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ABSTRACT Optical coherence tomography (OCT) is a primary imaging technique for ophthalmic diagnosis
due to its advantages in high resolution and non-invasiveness. Diabetes is a chronic disease, which could
cause retinal layer deformation and fluid accumulation. It might increase the risk of blindness, and thus, it is
important to monitor the morphology change of the retinal layer and fluid accumulation for diabetes patients.
Due to the existence of deformation and fluid accumulation, the retinal layer and fluid region segmentation in
the OCT image is a challenging task.Machine learning-based segmentationmethods have been proposed, but
they depend on a significant number of pixel-level annotated data, which is often unavailable. In this paper,
we proposed a new semi-supervised fully convolutional deep learning method for segmenting retinal layers
and fluid regions in retinal OCT B-scans. The proposed semi-supervised method leverages the unlabeled
data through an adversarial learning strategy. The segmentation method includes a segmentation network
and a discriminator network, and both the networks are with U-Net alike fully convolutional architecture.
The objective function of the segmentation network is a joint loss function, including multi-class cross
entropy loss, dice overlap loss, adversarial loss, and semi-supervised loss. We show that the discriminator
network and the use of unlabeled data can improve the performance of segmentation. The proposedmethod is
investigated on the duke Diabetic Macular Edema dataset and the POne dataset, and the experiment results
demonstrate that our method is more effective than the other state-of-the-art methods for layers and fluid
segmentation in the OCT images.

INDEX TERMS Adversarial learning, convolutional neural networks, image processing, layer segmentation,
optical coherence tomography.

I. INTRODUCTION
Optical Coherence Tomography (OCT) [1], [2] is an impor-
tant noninvasive imaging modality for scanning cross-section
of biological tissues, it can generate high resolution scans.
The widely used commercial OCT technology is spectral
domain OCT (SD-OCT) whose axial resolution is 3 ∼ 7µm
in biological tissue. In this technology, the reflectance of
subsurface structures can be visualized through low coher-
ence infrared light. Because its advantages of great imaging

speed and resolution, it has been utilized for imaging the
cross-section of the retina and cornea at micrometer reso-
lution level [3]. The cross-sectional information has been
widely used in ophthalmology to assist early diagnosis and
prognosis of retinal diseases.

Many diseases can cause ophthalmic lesion, for instance,
diabetes may suffer from Diabetic Macular Edema (DME)
which is caused by hyperglycemia. Hyperglycemia can rup-
ture the epithelium of blood vessels. Moreover, it can also
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damage the retinal fluid transport cells which makes the
leaked fluid accumulate between retinal layers [4], [5]. With-
out treatment, DME may result in blindness. Furthermore,
with the growth of age, people might suffer from Age-related
Macular Degeneration (AMD). For better diagnosis of these
diseases, retinal layer and disease affected region segmen-
tation is a crucial step. An example OCT image and its
corresponding manual annotations are shown in Figure 1.

FIGURE 1. Retinal OCT image with nine layers and eight boundaries,
(a) is the original image and (b) is the segmented image. NFL is Nerve
Fiber Layer; GCL is Ganglion Cell Layer; IPL is Inner Plexiform Layer; INL is
Inner Nuclear Layer; OPL is Out Plexiform Layer; ONL is Outer Nuclear
Layer; ISM is Inner Segment Myeloid; ISE is Inner Segment Ellipsoid;
OS is Outer Segment; RPE is Retinal Pigment Epithelium.

Automatic retinal layer segmentation methods have
been widely investigated since manual segmentation is
time-consuming and suffers from inter-subject variation. Pre-
vious automatic retinal layer segmentation methods include
active contours [6], [7], level sets [8], [9], dynamic program-
ming [10]–[12] and graph cut [13], [14]. Duan et al. [15] pro-
posed a groupwise curve alignment based method to segmen-
tation retinal layer. All these methods require well-designed
prior knowledge of experts. With the rapid development of
machine learning [16]–[18], several machine learning based
layer segmentation methods have been proposed [19]–[21].
Chiu et al. [19] developed a kernel regression based fully
automatic method to segment seven retinal layers and
fluid-filled regions on retinal SD-OCT images with DME.
Karri et al. [20] proposed a structured random forest based
method with traditional graph theory for eight layer-specific
edges detection.

In recent years, deep learning has become the primary
approach in computer vision tasks, such as denois-
ing [22], [23], classification [24]–[26], segmenta-
tion [27]–[29] and detection [30], [31]. It has also been
introduced into medical image processing [32], [33],
including a few works on layer segmentation in OCT
images [4], [34]–[40].

Although these deep learning-based segmentation approa-
ches have achieved great success on different tasks, they
demand a mass of training samples. Simple transformations,
such as cropping, flipping, and rotating input images have
been widely applied to reduce the overfitting problem, Gen-
erative Adversarial Networks (GANs) [41] has been shown
as a powerful technique for generation of new images in
unsupervised learning.

Inspired by the GANs based segmentation [42], [43]
and ReLayNet [4] in OCT image segmentation, in this
paper, we proposed a semi-supervised retinal layer and fluid
region segmentation method through adversarial learning
with encoder-decoder network architectures. Generally, GAN
includes a generator and a discriminator. The generator takes
a random vector as input and maps it into a synthetic image.
The discriminator, which takes a real image or a synthetic
image generated by the generator as input, is trained to
identify whether the input is real or synthetic. The training
of GANs is a max-min game, specifically, the generator
is trained through minimizing the GANs loss and the dis-
criminator is trained to maximize the GANs loss. Different
from the general GANs, we designed an adversarial learning
method for retinal layer and fluid region segmentation.

The proposedmethod (denoted as SGNet, Semi-supervised
segmentation with GAN Net) includes a segmentation net-
work and a discriminator network, both networks are trained
alternately. Although the acquisition of medical image is not
difficult, the annotation of them is hard to acquire, thus a
mass of medical image without annotation are wasted in
previous methods. In order to take advantage of these unla-
beled data, we introduce semi-supervised learning in this
paper, following the work in [43]. The segmentation net-
work is trained to output a segmentation probability maps
of all categories through minimizing a joint loss function
that combined weighted cross entropy, weighted dice loss,
adversarial loss and semi-supervised loss. The discriminator
network is trained to discriminate the segmentation prediction
maps from the ground truth maps through minimizing dis-
criminate loss. Both the networks are with encoder-decoder
architectures. The alternate training strategy encourages the
segmentation network to generate predicted label maps closer
to the ground truth label maps. Figure 2 shows the training
flowchart of the proposed method.

The contributions of the paper include:
(1) We proposed a novel semi-supervised automatic seg-

mentation method for layer and fluid regions segmentation in
OCT images, which can take advantage of labeled data more
effectively and to make use of unlabeled data, based on the
work in [4] and [43]. Both the segmentation and discriminator
are with encoder-decoder architectures, and the segmentation
network is trained in an adversarial and semi-supervised
manner.

(2) Based on the observation that large kernel size which
can bring large effective receptive field plays an important
role in semantic segmentation, we modify a U-net architec-
ture by global convolutional layer (GCL) [44] to acquire large
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FIGURE 2. The framework of the proposed method for layer and fluid regions segmentation in OCT images. (a) The training stage, the data flow of
semi-supervised training (optimized by minimizing Lsemi ), supervised training (optimized by minimizing Lmce and Ldice) and adversarial training
(optimized by minimizing Ladv and Ld ) are represented in red dashed box, green dashed box and blue dashed box respectively. It is noted that the
probability map and one hot label in the figure belong to one input image, since there are 10 classes, they are shown as 10 ‘‘images’’ with each one
represents a channel. (b) Testing stage, input a test image and output the segmentation result.

receptive filed with few parameters. Furthermore, boundary
refinement layer (BRL) [44] is utilized to further refine the
segmentation result. To deal with the class imbalance prob-
lem, we weighted the cross-entropy loss with a weighting
strategy. Besides, we utilized a weighted dice loss to further
improve the segmentation result.

(3) To the best of our knowledge, this is the first time that
the adversarial learning, which can leverage unlabeled images
to improve performance, is used for segmenting retinal layer
and fluid region in retinal OCT images.

The rest of the paper is organized as follows. The section II
reviews the related work. The following section III describes
the proposed method. Experimental results are shown in the
section IV. We conclude the paper in the last section V.

II. RELATED WORK
In this section, we review some of the works related to
our research, including semantic segmentation, GANs and
closely related retinal layer segmentation techniques.

A. SEMANTIC SEGMENTATION
Semantic segmentation is a basic task in computer vision that
assigns each pixel of the image a label. Recently, a number
of deep learning based methods have been proposed for
semantic segmentation. The application of deep learning in
semantic segmentation was originally based on image patch

classification [45], which has a large computational burden.
To reduce computational burden, Shelhamer et al. [27] pro-
posed a fully convolutional networks (FCN) that is modified
from VGG16 and used pre-trained weights. The FCN com-
bines featuremaps of different resolution through upsampling
them to the image size, thus FCNs can take arbitrary-size
inputs and is faster than patch-based classification method.
However, due to the pooling operation, some detailed infor-
mation in the feature map might be lost. While upsampling
is used to compensate the reduction of resolution caused by
pooling, it will make the final segmentation result blurred.
Till now, a mass of the subsequent state-of-the-art semantic
segmentation methods have adopted this paradigm, such as
DeepLab [29] series.

Researchers proposed two different forms of structure to
improve the segmentation result. One is the encoder-decoder
architecture, also a fully convolutional architecture that has be
widely utilized. In this structure, the encoder block reduces
the spatial dimension of feature maps gradually with sub-
sampling layer (such as pooling layer). In contrast to encoder
block, the decoder block gradually recovers spatial dimension
and information by upsampling layer (such as interpolation,
unpooling layer and deconvolution layer). The feature maps
from encoder blocks and those corresponding in decoder
blocks are concatenated in the channel dimension to assist in
information recovery. In medical image segmentation, one of
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the most popular architecture is U-Net [28]. It has been used
in many studies and extended to three-dimensional image
segmentation [46].

Another structure is to use dilated convolution instead of
pooling operation. Pooling operation increases the receptive
field which is beneficial for classification. However, the pool-
ing operation reduces the resolution of feature maps which is
harmful for semantic segmentation. To mitigate the negative
effects of pooling operation, [29] and [47] utilized dilated
convolution, which can increase the corresponding receptive
field without reducing the space dimension.

To further improve the segmentation performance, Dense-
CRF [48] can be utilized to further refine the segmentation
result of the CNN model.

B. ADVERSARIAL LEARNING
The GANs framework is proposed by Goodfellow [41] and is
inspired by two-player game. GAN consists of a generator
G and a discriminator D. The generator G, which takes a
random noise z that follows a simple distribution (such as
Gaussian distribution) as input and outputs a synthesis image
to approximate the distribution px∼pdata(x) of sample data x.
The discriminator is a binary classifier which estimates the
probability that a sample comes from training data px∼pdata(x).
The optimization of GANs is a minimax two-player game
with the following formulation [41]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]

+Ez∼pz(z)[log(1− D(G(z)))] (1)

D and G are trained alternately to achieve Nash equilibrium.
For semantic segmentation, Luc et al. [49] first introduced

adversarial learning into sematic segmentation. They utilized
an extra discriminator which just identify the whole input
image as real or fake to encourage the results of the segmenta-
tion network to be more reliable. Souly et al. [42] treated the
segmentation network as a discriminator and used a generator
to expand the training data, they also used unlabeled data
to conduct semi-supervised learning. More recently, different
from the above twomethods, Hung et al. [43] proposed a fully
convolutional discriminator to output a predicted probability
map, on this basis the whole system can be trained in a
semi-supervised and adversarial manner. Different from [42]
and [49] while similar to [43], we use two FCN alike net-
works whose output sizes are the same as the input image.
While a general FCN is used in [43], we used two modified
U-net [4], [28] as our segmentation network and discrim-
inator network. Besides, the loss function in the proposed
method has incorporated Dice loss besides the terms used
in [43].

C. LAYER SEGMENTATION IN OCT IMAGES
As presented above, layer segmentation has been intensively
investigated in recent decades and several methods have
been proposed [6]–[11], [13]–[15], [19]–[21]. Here we only

give a brief introduction to some closely related CNN based
methods.

Fang et al. [34] developed a method that combined convo-
lutional neural networks (CNN) and graph search methods
to automatically segment the nine retinal layer boundaries on
retinal OCT images. Liu et al. [35] integrated hand-designed
features and CNN-learned features to train a structured
random forest classifier. The trained classifier is used to
predict the layer interface, and the final segmentation is
obtained with shortest path. Due to the patch-based charac-
teristic, these methods have the disadvantage of high com-
putational burden. Shah et al. [37] proposed a method for
automatically segmenting 3-D surfaces and evaluated on
simultaneous intraretinal layer segmentation of OCT images.
Roy et al. [4] proposed ReLayNet to simultaneously segment
retinal layer and fluid region in retinal OCT images, which
greatly reduce computation burden compared to patch-based
methods. ReLayNet is based on the U-Net [28], a fully
convolutional network that has been widely used in image
segmentation. Other convolutional network frameworks have
also been used for retinal thickness segmentation [38], [39]
and pigment epithelium detachment segmentation [40].

III. THE PROPOSED METHOD
In this section, we present the proposed segmentation
method (SGNet) of OCT layers and fluid regions in details.
The notations used in the paper are listed in Table 1. We treat
this segmentation task as a classification problemwith 10 cat-
egories. These 10 categories include: Region above the
retina (RaR), Inner limiting membrane (ILM), Nerve fiber
ending to Inner plexiform layer (NFL-IPL), Inner Nuclear
layer (INL), Outer plexiform layer (OPL), Outer Nuclear
layer to Inner segment myeloid (ONL-ISM), Inner segment
ellipsoid (ISE), Outer segment to Retinal pigment epithe-
lium (OS-RPE), Region below RPE (RbR) and Fluid region.

TABLE 1. Notations used in the paper.
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FIGURE 3. The architecture of segmentation network, each colorful overlapped box is a multi-channel feature map, the number on the top of
the feature map is the number of channels. The size of feature map is denoted in the left of the feature map row. Note that the feature map
with different color means it applied a concatenate operation, and the dark green box represents the feature map of 10 channels, which
correspond to 10 classes.

Figure 1 shows an image of the layer structure of retinal, note
that RaR is Vitreous and RbR is choroid.

As said above, our SGNet contains two networks, one
is segmentation network and the other one is discriminator
network. Our method consists of a training stage and a testing
stage, an overview can be seen in Figure 2.

In the training stage (Figure 2(a)), the segmentation net-
work takes labeled images as input and outputs the corre-
sponding probability map. The weighted multi-class cross
entropy is calculated on the probability map and the corre-
sponding ground truth. Then the probability map and the cor-
responding ground truth (in one-hot encoding) are inputted
into discriminator network respectively, the outputs of dis-
criminator network are utilized to calculate discriminate loss
and adversarial loss. In addition, to utilize the information
in unlabeled image, the output of segmentation network that
take unlabeled data as input is passed to the discriminator
network. The semi-supervised loss is calculated based on
these outputs of both segmentation network and discriminator
network, and optimized after 20 epochs in the training stage.
Note that the training image size is 496×64 (height×width).
In the testing stage, only the trained segmentation network

is used (Figure 2(b)). Since the network is fully convolutional,
it can receive an imagewith any size (496×512 in our dataset)
as input and outputs a corresponding segmented result with
the same size of input.

A. NETWORK ARCHITECTURE
1) SEGMENTATION NETWORK
We use a modified new U-Net like network as our segmenta-
tion network architecture, as shown in Figure 3. This archi-
tecture is inspired by ReLayNet [4] which has been proposed
for retinal layer and fluid region segmentation and global
convolutional network (GCN) [44] which contains large

convolution kernel. Segmentation task inherently include two
challenges which are pixel-wise classification and localiza-
tion. To deal with the above two challenges simultaneously,
global convolutional layer (GCL) [44] is a good choice.
To further improve the segmentation performance, we also
introduce boundary refinement layer (BRL) [44] which is
a residual structure. Specifically, the segmentation network
consists of a contracting pathwith three encoder blocks, a bot-
tom block and an expansive path with three corresponding
decoder blocks, as shown in Figure 3.

The encoder block consists of a 7 × 3 (due to layer struc-
tures in the retinal and the change along horizon is much less
than vertical direction, we choose a rectangular convolutional
kernel) convolutional layer with padding. The convolutional
layer is followed by a batch normalization layer to speed up
training and a rectified linear unit (ReLU) is introduced to
add non-linearity. A 2× 2 max pooling with stride 2 is added
after ReLU for down-sampling. The bottom block consists
of a convolutional layer, a batch normalization layer and
ReLU.

The decoder block consists of an upsampling layer, a con-
catenation operation, a convolutional layer, a batch normal-
ization and a ReLU. The upsampling layer is a unpooling
layer that proposed in [50] which upsamples a lower resolu-
tion feature map to a higher one. The concatenation operation
concatenates the feature maps from the current block and
corresponding feature maps from the encoder block.

The final decoder block is followed by a GCL with kernel
size 15 × 15 and a BRL that proposed in [44]. As shown
in Figure 4(a), the GCL module combines a 1× 15+ 15× 1
convolutional layer and a 15×1+1×15 convolutional layer
to enable dense connections within a large 15 × 15 region
in the feature map, thus it is beneficial to classification and
localization. The boundary refinement block is modeled as a
residual structure to learn the residual between ground truth
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FIGURE 4. The detail of (a) global convolutional network
and (b) boundary refinement.

TABLE 2. Architecture of each block (encoder block, bottom block,
decoder block, GCN and BR) used in our segmentation network.

and prediction, which can be seen in Figure 4(b). The detailed
architecture of each block is presented in Table 2. Note that
the GCL in Table 2 is the combination of a serials of 1d
convolutional layers.

2) DISCRIMINATOR NETWORK
Different from the commonly used GANs where discrimi-
nator network just identifies the input as real or fake (out-
put a single scalar value), the discriminator network in the
proposed SGNet is a fully convolutional architecture that
is modified for segmentation (output is a matrix with the
same size of input image). It will push the prediction of the
segmentation network close to the ground truth. Specifically,
the encoder blocks and decoder blocks are the same with
segmentation network except for the activation function of
them. In discriminator network, following the discriminator
network of GAN, all ReLU activation functions are replaced

by Leaky ReLU activation function. Compared to ReLu,
Leaky ReLu helps to make sure the gradient can flow through
the entire architecture which is important for GAN [51].
The GCL and BR are replaced by a classification layer that
contains a 1× 1 convolutional layer.

B. TRAINING
The segmentation network and discriminator network are
trained by optimizing two different loss functions. First of all,
we denote the segmentation network as S(·) and the discrim-
inator network as D(·). Given an input OCT image Xn from
labeled data of size h × w × 1 and its corresponding ground
truth label Yn (one-hot encoding), the predicted probability
map outputted by segmentation network is S(Xn) of size
h × w × c, which is denoted as Pn, and c is the number
of categories. To the discriminator network, we denote the
input of it as Qn(Qn can be the ground truth label Yn or the
output of segmentation network Pn, the size is h × w × c).
The discriminator network outputs a pixel-wise confidence
map which is denoted as D(Qn) of size h× w× 1.

1) LOSS OF DISCRIMINATOR NETWORK
The loss function of the discriminator network is the spatial
cross-entropy loss which is defined as follow:

Ld = −
∑
i∈Xn

log(D(Yn)(i))− log(1− D(Pn)(i)) (2)

where i is a pixel belongs to the image Xn. It will push the
prediction Pn made by the segmentation network to be close
to the ground truth label Yn.

2) LOSS OF SEGMENTATION NETWORK
The segmentation network is trained via a joint loss function
defined as follow:

Ls = Lmce + αLdice + βLadv + γLsemi (3)

where Lmce, Ldice, Ladv, Lsemi, denote the multi-class
cross entropy, dice loss, the adversarial loss and the
semi-supervised loss [43], respectively, and α, β, γ are user
defined parameters. Due to the existence of class imbalance,
the multi-class cross entropy and dice loss are weighted by a
weighting strategy.

The weighting strategy includes median frequency balanc-
ing [52] and layer contour weighting. The median frequency
balancing assigns a weight to a class in the loss function and
the weight is the ratio of the median of class frequencies com-
puted on the entire training set divided by the class frequency.
Its formulation is defined as [52]:

mfbc =
M

Nc/N
(4)

where Nc is the number of pixels belong to label c in images
of training dataset, N is the total number of pixels in images
of training dataset, M is the median number of all Nc

/
N .

Furthermore, it is difficult to differentiate the pixels adjoin-
ing to the tissue boundaries, due to the existence of speckle
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noise which may make them diffused. Thus, these pixels
adjoining to the boundaries should be more important than
others and will be weighted by a constant. The complete
weighting strategy is defined as:

W (i)
n = mfb(i) + λIndictor(

∣∣∣G(i)
n

∣∣∣ > 0) (5)

where i is a pixel in the image Xn, λ is a user defined
parameter, Gn is the gradient of label Yn.
The weightedmulti-class cross entropy, which is employed

to minimize the empirical risk, encourages the segmentation
network to produce predictions which are hard to be distin-
guished from ground-truth ones by the discriminator network.
Given a pixel i in image Xn, its formulation is defined as
follow:

Lmce = −
∑
i∈Xn

W (i)
n Y (i)

n log(P(i)n ) (6)

where W (i)
n is the weight of pixel i in image Xn calculated as

in equation (5).
The dice score coefficient is an important measure to eval-

uate segmentation performance, and it measures the over-
lap region between the segmentation result and the ground
truth. Thus, training a high-performance segmentation model
should maximize the dice score coefficient. To this end,
we use a derivable dice loss that proposed in [53]:

Ldice = 1− 2

10∑
c=1

mbfc
∑
i∈X (c)

n

P(i)(c)n Y (i)(c)
n

10∑
c=1

mbfc
∑
i∈X (c)

n

(P(i)(c)n + Y (i)(c)
n )

(7)

where P(i)(c)n is the probability of pixel i belongs to the class c,
Y (i)(c)
n is the ground truth of pixel i.

Denote
10∑
c=1

mbfc
∑
i∈X (c)

n

P(i)(c)n Y (i)(c)
n as Numern, and denote

10∑
c=1

mbfc
∑
i∈X (c)

n

(P(i)(c)n + Y (i)(c)
n ) as Denon, the derivative term

of this dice loss is as follow:

∂Ldice

∂P(i)(c)n
= −2mfbc

Y (i)(c)
n Numern − Denon

Deno2n
(8)

For adversarial learning, the adversarial loss Ladv is define
as [41]:

ladv = −
∑
i∈Xn

log(D(Pn)) (9)

With this adversarial loss, the segmentation network is
trained to fool the discriminator network by maximizing
the probability of the segmentation prediction belongs to
the ground truth distribution. This term in fact will also
improve the segmentation result, pushed by the discriminator
network D(·).

In order to utilize the large number of unlabeled images
to further improve the performance of segmentation network,

we incorporate a semi-supervised loss Lsemi proposed in [43],
Lsemi is optimized via adversarial learning with unlabeled
data. Specifically, the trained discriminator network can gen-
erate a confidence map which represents whether the predic-
tion results of the regions are close enough to the ground truth
distribution. Thus, it can be seen as the supervisory signal
to guide the cross-entropy loss in a ‘‘self-taught’’ manner.
The confidence map is then binarized with a threshold to
highlight the trustworthy region. More specifically, the soft
ground truth of semi-supervised is define as [43]:

Ỹn = onehot(I (D(S(Un))(i) > T ) · argmax
c

(S(Un))) (10)

where onehot(·) denotes one hot encode, I (·) is indictor func-
tion, T is a user defined threshold value, Un is an image
from unlabeled data, and then Ỹn is the masked segmentation
prediction, hence Ỹn is of size h× w× c.
With the soft ground truth Ỹn, the semi-supervised loss

Lsemi can be defined as:

Lsemi = −
∑
i∈Xn

∑
c∈C

Ỹ (i,c)
n log(S(Un)(i,c)) (11)

Equation (11) can be regarded as a masked spatial cross
entropy loss due to Ỹn and indictor function I (·) in equa-
tion (10) are treated as constant during training.

The weighted cross entropy loss and the adversarial loss
of segmentation network are optimized with labeled data,
as well as the loss of discriminator network. Different from
these losses, the semi-supervised loss is only optimized with
unlabeled data. Moreover, it is only used to update the param-
eters of segmentation network. The segmentation network
and the discriminator network are trained alternately, and the
procedure is presented in algorithm 1.

IV. EXPERIMENTATION AND RESULTS
A. DATASET
The proposed SGNet is evaluated on the Duke DME
dataset [19] and the POne dataset [54]. The Duke
dataset is collected from 10 DME subjects, each contains
61 SD-OCT B-scan images with size of 512 × 740. Only
11 B-scan images are labeled in each subject, thus we totally
have 110 labeled B-scan images annotated by two experts,
and we use the annotation from the expert one as the ground
truth for training the network. The labeled data set is divided
into train set (randomly chosen 5 subjects) and test set
(the remaining 5 subjects). The experiments are performed
with five different divisions, and the reported results are the
average of the five runs. In addition, we randomly sample 110
unlabeled B-scan images from the unlabeled data for semi-
supervised learning. Following the ReLayNet [4], we also
used a data slicing method that is slightly different from the
ReLayNet. For a given OCT B-scan I of sizem×n (height×
width), it is divided width-wise into g non-overlapping slices.
Each slice is sampled from I by a stride of half of the slice
width. Furthermore, we employed data augmentation (ran-
dom horizontal flips and random crop) to these sliced data.
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Algorithm 1 The Proposed Algorithm
Require: τ, ξ are the learning rate of segmentation network
and discriminator network respectively. m, the batch size.
n, the number of iterations. nsemi_start , the start iteration of
training segmentation network with semi loss.
Require: θ , the parameters of segmentation network.
ω, the parameters of discriminator network.
1. While θ has not converged do
2. for t = 0, ..., n do
3. gsemi = 0
4. If t ≥ nsemi_start do
5. Sample {Ui}mi ∼ Pdata(U ) a batch from the

unlabeled data
6. gsemi← ∇θLsemi(Ui)
7. Sample {Xi}mi , {Yi}

m
i ∼ Pdata(X ,Y ) a batch

from the labeled data
8. end if
9. gmceθ ←−∇θ

1
m

∑m
i=1 Lmce(S(Xi),Yi), see

equation (6)
10. gdiceθ ←−∇θ

1
m

∑m
i=1 Ldice(S(Xi),Yi), see

equation (7)
11. gadvθ ←−∇θ

1
m

∑m
i=1 Ladv(S(Xi)), see

equation (9)
12. θ ← θ+τ ·SGD(ω, gmce+αgdice+βgadv+γ gsemi)
13. gdw←−∇ω

1
m

∑m
i=1 Ld (S(Xi),Yi), see

equation (2)
14. ω = ω − ξAdam(ω, gdw)
15. end for
16. end While

Eventually, the slice size that used for training is 496 × 64
(height × width).

The POne dataset [54] is collected from 10 healthy adult
subjects with Spectralis device. The enrolled subjects were
selected based on a visual acuity test and none of them
suffers from ocular or systematic disease. The scanned vol-
ume of each subject contains 61 images with 496 × 768
pixels (height×width). The axial resolution was 3.9 microns,
the transversal resolution varied from 10 to 12 microns,
and the inter B-scan spacing was from 120 microns to
140 microns. The B-scans were denoised with averaging of
five aligned images. Among the 61 B-scans of each volume,
10 of them were annotated by two experts, and the results
of their proposed OCTRIMA 3D method [54] were also pro-
vided. The annotations are eight layer-contours, and since all
subjects are healthy, the dataset does not have annotation of
fluid region. It is noted that the dataset they provided contains
only labeled B-scans, that is, there are only 10 B-scans for
each subject. The experiment settings on POne dataset is
similar to those on Duke dataset.

B. IMPLEMENTATION DETAILS
The proposed SGNet is implemented in Python with Tensor-
flow library [55], the model is trained on a GTX970 GPU.

The segmentation network is trained with Stochastic Gra-
dient Descent (SGD) in which momentum is set as 0.9.
The initial learning rate which is decreased with exponent
decay with power of 0.9 is set into 0.1. We have inves-
tigated the effects of the weight parameters α, β and γ
in equation (3), and results will be listed below. Empiri-
cally we found they work well with values 0.5, 0.1 and 0.1
respectively. If not specified, they are set as these values.
Follow [43], we tried different T in range of 0.1 to 0.3,
and we found that the best value of threshold T in equa-
tion (11) is 0.2. For the discriminator network, it is trained
with Adam optimizer with learning rate of 1×10−4 and beta2
with 0.99.
The segmentation and discriminator network are trained

alternately, the parameters in segmentation network are
optimized with labeled (through cross entropy loss, dice
loss and adversarial loss) and unlabeled data (through
semi-supervised loss). The testing time is about 0.1 seconds
per B-scan with the GTX970 GPU, and more powerful GPU
can reduce the testing time further.

C. COMPARATIVE METHODS AND METRIC
We compared the proposed SGNet with several state-
of-the-art methods which include (1) kernel regression
based classification method (KR-GTDP) [19], (2) Learning
layer-specific edges method (LSE-GTDP) [20], (3) con-
volutional neural networks (CNN) and graph search com-
bined method (CNN-GS) [34] and (4) ReLayNet [4]. Among
these methods, KR-GTDP and LSE-GTDP are traditional
machine learning based methods, CNN-GS and ReLayNet
are deep learning based methods. KR-GTDP, CNN-GS and
LSE-GTDP all used graph search for layer segmentation. The
basic graph search is not suitable for fluid region segmen-
tation, since it is hard to define start point and end point
and the number of fluid regions is not fixed. CNN-GS and
LSE-GTDP cannot segment the fluid regions. In KR-GTDP,
a separate classifier is specially trained with several manual
designed features for fluid regions, and the possible fluid
regions are further filtered with shape analysis. KR-GTDP,
ReLayNet and the proposed SGNet can segment both layer
and fluid regions.

We have also investigated the effect of GCN + BR, adver-
sarial loss and semi-supervised loss, which will be presented
in the subsection of ablation experiment later. We imple-
mented CNN-GS and ReLayNet with Tensorflow and trained
it with the same hyper parameters as mentioned in the original
papers.

We utilize the dice coefficient and error of layer contour,
which have been reported on recent retinal layer segmen-
tation papers as the comparative metric [4], [20], [34]. The
dice coefficient depends on overlap region between the seg-
mentation result and the ground truth, and its formulation is
defined as follow:

dice =
2 |P ∩ Y |
|P| + |Y |

(12)
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FIGURE 5. Layer and fluid segmentation results on an abnormal OCT B-scan sample with DME. (a) an abnormal OCT B-scan sample,
(b) expert 1 annotation, (c) expert 2 annotation, (d) KR, (e) LSE-GTDP, (f) CNN-GS, (g) ReLayNet, (h) the proposed SGNet.

FIGURE 6. Layer and fluid segmentation results on a normal OCT B-scan sample. (a)the normal OCT B-scan sample, (b) expert 1 annotation,
(c) expert 2 annotation, (d) KR, (e) LSE, (f) CNN-GS, (g) ReLayNet, (h) the proposed SGNet.

where P and Y are prediction and ground truth of each
category, respectively.

The error of layer contour (denote it as CE) is the mean
absolute difference between the predicted layer boundary and
the ground truth layer boundary along each column. It is
formulated as:

CE =
1
n

n∑
i

(pi − gi) (13)

where pi and gi are the predicted row location of each bound-
ary and the expert annotated one, n is the number of pixels in
the layer contour.

D. RESULTS
In order to compare the proposed SGNet with these compar-
ative methods, we have conducted qualitative analysis and
quantitative analysis.

1) QUALITATIVE ANALYSIS
The qualitative comparison between the proposed method
and these comparative methods are presented in this section.
The results on typical OCT B-scan with fluid region and
without fluid region are shown in Figure 5 and Figure 6
respectively.

For the OCT B-scan with fluid region (Figure 5), due to the
existence of several small accumulated fluid regions, it is one
of the most difficult B-scans to be segmented. It should be
noted that not all these comparative methods can jointly seg-
ment retinal layers and fluid region. Among these methods,
only KR-GTDP (Figure 5(d)) and ReLayNet (Figure 5(g))
can jointly segment retinal layers and fluid regions, the
LSE-GTDP (Figure 5(e)) and CNN-GS (Figure 5(f)) can
only segment retinal layers. As can be seen from the
Figure 5(d), Figure 5(g), Figure 5(h), almost all the fluid
regions segmented by KR are fused together (Figure 5(d)).
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ReLayNet is better than KR, but it still has fused fluid
regions (Figure 5(g)). The proposed SGNet distinguished
more different fluid regions (Figure 5(h)), this may be ben-
efited from the integration of GCN and the pixel-wise adver-
sarial learning strategy. For the retinal layer, it can be seen
that layer boundary of the proposed method are smoother
than ReLayNet, this might be due to the advantage of GCN
and BR. The layer boundary segmented by KR (it does not
consider the presence of fluid region) is also smoother than
ReLayNet due to Graph-based Dynamic Programming.

The results on a normal OCT B-scan is shown in Figure 6.
From the figure, we can see that false fluid regions appeared
in the segmentation result of KR (Figure 6(d)). It should be
noted that the LSE-GTDP and CNN-GS have no ability to
segment fluid mass, thus the fluid region will not appear in
their segmentation results (Figure 6(e)). As for ReLayNet,
from the Figure 6(g), we can see that some pixels below the
OS-RPE are obviously misclassified. The proposed SGNet,
which has no obvious misclassification, has better perfor-
mance than ReLayNet.

2) QUANTITATIVE ANALYSIS
The quantitative comparison on dice is shown in Table 3,
it lists the dice value (in mean and standard deviation) of each
category andmean Dice of all regions. Statistical significance
of the differences was determined using 2-tailed paired t-test
for which p value of 0.05 were considered significant.

TABLE 3. Quantitative comparison between the proposed SGNET and the
comparative method by Dice on Duke dataset. The mean (standard
deviation) values are reported. the best results are bold and the
second-best results are italic.

As shown in Table 3, for all the methods, the perfor-
mance on fluid regions is lower compared to other layer
regions, including the result of expert 2. This is due to
the low contrast between fluid region and background, also
due to the irregular shape and varying number of occur-
rences. The performances of KR-GTDP and CNN-GS are
poor compared to other methods. It is worth to mention that
the dice value of KR-GTDP without taking fluid region into
account is 0.835, which is similar to the value of CNN-GS
(0.833). The proposed method has the best performance for
all the 8 categories which include ILM, NFL-IPL, INL, OPL,

ONL-ISM, ISE, OSE-RPE and Fluid. ReLayNet has achieved
the second-best results for 7 times among the 8 cate-
gories, and LSE-GTDP achieved the second-best result for
ONL-ISM. For the segmentation of fluid region, the pro-
posed SGNet achieve a dice of 0.800 which is with a rel-
ative improvement of 3.5%, compare to the performance
achieved by ReLayNet. The mean dice of all categories
is also improved from 0.881 to 0.900, a relative improve-
ment of 2.1%. Since ReLayNet performed best in the four
compared methods, the statistical analysis is performed by
comparing our SGNet and ReLayNet. The improvements are
significant for 5 layers, including ILM (p < 0.01), NFL-IPL
(p < 0.05), INL (p < 0.01), ONL-ISM (p < 0.05) and ISE
(p < 0.05).
The quantitative comparison between the proposedmethod

and the comparative methods with contour error (CE) are
presented in Table 4. All best results are bold, and it can
be apparently seen that the proposed SGNet achieved best
result in 6 retinal layer contours out of 7 retinal layer contours
compare to the existing best result. These 6 retinal layer
contours are Vitreous- ILM, ILM-NFL, IPL-INL, INL-OPL,
ISM-ISE and ISE-OS, each of them are reduced by 15.8%,
20.7%, 11.9%, 8.1%, 0.5% and 7.3% respectively on the
basis of the existing best result. Themean error of all contours
is 1.068 pixels which is also reduced by 10.9%.

TABLE 4. Quantitative comparison between the proposed SGNET and the
comparative method by contour error (CE) on Duke dataset. The mean
(standard deviation) of CE (in pixels) are reported. the best results are
bold and the second-best results are italic.

Only the error on OPL-ONL of the proposed SGNet is not
the best result, the best result of this contour is achieved by
CNN-GS, and our SGNet obtained the second-best results.
Compared to the result of ReLayNet, it still reduces the error
by 10.1%. From the low dice of layer OPL between the two
experts, it is apparently that OPL layer is the most difficult
layer contour to be segmented, this might be the reason that
all automatic layer segmentation methods could not achieve
better performance on OPL-INL contour. We have also per-
formed statistical analysis on the contour error, due to the
relatively large standard deviation, the difference between the
proposed SGNet and ReLaynet is not statistically significant
(p > 0.05).
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E. ABLATION EXPERIMENTS
In the proposed SGNet, we incorporated GCN and BR into
the U-Net architecture, and for the loss function of segmenta-
tion network, we added adversarial loss and semi-supervised
loss besides the usually used multi-class cross entropy and
dice loss in segmentationmethods. In this section, we conduct
ablation experiment to evaluate the effect of GCN, BR, adver-
sarial loss and semi-supervised loss. We will also investigate
the effect of weight parameters in the loss function of seg-
mentation network. Note the experiments in this subsection
are performed on a single division of the dataset.

Since the previous best result is achieved by ReLayNet,
thus we denote RelayNet as baseline 1, and the baseline 2 is
ReLayNet with GCN. The baseline 3 is the baseline 2 inte-
grated with BR, which is also the segmentation network used
in our method, and the baseline 3 with adversarial learning is
denoted as baseline 4. The proposed SGNet includes GCN ,
BR, Ladv, Lsemi. A summary can be seen in Table 5.

TABLE 5. The characteristics of baselines.

1) GCN AND BR
In section III.A, we modified the ReLayNet by the GCN
(introduce dense connections between classifiers and fea-
tures) and BR (refine the layer boundary). To verify the
effect of GCN and BR in Duke DME dataset, we conduct a
comparison between the baseline 1, baseline 2 and baseline 3.

TABLE 6. Quantitative comparison between the baseline 1, baseline with
GCN and the baseline 2 by Dice, the best results are bold and the
second-best results are italic.

The ablation experimentation results of baseline 1 and
baseline 2 and baseline 3 on dice are present in Table 6. From
the Table 6, it can be seen that the dice of baseline 2 (base-
line 1 with BR) on ILM, NFL-IPL, INL, OPL, ONL-ISM and
fluid are better than the baseline 1, and it is increased by 0.4%
on dice of all retinal layers (from 0.883 to 0.887). However,
the dice of baseline 2 on ISE and OS-RPE are worse than

the baseline 1. When added BR (baseline 3), the dice of ISE
is increased by 1.2% (from 0.908 to 0.919) which slightly out-
performs the baseline 2. The mean dice of baseline 3 is also
slightly improved from 0.887 to 0.889, this is benefited from
the BR layers. The experiment presented on this subsection
demonstrate the impact of GCN and BR layers. Paired t-test
analysis shows that the differences between baseline 2, 3 and
the ReLayNet are not statistically significant.

2) ADVERSARIAL LOSS AND SEMI-SUPERVISED LOSS
In this sub section, we present the ablation experiments on the
baseline 3, baseline 4 and proposed SGNet to investigate the
effect on adversarial loss and semi loss. Experiment results
on a typical example image is shown in Figure 7, from the
figure we can see that the result of the proposed SGNet is
the best. The dice of baseline 3, baseline 4 and the proposed
SGNet are shown in Table 6. As can be seen from Table 6,
when adversarial loss is added, the mean dice of baseline 4
on all retinal layers is improved from 0.889 to 0.897
(0.9% improvement).

FIGURE 7. Ablation experiment results on an image, (a) the original
image, (b) the annotation 1, (c) the annotation 2 (d) baseline 3,
(e) baseline 4 and (f) the proposed SGNet.

As for the individual retinal layers, the dice of them are all
improved. For instance, the dice of baseline 4 on Fluid has
an 1.5% improvement compared to the baseline 3. This com-
parison demonstrates that the adversarial loss can improve
the segment performance to some extent. Furthermore, after
adding the semi-supervised loss, the mean dice is further
improved from 0.897 to 0.900. Except for OPL layer which
is 0.001 lower on dice, the dice of other retinal layers are
all slightly improved. This shows that semi-supervised loss
also contributes to the improvement of the segmentation per-
formance, although the improvement is slight. Paired t-test
analysis shows that the differences between baseline 4 and
the ReLayNet are statistically significant for ILM (p < 0.01),
NFL-IPL and INL(p < 0.05). The differences between pro-
posed SGNet and baseline 4 are not statistically significant.

To further investigate the effect of semi-supervised loss
(the use of unlabeled data), we have performed experiments
with different number of labeled subjects in the training
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TABLE 7. Results of the proposed SGNET with different number of
labeled B-Scans in the training dataset. The mean (standard deviation)
values are reported.

dataset. The ratio of the labeled images to the unlabeled
images is also kept 1:2, and the number of training subjects
varies from 1 (11 labeled B-scans and 22 unlabeled B-scans)
to 5 (55 labeled B-scans and 110 unlabeled B-scans). The
results are listed in Table 7. From the table, we can see that
the performance improvement obtained with the utilization of
unlabeled data is large when the number of labeled training
images is small. The differences of Dice measurement are
statistically significant (p < 0.5) when the number of labeled
B-scans in the training dataset is less than or equal to 33.
With the increases of labeled training B-scans, the effect of
utilizing unlabeled data diminishes.

3) EFFECTS OF WEIGHT PARAMETERS ON LOSS FUNCTION
The loss function of the segmentation network in Equation (3)
consists of four components, and they are integrated with
weight parameters for the final loss function. Although in
theory, they have different value ranges (Lmce, Ladv and Lsemi
are in [0,+∞) and Ldice is in [0, 1]), we find their values are
in similar scales in practice. The investigated value of weights
α, β, γ for Lmce, Ladv and Lsemi are [0.1, 0.5, 1, 10], and the
results are listed in Table 8. From the table, we can see that the
results are not greatly affected by the weights when they are
in a reasonable range. The training may not converge when
the weight of Ladv is too large (β = 10), and the best result is
obtained when α, β, γ are set as 0.5, 0.1, 0.1 respectively.

F. FIVE-FOLD CROSS-VALIDATION
As noted above, we performed k-fold cross-validation by
splitting the dataset differently. The dataset is split 5 times,
and in each splitting 5 subjects are used for training and the
other 5 subjects are used for testing. The network structure
and hyperparameters are set as presented above. The results
are listed in Table 9 and 10. We can see that the results are
similar, and paired t-test analysis also shows the differences

TABLE 8. Averaged Dice results of the proposed SGNET with different
weights for segmentation network loss function.

TABLE 9. Dice Results of 5-fold Cross-Validation on Duke dataset with 5
subjects for training and the other 5 subjects for testing. The mean
(standard deviation) values are reported.

TABLE 10. Contour error results (in pixels) of 5-fold Cross-Validation with
5 subjects for training and the other 5 subjects for testing. The mean
(standard deviation) values (in pixels) are reported.

of results from different splitting are not statistically signifi-
cant.

G. RESULTS ON PONE DATASET
We have also investigated the performance of the proposed
method on the POne dataset [54]. As introduced above,
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the dataset contains 100 B-scans from 10 subjects, with 10
B-scans from each subject. Similar to the experiments on
Duke dataset, the dataset is also split 5 times, and in each
splitting 5 subjects are used for training and the other 5 sub-
jects are used for testing. Since the dataset does not contain
unlabeled images, we used annotations of 5 slices in each
subject and treated the other 5 slices as unannotated. In other
words, the training dataset contains 50 slices, among them
25 are annotated and the other 25 slices are unannotated.
CNN-GS, ReLayNet and our proposed SGNet were trained
on the training dataset, and the performances were evaluated
on the other 50 slices. It should be noted that OCTRIMA does
not involve a training procedure, and we used their provided
results directly.

TABLE 11. Quantitative comparison between the proposed SGNET and
the comparative method by Dice on POne dataset, the best results are
bold and the second-best results are italic. The mean (standard deviation)
values are reported.

TABLE 12. Quantitative comparison between the proposed SGNET and
the comparative method by contour error (CE) on POne dataset, the best
results are bold and the second-best results are italic. The mean
(standard deviation) values (in pixels) are reported.

The results of different methods on the POne dataset are
listed in Table 11 and 12. Figure 8 shows results of different
methods on a B-scan sample. From the tables, we can observe
that all methods work well on the POne dataset, since B-scans
in the dataset all come from healthy subjects.While the differ-
ences are small, the proposed method also performed best on
the POne dataset. Compared to ReLayNet, the improvements
of SGNet are statistically significant for 4 layers, including
INL (p < 0.01), ONL-ISM (p < 0.01), ISE (p < 0.01) and
OS-RPE (p < 0.05).

FIGURE 8. Layer segmentation results on an OCT B-scan sample in PONE
dataset. (a) an OCT B-scan sample, (b) expert 1 annotation, (c) expert 2
annotation, (d) CNN-GS, (e) ReLayNet, (f) the proposed SGNet.

H. FAILURE CASES
Although our proposed SGNet has achieved promising
segmentation results on most of the B-scans in the two
datasets, the performance needs further improvement for
some B-scans. Since ReLayNet and SGNet have shown better
performances than CNN-GS and can segment fluid regions,
we only shown results of these methods. Figure 9 shows
some challenging cases and the results. The OPL layer (green

FIGURE 9. Cases where our results were suboptimal. (a) and (f) are the
original images, (b) and (g) are annotations of expert 1, (c) and (h) are
annotations of expert 2, (d) and (i) are the results of ReLayNet,
(e) and (j) are the results of the proposed SGNet.
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color) is very thin in the B-scan shown in Figure 9(a), and the
shadow (caused by vessel) makes the contrast between OPL
and neighbor layers lower. Both ReLayNet (Figure 9(d)) and
SGNet (Figure 9(e)) cannot accurately segment the layers,
and the continuity of OPL are broken. Post-processing such
as graph search may improve the results. Another approach
is to incorporate the layer order and continuity information
into the network architecture or loss function, while it is
not intuitive to incorporate these prior information into deep
learning methods [56].

Figure 9(f)-(j) show the results on another B-scan with
DME. In this image, the contrast between fluid regions and
background is low, and the difference between annotations of
two experts is large. Compared to the ground truth (annotation
of expert 1), both ReLayNet and the proposed SGNet seg-
mented more fluid regions, although these regions are labeled
as fluid regions by the expert 2. Besides, the continuity of
ILM and NFL-IPL at the fovea are also broken. Similarly,
prior information may also be utilized to deal with the dis-
continuity problem.

V. CONCLUSIONS
In this paper, we proposed a semi-supervised method (named
SGNet) to segment 9 retinal layer and fluid regions auto-
matically on OCT B-scans through an adversarial learning
strategy. The proposed method is validated on Duke DME
dataset and POne dataset and compared with four state-of-
the-art retinal layer segmentation methods. To the best of
our knowledge, this is the first adversarial learning based
method to segment retinal layer and fluid on OCT B-scans.
The segmentation method, which is trained end-end, includ-
ing a new segmentation network modified from ReLayNet
and a discriminator network, both are fully convolutional
network. The segmentation network is trained by optimizing
a joint loss function including weighted cross entropy loss,
weighted dice loss, adversarial loss and semi-supervised loss.
Semi-supervised loss is only trained with unlabeled data, all
the other losses are trained with labeled data. It should be
noted that only the parameters of segmentation network are
updated when trained with unlabeled. The testing time is
about 0.1 seconds per OCT B-scan on GTX970 GPU. The
experiment results on duke and PONE datasets show that
the proposed method outperforms the state-of-the-art retinal
layer and fluid segmentation methods.

In the future work, we will explore the integration of
prior knowledge and deep learning for retinal layer segmen-
tation [56], investigate some advanced segmentation network
architectures [25], [29], [57], we will also explore the seg-
mentation of retinal layer with other diseases.

REFERENCES

[1] W. Drexler and J. G. Fujimoto, ‘‘State-of-the-art retinal optical coher-
ence tomography,’’ Prog. Retinal Eye Res., vol. 27, no. 1, pp. 45–88,
Jan. 2008.

[2] D. Huang et al., ‘‘Optical coherence tomography,’’ Science, vol. 254,
no. 5035, pp. 1178–1181, 1991.

[3] F. A. Medeiros, L. M. Zangwill, C. Bowd, R. M. Vessani, R. Susanna, Jr.,
and R. N. Weinreb, ‘‘Evaluation of retinal nerve fiber layer, optic nerve
head, and macular thickness measurements for glaucoma detection using
optical coherence tomography,’’ Amer. J. Ophthalmol., vol. 139, no. 1,
pp. 44–55, 2005.

[4] A. G. Roy et al., ‘‘ReLayNet: Retinal layer and fluid segmentation of mac-
ular optical coherence tomography using fully convolutional networks,’’
Biomed. Opt. Express, vol. 8, no. 8, pp. 3627–3642, 2017.

[5] X. Liu, Z. Yang, W. Hu, J. Liu, and K. Zhang, ‘‘Detection of macular dis-
eases in optical coherence tomography image,’’ Int. J. Parallel, Emergent
Distrib. Syst., pp. 1–13, Jun. 2018, doi: 10.1080/17445760.2018.1472261.

[6] M. Mujat et al., ‘‘Retinal nerve fiber layer thickness map determined from
optical coherence tomography images,’’ Opt. Express, vol. 13, no. 23,
pp. 9480–9491, 2005.

[7] A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, ‘‘Intra-retinal layer
segmentation in optical coherence tomography images,’’ Opt. Express,
vol. 17, no. 26, pp. 23719–23728, 2009.

[8] J. Novosel, G. Thepass, H. G. Lemij, J. F. de Boer, K. A. Vermeer, and L.
J. van Vliet, ‘‘Loosely coupled level sets for simultaneous 3D retinal layer
segmentation in optical coherence tomography,’’ Med. Image Anal., vol.
26, no. 1, pp. 146–158, 2015.

[9] C. Wang, Y. X. Wang, and Y. Li, ‘‘Automatic choroidal layer segmentation
usingMarkov random field and level set method,’’ IEEE J. Biomed. Health
Inform., vol. 21, no. 6, pp. 1694–1702, Nov. 2017.

[10] S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu,
‘‘Automatic segmentation of seven retinal layers in SDOCT images con-
gruent with expert manual segmentation,’’ Opt. Express, vol. 18, no. 18,
pp. 19413–19428, 2010.

[11] J. Y. Lee et al., ‘‘Fully automatic software for retinal thickness in eyes
with diabetic macular edema from images acquired by cirrus and spectralis
systems,’’ Invest. Ophthalmol. Vis. Sci., vol. 54, no. 12, pp. 7595–7602,
2013.

[12] X. Liu, D. Liu, T. Fu, K. Zhang, J. Liu, and L. Chen, ‘‘Shortest path with
backtracking based automatic layer segmentation in pathological retinal
optical coherence tomography,’’ in Proc. 25th IEEE Int. Conf. Image
Process. (ICIP), Oct. 2018, pp. 2770–2774.

[13] M. K. Garvin, M. D. Abramoff, X. Wu, S. R. Russell, T. L. Burns,
and M. Sonka, ‘‘Automated 3-D intraretinal layer segmentation of mac-
ular spectral-domain optical coherence tomography images,’’ IEEE Trans.
Med. Imag., vol. 28, no. 9, pp. 1436–1447, Sep. 2009.

[14] P. A. Dufour et al., ‘‘Graph-based multi-surface segmentation of OCT data
using trained hard and soft constraints,’’ IEEE Trans. Med. Imag., vol. 32,
no. 3, pp. 531–543, Mar. 2013.

[15] W. Duan et al., ‘‘A generative model for OCT retinal layer segmentation
by groupwise curve alignment,’’ IEEE Access, vol. 6, pp. 25130–25141,
2018.

[16] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer-Verlag, 2006.

[17] Y. Deng, Y. Li, Y. Qian, X. Ji, and Q. Dai, ‘‘Visual words assignment via
information-theoretic manifold embedding,’’ IEEE Trans. Cybern., vol. 44,
no. 10, pp. 1924–1937, Oct. 2014.

[18] Y. Deng, Q. Dai, R. Liu, Z. Zhang, and S. Hu, ‘‘Low-rank structure learning
via nonconvex heuristic recovery,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 24, no. 3, pp. 383–396, Mar. 2013.

[19] S. J. Chiu, M. J. Allingham, P. S. Mettu, S. W. Cousins, J. A. Izatt, and
S. Farsiu, ‘‘Kernel regression based segmentation of optical coherence
tomography images with diabetic macular edema,’’ Biomed. Opt. Express,
vol. 6, no. 4, pp. 1172–1194, 2015.

[20] S. P. K. Karri, D. Chakraborthi, and J. Chatterjee, ‘‘Learning layer-specific
edges for segmenting retinal layers with large deformations,’’Biomed. Opt.
Express, vol. 7, no. 7, pp. 2888–2901, 2016.

[21] D. Xiang et al., ‘‘Automatic retinal layer segmentation of OCT images
with central serous retinopathy,’’ IEEE J. Biomed. Health Inform., to be
published, doi: 10.1109/JBHI.2018.2803063.

[22] K. G. Lore, A. Akintayo, and S. Sarkar, ‘‘LLNet: A deep autoencoder
approach to natural low-light image enhancement,’’ Pattern Recognit.,
vol. 61, pp. 650–662, Jan. 2017.

[23] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, ‘‘Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising,’’ IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[24] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

VOLUME 7, 2019 3059

http://dx.doi.org/10.1080/17445760.2018.1472261
http://dx.doi.org/10.1109/JBHI.2018.2803063


X. Liu et al.: Semi-Supervised Automatic Segmentation of Layer and Fluid Region in Retinal OCT Images

[25] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[26] Y. Deng, Z. Ren, Y. Kong, F. Bao, and Q. Dai, ‘‘A hierarchical fused fuzzy
deep neural network for data classification,’’ IEEE Trans. Fuzzy Syst.,
vol. 25, no. 4, pp. 1006–1012, Aug. 2017.

[27] E. Shelhamer, J. Long, and T. Darrell, ‘‘Fully convolutional networks for
semantic segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640–651, Apr. 2017.

[28] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[29] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2017.

[30] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Int. Conf. Neural
Inf. Process. Syst., 2015, pp. 91–99.

[31] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.

[32] G. Litjens et al., ‘‘A survey on deep learning in medical image analysis,’’
Med. Image Anal., vol. 42, pp. 60–88, Dec. 2017.

[33] D. Shen, G. Wu, and H. Suk, ‘‘Deep learning in medical image analysis,’’
Annu. Rev. Biomed. Eng., vol. 19, pp. 221–248, Jun. 2017.

[34] L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu,
‘‘Automatic segmentation of nine retinal layer boundaries in OCT images
of non-exudative AMD patients using deep learning and graph search,’’
Biomed. Opt. Express, vol. 8, no. 5, pp. 2732–2744, 2017.

[35] X. Liu et al., ‘‘Automated layer segmentation of retinal optical coher-
ence tomography images using a deep feature enhanced structured ran-
dom forests classifier,’’ IEEE J. Biomed. Health Inform., 2018, doi:
10.1109/JBHI.2018.2856276.

[36] X. Liu, T. Fu, Z. Pan, D. Liu, W. Hu, and B. Li, ‘‘Semi-supervised
automatic layer and fluid region segmentation of retinal optical coherence
tomography images using adversarial learning,’’ in Proc. 25th IEEE Int.
Conf. Image Process. (ICIP), Oct. 2018, pp. 2780–2784.

[37] A. Shah, L. Zhou, M. D. Abrámoff, and X.Wu, ‘‘Multiple surface segmen-
tation using convolution neural nets: Application to retinal layer segmenta-
tion in OCT images,’’ Biomed. Opt. Express, vol. 9, no. 9, pp. 4509–4526,
2018.

[38] J. Hamwood, D. Alonso-Caneiro, S. A. Read, S. J. Vincent, and
M. J. Collins, ‘‘Effect of patch size and network architecture on a convolu-
tional neural network approach for automatic segmentation of OCT retinal
layers,’’ Biomed. Opt. Express, vol. 9, no. 7, pp. 3049–3066, 2018.

[39] F. G. Venhuizen et al., ‘‘Robust total retina thickness segmentation in opti-
cal coherence tomography images using convolutional neural networks,’’
Biomed. Opt. Express, vol. 8, no. 7, pp. 3292–3316, 2017.

[40] Y. Xu et al., ‘‘Dual-stage deep learning framework for pigment epithelium
detachment segmentation in polypoidal choroidal vasculopathy,’’ Biomed.
Opt. Express, vol. 8, no. 9, pp. 4061–4076, 2017.

[41] I. J. Goodfellow et al., ‘‘Generative adversarial networks,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 3, 2014, pp. 2672–2680.

[42] N. Souly, C. Spampinato, and M. Shah, ‘‘Semi supervised semantic seg-
mentation using generative adversarial network,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 5689–5697.

[43] W.-C. Hung, Y.-H. Tsai, Y.-T. Liou, Y.-Y. Lin, and M.-H. Yang.
(2018). ‘‘Adversarial learning for semi-supervised semantic segmenta-
tion.’’ [Online]. Available: https://arxiv.org/abs/1802.07934

[44] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, ‘‘Large kernel matters—
Improve semantic segmentation by global convolutional network,’’ inProc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 1743–1751.

[45] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, ‘‘Learning hierarchical
features for scene labeling,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1915–1929, Aug. 2013.

[46] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
‘‘3D U-Net: Learning dense volumetric segmentation from sparse annota-
tion,’’ in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent.,
2016, pp. 424–432.

[47] F. Yu and V. Koltun, ‘‘Multi-scale context aggregation by dilated convolu-
tions,’’ in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–13.

[48] P. Krähenbühl and V. Koltun, ‘‘Efficient inference in fully connected CRFs
with Gaussian edge potentials,’’ in Proc. Int. Conf. Neural Inf. Process.
Syst., 2011, pp. 109–117.

[49] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, ‘‘Semantic segmentation
using adversarial networks,’’ in Proc. NIPS Workshop Adversarial Train-
ing, 2016, pp. 1–12.

[50] H. Noh, S. Hong, and B. Han, ‘‘Learning deconvolution network for
semantic segmentation,’’ in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2016,
pp. 1520–1528.

[51] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. ICML, vol. 30, no. 1, 2013,
pp. 1–3.

[52] D. Eigen and R. Fergus, ‘‘Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 2650–2658.

[53] F. Milletari, N. Navab, and S.-A. Ahmadi, ‘‘V-Net: Fully convolutional
neural networks for volumetric medical image segmentation,’’ in Proc. 4th
Int. Conf. 3D Vis., Oct. 2016, pp. 565–571.

[54] J. Tian, B. Varga, G. M. Somfai, W.-H. Lee, W. E. Smiddy, and
D. C. DeBuc, ‘‘Real-time automatic segmentation of optical coherence
tomography volume data of the macular region,’’ PLoS ONE, vol. 10, no. 8,
p. e0133908, 2015.

[55] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’
in Proc. OSDI, vol. 16, 2016, pp. 265–283.

[56] Y. He et al. (2018). ‘‘Topology guaranteed segmentation of the human
retina from OCT using convolutional neural networks.’’ [Online]. Avail-
able: https://arxiv.org/abs/1803.05120

[57] R. Zhang et al., ‘‘Automatic segmentation of acute ischemic stroke from
DWI using 3-D fully convolutional DenseNets,’’ IEEE Trans. Med. Imag.,
vol. 37, no. 9, pp. 2149–2160, Sep. 2018.

XIAOMING LIU received the Ph.D. degree from
Zhejiang University, China, in 2007. From 2014 to
2015, he was a Visiting Scholar with The Uni-
versity of North Carolina at Chapel Hill, NC,
USA. He is currently a Full Professor with the
College of Computer Science and Technology,
Wuhan University of Science and Technology,
Wuhan, China. His research interests include med-
ical image processing, pattern recognition, and
machine learning.

JUN CAO is currently a Graduate Student with
the College of Computer Science and Technol-
ogy, Wuhan University of Science and Technol-
ogy, Wuhan, China. His research interests include
medical image processing and machine learning.

TIANYU FU is currently a Graduate Student with
the College of Computer Science and Technol-
ogy, Wuhan University of Science and Technol-
ogy, Wuhan, China. His research interests include
medical image processing and machine learning.

3060 VOLUME 7, 2019

http://dx.doi.org/10.1109/JBHI.2018.2856276


X. Liu et al.: Semi-Supervised Automatic Segmentation of Layer and Fluid Region in Retinal OCT Images

ZHIFANG PAN received the Ph.D. degree from
the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University, China,
in 2013. In 1999, he joined Wenzhou Medical
University, where he is currently an Associate Pro-
fessor and the Deputy Director of the Information
Technology Center. His research interests include
the analysis of medical image and big data.

WEI HU received the Ph.D. degree from Zhejiang
University, China, in 2008. He is currently a Full
Professor with the College of Computer Science
and Technology, Wuhan University of Science and
Technology, Wuhan, China. His research interests
include system on chip and computer architecture.

KAI ZHANG received the Ph.D. degree from the
Huazhong University of Science and Technology,
China, in 2008. From 2008 to 2010, he held a Post-
doctoral position at Peking University. In 2017,
he was a Visiting Scholar with Oklahoma State
University. He is currently a Full Professor with
the College of Computer Science and Technol-
ogy, Wuhan University of Science and Technol-
ogy, Wuhan, China. His research interests include
computational intelligence and deep learning.

JUN LIU received the Ph.D. degree from the
Wuhan University of Science and Technology,
China, in 2012. From 2015 to 2016, he was a
Visiting Scholar with the University of Michigan,
Ann Arbor, MI, USA. He is currently a Full Pro-
fessor with the College of Computer Science and
Technology, Wuhan University of Science and
Technology, Wuhan, China. His research inter-
ests include medical image processing, ultrasound
image analysis, and machine learning.

VOLUME 7, 2019 3061


	INTRODUCTION
	RELATED WORK
	SEMANTIC SEGMENTATION
	ADVERSARIAL LEARNING
	LAYER SEGMENTATION IN OCT IMAGES

	THE PROPOSED METHOD
	NETWORK ARCHITECTURE
	SEGMENTATION NETWORK
	DISCRIMINATOR NETWORK

	TRAINING
	LOSS OF DISCRIMINATOR NETWORK
	LOSS OF SEGMENTATION NETWORK


	EXPERIMENTATION AND RESULTS
	DATASET
	IMPLEMENTATION DETAILS
	COMPARATIVE METHODS AND METRIC
	RESULTS
	QUALITATIVE ANALYSIS
	QUANTITATIVE ANALYSIS

	ABLATION EXPERIMENTS
	GCN AND BR
	ADVERSARIAL LOSS AND SEMI-SUPERVISED LOSS
	EFFECTS OF WEIGHT PARAMETERS ON LOSS FUNCTION

	FIVE-FOLD CROSS-VALIDATION
	RESULTS ON PONE DATASET
	FAILURE CASES

	CONCLUSIONS
	REFERENCES
	Biographies
	XIAOMING LIU
	JUN CAO
	TIANYU FU
	ZHIFANG PAN
	WEI HU
	KAI ZHANG
	JUN LIU


