let Md be a deadlock marking, tr be a recov-

ery transition with [Nr ](PA, tr ) with [Nr ](pi, tr ) = xi for
all pi ∈ PA, and M∗

L be the minimal covering set of legal
markings. A vector Lb with Lb(i) = −Md (pi) (pi ∈ PA) and
a set Ub = {Ub | Ub(pi) = Ml(pi) − Md (pi), pi ∈ PA,Ml ∈

M∗
L} are called the lower bound and the set of upper bounds

of xi’s (pi ∈ PA), respectively.
According to Eq. (2) and Definition 3, we have Lb(i) ≤

xi ≤ Ub(i), Ub ∈ Ub. Hence, any incidence vector satisfying
this constraint represents a recovery transition, which leads
the corresponding deadlock to a legal marking. Furthermore,
if the equation relationship holds, there is a solution xi for
Eq. (2) with xi = −Md (pi) for all pi ∈ PA, which indicates
that we can find a recovery transition for any deadlock mark-
ing such that [Nr ](PA, tr ) = Lb = −Md (PA).
Proposition 1: Let Ml ∈M∗

L be a legal marking and Md
be a deadlock marking. An upper bound Ub with Ub(i) =
Ml(pi) − Md (pi) (pi ∈ PA) can be excluded from the set of
upper bounds Ub if there exists a place pi ∈ PA satisfying
Ub(pi) < Lb(pi).

Proof: Eq. (2) shows that for all places pi ∈ PA,
Lb(pi) ≤ xi ≤ Ub(pi). If there exists a place pi ∈ PA such
that Ub(pi) < Lb(pi), i.e., the lower bound is greater than the
upper bound. It means that there is no vector of xi’s satisfying
Eq. (2). In other words, the upper bound is invalid since it
cannot provide any feasible solution for xi’s. The conclusion
holds.

Assume that, for a certain net, we have the lower bound
Lb = [1, 0, 1, 0,−1]T and an upper bound Ub =

[1, 1, 0, 1, 1]T with U ∈ Ub for a deadlock marking. There
is no x3 satisfying 1 ≤ x3 ≤ 0 since Ub(3) < Lb(3). That is
to say, Lb(i) ≤ xi ≤ Ub(i) is an invalid constraint. Therefore,
the upper bound Ub should be removed from the set of upper
bounds Ub.
For deadlock recovery purpose, a deadlock marking is

recovered to any of legal markings. That is to say, there
are |M∗

L | upper bounds and one lower bound for each
deadlock marking Md . The time complexity of the calcu-
lation increases as the number of upper bounds increases.
Proposition 1 can greatly reduce the number of upper
bounds.

For a deadlock marking Md , all xi’s satisfying the upper
and lower bounds are valid. As a result, there may exist more
than one recovery transition for each deadlock marking Md .
It is guaranteed that we can design at least one recovery
transition for each deadlock marking. For a net model with
|MD| deadlock markings, it needs |MD| recovery transitions
at most to recover all deadlock markings. Actually, there
may exist common recovery transitions sets from some of the
deadlock markings which can be called intersections. Math-
ematically, in general, for a given intersection of two sets A
and B, it means that all elements in this intersection belong to
bothA andB. That is to say, a transitionmay recover multiple

deadlock markings. By considering the structural complexity
of the controlled net model, we aim to find a small number
of recovery transitions to recover all deadlock markings.
A method for computing the shared recovery transitions is
presented in what follows.
Definition 4: Let Y and X be two m × 1 vectors. Write

X ≥ Y if each element in vector X is greater than or equal
to the corresponding element in vector Y , i.e., X (i) ≥ Y (i).
Similarly, X ≤ Y if X (i) ≤ Y (i), for all i.
To make it easier to express, there exists a set of vec-

tors [L,U ], denoted as {X | L ≤ X ≤ U}, if each
element X in it satisfies X ≥ L and X ≤ U . For
example, given two vectors L = [1, 0, 0, 1]T and U =

[2, 0, 1, 1]T , the set [L,U ] contains four vectors with X1 =
[1, 0, 0, 1]T , X2 = [1, 0, 1, 1]T , X3 = [2, 0, 0, 1]T , and
X4 = [2, 0, 1, 1]T .
Definition 5: Let [L,U1] and [L,U2] be two sets of vec-

tors. [L,U1] ∪ [L,U2] = {X | L ≤ X ≤ U1 ∨ L ≤
X ≤ U2}, which is denoted as [L, {U1,U2}] or [L,U] where
U = {U1,U2}.
Definition 6: Let L1 and L2 be twom×1 vectors,U1 andU2

be two sets of m× 1 vectors with U1 = {U11,U12, . . . ,U1k}

and U2 = {U21,U22, . . . ,U2j}. Then, the intersection of
[L1,U1] and [L1,U2], denoted as [L1,U1]∩[L2,U2] is defined
as {X | X ∈ [L1,U1] ∧ X ∈ [L2,U2]}.
Theorem 2: Let L1 and L2 be two m×1 vectors, U1 and U2

be two sets of m× 1 vectors with U1 = {U11,U12, . . . ,U1k}

and U2 = {U21,U22, . . . ,U2j}. Let L = max{L1(i),L2(i)}
and U = {Vkj | Vkj(i) = min{U1k (i),U2j(i)},U1k ∈

U1,U2j ∈ U2}. Then [L1,U1] ∩ [L2,U2] = [L,U].
Proof: First, we prove that [L1,U1]∩ [L2,U2] ⊆ [L,U]

is true. Let Y be an m × 1 vector in [L1,U1] ∩ [L2,U2]. We
have Y ∈ [L1,U1] and Y ∈ [L2,U2], i.e., there exist two
vectors U1k ∈ U1 such that L1 ≤ Y ≤ U1k and U2j ∈ U2
such that L2 ≤ Y ≤ U2j. Since L1 ≤ Y and L2 ≤ Y , we have
max{L1(i),L2(i)} ≤ Y (i), i.e., L ≤ Y . Since Y ≤ U1k and
Y ≤ U2j, we have Y (i) ≤ min{U1k (i),U2j(i)}, i.e., there exists
a vector Vkj ∈ U such that Y ≤ Vkj. Hence, we obtain Y ∈
[L,U]. That is to say, [L1,U1] ∩ [L2,U2] ⊆ [L,U].
Second, we certify that [L,U] ⊆ [L1,U1] ∩ [L2,U2] is

true. Let X be an m × 1 vector in [L,U]. Hence, there
exists a vector Vkj ∈ U such that L ≤ X ≤ Vkj. Since
L(i) = max{L1(i),L2(i)}, we have L1 ≤ X and L2 ≤ X . By
Vkj = min{U1k (i),U2j(i)}, we have X ≤ U1k and X ≤ U2j.
According to U1k ∈ U1, X ∈ [L1,U1] is obtained. Similarly,
byU2j ∈ U2, we have X ∈ [L2,U2]. Then, it is concluded that
X ∈ [L1,U1] ∩ [L2,U2]. That is to say, [L,U] ⊆ [L1,U1] ∩
[L2,U2].
Finally, by [L1,U1] ∩ [L2,U2] ⊆ [L,U] and [L,U] ⊆

[L1,U1] ∩ [L2,U2], we have [L1,U1] ∩ [L2,U2] = [L,U].
The conclusion holds.

Let us present an example to illustrate Theorem 2. Let
L1 = [−1, 0,−1, 1]T and L2 = [0, 1, 0,−1]T . Then,
we have L = max{L1,L2} = [0, 1, 0, 1]T . let U11 =

[2, 1, 0, 1]T , U12 = [1, 1, 2, 1]T , U21 = [1, 2, 1, 1]T , and
U22 = [1, 1, 3, 1]T . We have min{U11,U21} = [1, 1, 0, 1]T .
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Similarly, min{U11,U22} = [1, 1, 0, 1]T , min{U11,U21} =

[1, 1, 1, 1]T , and min{U11,U21} = [1, 1, 2, 1]T . The set U =
{Vkj | Vkj(i) = min{U1k (i),U2j(i)},U1k ∈ U1,U2j ∈ U2}

contains the above three vectors since there are two vectors
that are identical.

According to Eq. (2), there exists more than one solution
of xi’s satisfying the constraint. That is to say, a deadlock
marking can be recovered to legal markings by firing mul-
tiple recovery transitions, and each of them has an incidence
vector [Nr ](PA, tr ) with [Nr ](pi, tr ) = xi for all pi ∈ PA.
corresponding to it. Hence, there is a set of incidence vec-
tors for one deadlock marking Md , whose definition is as
follows.
Definition 7: The set of incidence vectors for a deadlock

marking Md is defined as TMd (PA) = [−Md (PA),UMd (PA)],
where UMd (PA) = {X | X = Ml(PA)−Md (PA),Ml ∈M∗

L}.
Theorem 3: Let Md1 and Md2 be two deadlock mark-

ings, whose set of incidence vectors are denoted as
TMd1

(PA) = [−Md1 (PA),UMd1
(PA)] and TMd2

(PA) =
[−Md2 (PA),UMd2

(PA)], respectively. A common recovery
transition tr with [Nr ](p, tr ) ∈ TMd1

∩ TMd2
can recover two

deadlock markings Md1 and Md2 .
Proof: A recovery transition tr with [Nr ](p, tr ) ∈ TMd1

∩

TMd2
means [Nr ](p, tr ) ∈ TMd1

and [Nr ](p, tr ) ∈ TMd2
. That

is to say, tr can recover both deadlock markingsMd1 andMd2 .
The conclusion holds.

By Theorem 3 andDefinition 6, TMd1
∩TMd2

is said to be the
intersection of incidence vector recovery transitions for two
deadlock markings Md1 and Md2 or intersection of recovery
transitions for short.

In the following, an example is provided to demonstrate
the proposed approach. Suppose that in a net model there
are two deadlock markings Md1 = [1, 1, 0, 1, 0, 0]T and
Md2 = [1, 0, 0, 1, 1, 0]T , and two legal markings M∗L1 =
[1, 1, 1, 0, 0, 0]T and M∗L2 = [0, 0, 0, 1, 1, 1]T . Accord-
ing to Definition 3, there exist two lower bounds L1 =
[−1,−1, 0,−1, 0, 0]T and L2 = [−1, 0, 0,−1,−1, 0]T , and
two sets of upper bounds U1 and U2 for deadlock markings
Md1 and Md2, respectively, where U1 = {U11,U12} with
U11 = [0, 0, 1,−1, 0, 0]T and U12 = [−1,−1, 0, 0, 1, 1]T ,
and U2 = {U21,U22} with U21 = [0, 1, 1,−1,−1, 0]T

and U22 = [−1, 0, 0, 0, 0, 1]T . First, according to The-
orem 2, the lower bound of the intersection is L with
L(i) = max{L1(i),L2(i)} = [−1, 0, 0,−1, 0, 0]T . Next,
we aim to reduce the number of the upper bounds. The
upper bound U12 is excluded since L(2) > U12(2). Similarly,
the upper bound U21 is also excluded since L(5) > U21(5).
Finally, there is only one upper bound retained for each
deadlock marking. The shared upper bound is U = {Vkj |
Vkj(i) = min{U1k (i),U2j(i)},U1k ∈ U1,U2j ∈ U2}, i.e.,
U = {V12 | V12(i) = min{U11(i),U22(i)}} with V12 =
[−1, 0, 0,−1, 0, 0]T . For this example, the lower bound and
the upper bound are the same, i.e., L = V12 ∈ U . Hence, there
is only one vector left in [L,U], i.e., [−1, 0, 0,−1, 0, 0]T .
As a result, the recovery transition tr of the two deadlock
markings is [Nr ](PA, tr ) = [−1, 0, 0,−1, 0, 0]T .

C. ITERATIVE INTERSECTION APPROACH FOR
RECOVERY TRANSITIONS
In Section II-B, an approach is developed to compute a com-
mon recovery transition to recover two deadlock markings.
In amore general case, wemay need to designmultiple recov-
ery transitions to recover all deadlock markings. The set of
recovery transitions is denoted as Tr = {tr1, tr2, tr3, . . . , trm},
where m indicates the number of recovery transitions added
to a net model. In order to make the net model as structurally
simple as possible, it is significant to minimize the number of
recovery transitions to recover all deadlock markings. To this
end, an iterative intersections method for recovery transitions
is presented. Let �(trj) denote the set of deadlock markings
that are recovered by transition trj , i.e.,

�(trj) = {Md ∈MD | Md ∝ trj} (3)

Assume that there are nd deadlock markings in a net
model. According to Theorem 3, the intersection of recovery
transitions for the first two deadlocks is computed. If the
intersection is empty (TMd1

∩ TMd2
= ∅), record the sec-

ond deadlock marking and then calculate the intersection of
recovery transitions of the first and the third deadlock mark-
ings (TMd1

∩TMd3
). Otherwise, we calculate the intersection of

the obtained intersection and recovery transitions of the third
deadlock marking ((TMd1

∩ TMd2
)∩TMd3

) and so on. Repeat
the above process until the last deadlock marking has been
processed. As a result, one recovery transition is obtained and
all deadlocks that have no shared intersection are recorded.
Second, we compute the intersection of deadlock markings
once again based on the recorded deadlock markings until the
last recorded deadlock marking has been computed. Then,
the second recovery transition is obtained and so on. Each
step of the iteration can find a recovery transition. The iter-
ation stops when all the deadlock markings are recovered.
Finally, the number of recovery transitions is equal to that of
iterations. There is a special case: Only one recorded dead-
lock marking is left, i.e., there is only one deadlock marking
that has no shared recovery transition with that of all the
other deadlock markings. In this case, any incidence vector
[Nr ](PA, tr ) ∈ TMd for the deadlock marking is selected
to obtain a recovery transition which can recover the left
deadlock marking. In the worst case, nd recovery transitions
are found and the number of the intersections to be computed
is nd (nd − 1)/2. This iterative method may not be able to
obtain the minimal number of recovery transitions in theory,
but it can usually lead to the minimal one in practice, which is
supported by extensive experimental studies compared with
the results of MNRTP [8].
A simple example is presented to demonstrate the proposed

iterative method in detail. Assume that there are eight dead-
lock markings, and the results can be drawn through two-step
iterations. Fig. 1 shows the specific iterative process by using
the presented approach.
In the first iterative step, the intersection of recovery tran-

sitions for the first two deadlock markings is not an empty
set, but it has no common subset with the set of recovery
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FIGURE 1. The process of the iterative method.

transitions for the third deadlock marking. Then, the third
deadlock marking is recorded. We compute the common set
from the obtained set and the set of recovery transitions for
the fourth deadlockmarking and so on. The iterative step ends
when all the deadlock markings are computed. After that, one
recovery transition tr1 is found to recover the five deadlock
markings (Md1, Md2, Md4, Md7, Md8) to be legal markings.
In the second iterative step, we calculate the intersection

of the three recorded deadlock markings (Md3, Md5, Md6)
separately, using the same method as the first iterative step.
As a result, the three deadlock markings can be recovered by
a shared recovery transition tr2.
Above all, each iterative step can find one recovery transi-

tion to recover multiple deadlock markings, and the number
of iterations equals to that of the obtained recovery transi-
tions. To this end, the resulting net model is live after adding
two recovery transitions only.

III. DEADLOCK RECOVERY POLICY AND ILLUSTRATIVE
EXAMPLE
This section presents a deadlock recovery policy to design
a small number of recovery transitions whose set is denoted
as Tr = {tr1, tr2, tr3, . . . , trm}. A simple example is also
provided to demonstrate the presented approach in detail.

A deadlock recovery policy is presented in Algorithm 1,
which is an iterative process. At each iteration step, we can
calculate one recovery transition to recover multiple deadlock
markings. Then, at the end of each iteration, the recovered
deadlock markings are removed from the set of deadlock
markings. The iteration process ends when the set of dead-
lock markings is empty. Finally, a small number of recovery
transitions is found to recover all of the deadlock markings.

In what follows, a simple example is presented to demon-
strate the proposed approach in detail. Fig. 2 shows a Petri net
model of an FMS.All places are divided into three parts:P0 =
{p1, p8}, PR = {p9− p11}, and PA = {p2− p7}. According to
the reachability analysis, the Petri net model has 20 reachable
markings, 15 of which are legal markings, and 2 of which are

Algorithm 1 Computation of Recovery Transitions
Input: A Petri net model (N ,M0) of an FMS with N = (P0 ∪
PA ∪ PR,T ,F,W ).
Output: A live Petri net system (Nr ,M0).

1) Compute the set of legal markings ML and the set of
deadlock markings MD of (N ,M0).

2) Compute the minimal covering set of legal markings
M∗

L ⊆ML .
3) Tr := ∅. /* Tr is used to denote the set of recovery

transitions*/
4) while |MDr | > 1 do /* MDr is used to denote the set

of recorded deadlock markings */
Calculate the intersections of {TMd1

, TMd2
, . . . , TMdm

}

in turn.
Let xi’s (∀pi ∈ PA) be the solution.
Compute recovery transition trj .
Tr := Tr ∪ {trj} and MDr :=MD −�(trj).
endwhile

5) if |MDr | = 1 then
Tr := Tr ∪ {trj}
end if

6) Add all recovery transitions in Tr to (N ,M0 ) and
denote the resulting net system as (Nr ,M0).

7) Output (Nr ,M0).
8) End.

deadlock markings withMD = {p2+p3+p5, p2+p5+p6}.
The minimal covering set of legal markings contains two
elements, i.e.,M∗

L = {p2 + p3 + p4, p5 + p6 + p7}.
Let tr be a recovery transition with [Nr ](P, tr ) =

[xr1, xr2, xr3, . . . , xr11]. In fact, we can calculate it in
three steps. The first is the computation of xi’s (for all
pi ∈ PA). Only one recovery transition can be obtained
by using Algorithms 1, expressed as [Nr ](PA, tr ) =

[x2, x3, . . . , x7]T = [−1, 0, 0,−1, 0, 0]T . Next, according to
Assumptions 1 and 2, we can compute xi’s (for all pid ∈ P0)
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FIGURE 2. Petri net model of an FMS.

and xi’s (for all pr ∈ PR), i.e., [Nr ](P0, tr ) = [x1, x8]T and
[Nr ](PR, tr ) = [x9, x10, x11]T by [Nr ](PA, tr ). There are five
place invariants for idle and resource places, as shown below:

I1 = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]T

I8 = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0]T

I9 = [0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0]T

I10 = [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0]T

I11 = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1]T

Here, we take x1 as an example. We have I1(p1) =
1, and I1(PA) = [1, 1, 1, 0, 0, 0]T . Hence, x1 =

−I1(PA)T · [Nr ](PA, tr )/(I1(p1)) = −[1, 1, 1, 0, 0, 0] ·
[−1, 0, 0,−1, 0, 0]T = 1. Similarly, x8, x9, x10, and x11 are
computed as follows:

x8 = −I8(PA)T · [Nr ](PA, tr )/(I8(p8))

= −[0, 0, 0, 1, 1, 1] · [−1, 0, 0,−1, 0, 0]T = 1

x9 = −I9(PA)T · [Nr ](PA, tr )/(I9(p9))

= −[1, 0, 0, 0, 0, 1] · [−1, 0, 0,−1, 0, 0]T = 1

x10 = −I10(PA)T · [Nr ](PA, tr )/(I10(p10))

= −[0, 1, 0, 0, 1, 0] · [−1, 0, 0,−1, 0, 0]T = 0

x11 = −I11(PA)T · [Nr ](PA, tr )/(I11(p11))

= −[0, 0, 1, 1, 0, 0] · [−1, 0, 0,−1, 0, 0]T = 1

Finally, the complete recovery transition tr is represented
as [Nr ](P, tr ) = [1,−1, 0, 0,−1, 0, 0, 1, 1, 0, 1]T . The
resulting net model is shown in Fig. 3 after adding recovery
transition tr , and the reachability graph with tr is also shown
in Fig. 4. The two deadlockmarkingsM13 andM14 are guided
to the legal markings M3 and M5, respectively, by firing the
obtained recovery transition tr . Finally, there is no deadlock
marking in the resulting net model system (Nr ,M0).

IV. EXPERIMENTAL RESULTS
A widely used FMS example is adopted to demonstrate
the proposed deadlock recovery policy, as shown in Fig. 5

FIGURE 3. Petri net model with a recovery transition.

FIGURE 4. Reachability graph with a recovery transition.

TABLE 1. Experiment results for the net model in Fig. 6.

(see [2], [3], [5], [23], [26], [27]). There are 19 places and
14 transitions with 282 reachable markings, 205 and 26 of
which are legal and deadlock markings, respectively. The
minimal covering set of legal markings M∗

L contains
26 markings. All places can be divided into three parts: P0 =
{p1, p8}, PR = {p14 − p19}, and PA = {p2 − p7, p9 − p13}.
By applying Algorithm 1, the obtained results are shown

in Table 1, where j is the number of iterations, |�(trj)| is the
number of deadlock markings recovered by trj, •trj and t•rj are
the preset and postset of trj, and the last column T shows the
time of computation for Algorithm 1. As a result, three recov-
ery transitions are obtained to recover all deadlock markings,
i.e., the net model is live with 282 reachable markings after
adding three recovery transitions, which is shown in Fig. 6.

Huang et al. [18] develop a transition based deadlock
recovery policy for a subclass of Petri nets called S3PR.
In terms of structural complexity, the final results of this
work include seven recovery transitions, which is four more
than our work. Chen et al. [8] propose two transition-based
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FIGURE 5. Petri net model of an FMS.

FIGURE 6. Petri net model with recovery transitions.

deadlock recovery policies by solving ILPPs. The former is
called the maximal number of recovered deadlock markings
problem (MNRDMP), and the latter is the minimal num-
ber of recovery transitions problem (MNRTP). Both ILPPs
obtain three recovery transitions. In fact, as the size of the
net model increases, the numbers of constraints and vari-
ables will increase dramatically, and the calculation time
increases accordingly. The proposed policy in Algorithm 1
is an iterative process which costs less time to obtain the

FIGURE 7. A Petri net model of an FMS.

TABLE 2. Comparison of some transition-controlled deadlock recovery
policies.

TABLE 3. Constraints and variables in [8].

result than solving ILPPs. Table 2 gives the comparison of
these deadlock recovery solutions. The last row shows the
computational time of each method. It is indicated that the
proposed method is the most efficient since it takes much
less time to find the results. More importantly, it can usually
find the minimal number of recovery transitions compared
with MNRTP [8] and lead to the same number of reachable
markings.

In fact, the work in [8] is inapplicable to some complicated
Petri net models with too many deadlock markings and legal
markings since there are a large number of constraints and
variables in the ILPPs. Fig. 7 shows a Petri net model with
1650 reachable markings, 998 and 24 of which are legal and
deadlock markings, respectively. The minimal covering set
of legal markings M∗

L contains 54 markings. Table 3 shows
the number of constraints and variables in the ILPPs proposed
in [8] for this example. Obviously, lots of constraints and vari-
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TABLE 4. Results of Fig. 7 by Algorithm 1.

TABLE 5. Results of modified net model by Algorithm 1.

ables lead to a rather complicated ILPPs, and it is practically
impossible to find a solution in a reasonable time. However,
our work is more efficient and structurally simpler. According
to Algorithm 1, the results are shown in Table 4. It takes only
three seconds to obtain four recovery transitions to recover all
deadlock markings.

If we modify the number of tokens in the last four places
(p23, p24, p25, p26) in Fig. 7, with the initial marking M0 =

[3, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2,
2, 2]T [8], [26], [43], the net model is more complicated with
26750 reachable markings, where the number of deadlock
markings is 120 and the minimal covering set of legal mark-
ingsM∗

L contains 393 markings. The results of the proposed
method are shown in Table 5.

For this modified net model, four recovery transitions can
be obtained by using Algorithm 1 in about two hours. How-
ever, the work in [8] cannot find a solution for this example
since there are too many constraints and variables in the
designed ILPPs. Combined with the above examples, it is
verified that our work is more efficient.

V. CONCLUSIONS
This work deals with the deadlock problems in a Petri net
modeling FMSs by adding recovery transitions, which can
make all deadlock markings reachable to the legal markings.
A vector intersection approach is proposed to compute a
recovery transition to recover multiple deadlocks. Then, an
iterative algorithm is presented to find a small number of
recovery transitions to recover all deadlock markings. Com-
pared with the previous work, the proposed approach is more
efficient since it does not need to solve ILPPs. More impor-
tantly, the experimental results show that it usually finds the
minimal number of the recovery transitions compared with
the method of MNRTP [8]. In the future, we will improve the
algorithm so as to guarantee the structural minimality. On the
other hand, we aim to avoid computing the reachability graph
of a net model to improve the efficiency of the proposed
method.
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