IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 2, 2018, accepted December 11, 2018, date of publication December 24, 2018,

date of current version January 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2889400

Do Google App Engine’s Runtimes Perform
Homogeneously? An Empirical Investigation

for Bonus Computing

ZHENG LI“1, (Member, IEEE), AND XUE GUO?2

I Department of Computer Science, University of Concepcién, Concepcién 4070409, Chile
2Software Institute, Nanjing University, Nanjing 210008, China

Corresponding author: Zheng Li (zhengli @inf.udec.cl)

This work was supported in part by CONICYT under Grant FONDECYT Iniciacién 11180905, in part by the University of Concepcién
under Grant VRID INICIACION 218.093.017-1.0 IN, and in part by the National Natural Science Foundation of China (NSFC) under

Grant 61572251.

ABSTRACT Bonus computing is a new metacomputing form that takes advantage of free computing
power from the public Cloud market. To maximize the value of free Cloud resources and facilitate dividing
Bonus computing tasks, it would particularly be crucial to understand the performance of candidate Cloud
services before using them in production. By offering free quotas in its standard environment, Google
App Engine (GAE) has become a popular public Platform-as-a-Service (PaaS) for Bonus computing. Since
GAE natively supports various programming languages with flexible configurations (e.g., region selection),
it will be possible and valuable to squeeze GAE’s free computing power if there is an optimal choice of
its different runtimes. Following the performance evaluation methodology DoKnowMe, we implemented
several versions of the Fibonacci(-like) calculation as benchmarks to fundamentally investigate GAE’s
standard environment. Our investigation results reveal that GAE does not support its runtime environments
homogeneously in terms of their computation speed and memory efficiency. The heterogeneity could be
related not only to the characteristics of different programming languages but also to the diverse GAE
infrastructures. For example, Go runtime seems to be a well-trade-off to satisfy Bonus computing among
all the options, while the GAE service located in southamerica-eastl and us-centrall performs dramatically
worse than that in the other regions.

INDEX TERMS Bonus computing, Google App Engine, performance evaluation, Platform as a Service,

programming languages.

I. INTRODUCTION

Evolving from Volunteer computing [1] and Parasitic
computing [2], Bonus computing emerged as a new meta-
computing form to take advantage of free computing power
from the public Cloud market [3]. On one hand, the free
and high-available Cloud resources can avoid potential legal
and ethical issues in Parasitic computing, and can sup-
plement the possible shortage of volunteers especially for
small-scale projects. On the other hand, the free quotas
of public Cloud services generally have various limita-
tions and constraints, which makes Bonus computing suit-
able mainly to carry out jobs composed of fine-grained,
fault-tolerant, and compute-intensive tasks. Correspondingly,
understanding the characteristics of candidate Cloud services
is particularly crucial and necessary for Bonus computing,

so as both to maximize the value of usually limited free
resources and to develop problem solutions with proper task
divisions.

Google App Engine (GAE) is currently a popular pub-
lic Platform-as-a-Service (PaaS) for Bonus computing, as it
offers free quotas in its standard environment with native
support for various programming languages [4]. However,
although the diverse language runtimes of GAE provide flex-
ible options to developers who have different backgrounds,
they could in turn incur overchoice when those options
are equivalently employable [5]. Actually many practition-
ers have been confronted with such choice overload in the
numerous types of programming languages [6], [7]. Within
the context of GAE, there are also frequent discussions about
decision making in the aforementioned language runtimes,

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

4698 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9704-7651

Z. Li, X. Guo: Do Google App Engine’s Runtimes Perform Homogeneously? Empirical Investigation for Bonus Computing

IEEE Access

for various reasons ranging from performance comparison to
exclusive characteristics identification [8], [9].

Meanwhile, when selecting GAE’s runtime environments,
it would be inaccurate and even inappropriate to directly reuse
the existing knowledge of programming language compar-
isons, because it is unclear about how well GAE supports its
language runtimes. After all, Cloud services’ back-ends like
configurations of physical infrastructure are uncontrollable
and invisible for their consumers [10]. Additionally, PaaS
platforms like GAE can further impose constraints on their
applications due to the vendors’ concerns (e.g., protecting
the system integrity) [11]. Therefore, it is imperative and
beneficial to understand and assess GAE (as a specific Cloud
service) before using it in production [10], [12].

To facilitate employing GAE in Bonus computing,
we empirically investigated its performance homogeneity
with respect to different language runtimes (i.e. Java 7, Java 8,
Python, Go, and PHP in the free offers) as well as different
regions, by following the performance evaluation method-
ology DoKnowMe [13]. This paper reports our empirical
investigation. In brief, we implemented several versions of
the Fibonacci(-like) calculation as benchmarks to make the
GAE environmental comparison fundamentally ‘““apple-to-
apple”. The investigation results show that GAE’s runtime
environments perform heterogeneously not only in different
programming languages but also across different geographi-
cal regions.

To our best knowledge, this is the first holistic inves-
tigation into the free quotas of GAE standard environ-
ment. Such a fundamental study makes mainly twofold
contributions:

1) The revealed strengths and weaknesses of different run-
times can help practitioners better understand GAE and
make trade-off decisions in its language runtime selec-
tion. For example, to squeeze GAE’s free computing
power, we have chosen the Go runtime for our future
Bonus computing projects according to its well balance
between computation speed and memory efficiency.

2) The identified peculiarities of GAE can help the
provider, Google in specific, improve its product
and make different language runtimes more compara-
ble and homogeneous. For example, we believe that
Google needs to pay more attention to its regions
southamerica-eastl and us-centrall where GAE per-
forms significantly poor.

The remainder of this paper is organized as follows.
Section II briefly reviews the emergence of Bonus computing
and summarizes the existing practices related to GAE’s per-
formance evaluations. Section III specifies the experimental
design that drives our empirical investigation. The experi-
mental results and analyses about the performance homo-
geneity in GAE’s different language runtimes and regions are
reported in Section IV. Section V discusses some possible
threats to the validity of our study. Conclusions and future
work are drawn and specified in Section VI.

VOLUME 7, 2019

Il. RELATED WORK

A. EMERGENCE OF BONUS COMPUTING

Bonus computing emerged from two existing metacomputing
forms, namely Volunteer computing and Parasitic computing.
By exploiting idle processing resources from general pub-
lic and even casual owners, Volunteer computing has been
applied to various large projects and scientific collabora-
tions ranging from discovering new stars [14] to searching
Mersenne prime [15]. Nevertheless, Volunteer computing can
suffer from the shortage of computing resources and even
from uncertain interruptions. Firstly, it has been identified
that ‘““the number of people participating in volunteer com-
puting compared to the number of users on the Internet is
insignificantly small” [16]. Secondly, one volunteered device
can be dedicated only to a single project at a time. Thirdly,
volunteered devices can be out of usage at any time due to
unexpected crashes, network disconnections, or intentional
leaving.

Parasitic computing, on the other hand, utilizes the stan-
dard protocols (e.g., TCP checksum function) to exploit the
trivial while pervasive computing power from the Internet
communication infrastructure [2]. Unfortunately, since the
Internet protocols have a low computation-to-communication
ratio due to their nature of message transferring, the imple-
mentation of parasitic computing is computationally ineffi-
cient in practice. More importantly, there are ethical and legal
concerns about parasitic computing in terms of using remote
hosts without any authorization.

Given the booming of Cloud computing that is supposed
to provide always-on or at least extremely-high-availability
computational utility [10], there is an increasing amount
of free-tier opportunities offered in the public Cloud mar-
ket. As a compromise between, and a supplement to,
the aforementioned metacomputing forms, we proposed
Bonus computing to efficiently take advantage of free
Cloud resources and to deal with suitable problems like
Monte-Carlo simulations [3]. In specific, Bonus computing
is equipped with a loose-coupling functional architecture
including three roles, i.e. recipient, broker, and contributor.
The recipient follows the Divide-and-Conquer (D&C) strat-
egy and uses asynchronous mechanisms to break a whole
job into tasks and receive task results. The contributor
employs lightweight service technologies (e.g., Function-as-
a-Service, microservice, and RESTful Web service) to donate
his/her free quota of Cloud resources. Note that, since the
service calls can be made independently, it is possible to
deploy different project services on the same contributor’s
Cloud resource. The broker maintains a resource & service
registry to facilitate scheduling and coordinating recipient
tasks with contributor services.

B. PERFORMANCE EVALUATION OF GAE
Among the diverse types of Cloud services, PaaS is particu-
larly attractive for its capacity of taking the full responsibility

4699

IEEE Access

Z. Li, X. Guo: Do Google App Engine’s Runtimes Perform Homogeneously? Empirical Investigation for Bonus Computing

| Repeat for a period of time |

Repeating | (One hour in this study)

| Set Workload Size

Varying | (Index of Fibonacci number)

! |

Non-Recursive Fibonacci
Number Calculation

Recursive Fibonacci
Number Calculation

! !

Non-Recursive Fibonacci

Recursive Fibonacci

(Long vs. Double)

(Biglnteger vs. BigDecimal)

String Concatenation String Concatenation

Layer Workload ‘ ‘

1]

Computation

Layer Resource

Various language types

(Java 7, Java 8, Python,

| GAE Standard Environment

Various regions

Set Location

Go, and PHP)

(11 available regions)

Layer Capacity |
| Computation Latency

Memory Limit (Overflow Point) |

FIGURE 1. Experimental blueprint for evaluating GAE’s computation and memory features.

of application runtime on behalf of developers. A pioneer
work [17] extensively discussed the advantages of, and the
concerns about, applying PaaS technology to developing
online software systems. Since GAE is one of the most rep-
resentative PaaS platforms [10], numerous experimental and
experience studies have been conducted to investigate and
demonstrate its wide use cases.

For example, in academia, GAE has proven suitable for
designing and developing distributed and scalable systems
for high-performance scientific computing [11], [18]-[21];
in education, GAE has acted as a convenient courseware
particularly for teaching Web programming [22] and for
mobile learning [23]; and in practice, GAE has succeeded in
some outstanding projects like Snapchat and Khan Academy
by addressing the challenges of quick scaling and con-
current access [24]. Furthermore, there are even plenty
of books that particularly explain GAE-based application
developments [25].

However, it is noteworthy that the existing studies and
books tend to focus on individual-language runtimes only
(e.g., either the Java-specific [26] or the Python-specific
runtime [27]), while leaving the other GAE environments
to be covered by external online documents and printed
materials [24]. In contrast, our work delivers fundamental
investigation into and ‘“‘apple-to-apple”” comparison between
different GAE environments, in order to help satisfy the needs
of clear understanding and assessment of a particular Cloud
service against real-world requirements [10], [12].

In addition, the purposes of the related work and ours
are different. The existing studies are mostly to demonstrate
or verify the feasibility of leveraging GAE’s free quotas for
utilization in production, for example implementing Web ser-
vices in the domain of Geographic Information System [28].

4700

In our study, the homogeneity investigation is to identify
possible performance gaps and eventually help squeeze the
free computing power of GAE.

IIl. EXPERIMENTAL DESIGN

As mentioned previously, our empirical study is con-
ducted by following the performance evaluation methodology
DoKnowMe [13] that includes ten steps from Requirement
Recognition to Conclusion and Documentation. To avoid
duplication, we do not elaborate the details of all the steps
of DoKnowMe. Instead, we only briefly explain the whole
experimental logic through the corresponding experimental
blueprint that includes three layers (namely Resource, Work-
load, and Capacity), as shown in Figure 1.

1) CLOUD RESOURCE TO BE EVALUATED

Driven by the requirement of investigating the GAE envi-
ronments for compute-intensive tasks, we mainly focused
on two physical features of GAE’s standard environment,
i.e. Computation and Memory, with respect to the five avail-
able language runtimes of GAE as different resource types
(cf. Table 1). Actually, GAE’s flexible environment contains
more accessible language runtimes like Node.js, .NET and
Ruby. Due to the fact that this paper only contributes to
bonus computing, i.e. focusing only on the free quota of
GAE, flexible environment is not included in our investi-
gation. Moreover, in addition to the default GAE region

TABLE 1. Available language runtimes in the standard environment
of GAE.

GAE Runtime | Java | Java | Python | Go | PHP
Version 7 8 2.7 1.8 5.5

VOLUME 7, 2019

Z. Li, X. Guo: Do Google App Engine’s Runtimes Perform Homogeneously? Empirical Investigation for Bonus Computing

IEEE Access

asia-northeastl(Tokyo), we are also concerned with the other
resource locations. Although non-billing accounts are not
able to choose GAE instance classes [4], it is possible to
switch among different runtime regions. Therefore, we repli-
cated the experiments across the currently 11 available
regions (cf. Section IV-E).

2) BENCHMARK WORKLOAD

To represent compute-intensive tasks, we employed
Fibonacci number generation as the basic benchmark, and
varying benchmark workload sizes by using different indexes
of Fibonacci numbers. Recall that the calculation of a
Fibonacci number has both recursive and non-recursive
algorithms. We tested recursive Fibonacci calculation
with build-in data types long vs. double, and tested
non-recursive Fibonacci calculation with BigInteger
vs. BigDecimal solutions of different languages. In addi-
tion, we also implemented Fibonacci-like string concate-
nation algorithms to observe the performance of String
vs. StringBuilder processing on GAE.

Note that the data type names shown in this paper
are in a generic sense, and they are replaced with the
language-specific data types in the experimental imple-
mentation. For example, float in Python is used to
indicate double precision floating point numbers; the
java.math.BigDecimal in Java is equivalent to
decimal .Decimal in Python; and big integer number is
natively supported by Python, while other languages need
to import external BigInteger class or package; and the
StringBuilder in Gois bytes.Buffer. The specific
codes of different language runtimes have been shared on
GitHub.'

Considering the free quota limits of GAE [29], we repeated
each type of the aforementioned trials for roughly one hour,
with a 20-second sleep between two consecutive trials for
reducing the possible impact of cache. In particular, our pilot
experiments revealed that there seemed to be a ten-minute
time limit of continuous execution session per request on
GAE. Consequently, we had to manually issue six requests
successively to satisfy the one-hour experiment of every
benchmarking scenario.

3) CLOUD CAPACITY TO BE MEASURED

To reduce environmental noises and make the perfor-
mance measurement fair and rigorous, we only recorded the
Fibonacci calculation latency and excluded the time expendi-
ture of result saving/transmission, as exemplified by the fol-
lowing Java code. In other words, the measured computation
latency is independent of the distance between our location
and the regions.

Thus, we naturally use computation latency (in ms) to
reflect the capacity of GAE. Furthermore, since the length
of a string is proportional to the size of memory footprinted
by the string, a side benefit of the Fibonacci-like string

1https:// github.com/NJUGX/BenchmarkingGAE

VOLUME 7, 2019

public long Fibonaccilatency (int n) {
long start, end, latency;
start = System.nanoTime();
long fibo = Fibonacci (n);
end = System.nanoTime () ;
latency = (end - start)/1000000;
return latency;

concatenation test is being able to reveal the memory usage
efficiency of different GAE language runtimes. More details
of the revealed memory limits are specified in Section IV-C.

IV. INVESGITATION RESULTS AND ANALYSES

We started from the Java runtime experiment, and then
translated the Java codes into the other languages so as to
make different runtime evaluations consistent and compara-
ble. However, it makes no difference if starting from any other
language runtime and then doing “‘translated” experiments.

A. RECURSIVE FIBONACCI NUMBER CALCULATION

We use the data types long and double respectively in
recursive Fibonacci(-like) number calculation to investigate
the integer and floating-point performance of different GAE
runtime environments. The Java code for floating-point test
is shown as an example below.

public double Fibonacci (int n) {
double result = 0;
if (n==1 || n == 2)
result = 1.1;
else
result = Fibonacci(n - 1) +
Fibonacci(n - 2);
return result;

Given the short execution timeout limit in PHP by default,
our pilot experiment shows that the PHP runtime of GAE
cannot carry out Fibonacci workload as large as the other
runtime environments do. Using PHP as the bottleneck base-
line, we decided to calculate the 30th Fibonacci number for
the five-environment comparison, as illustrated in Figure 2.
Note that Figure 2 does not show the complete one-hour
trials, because the PHP runtime always stops response after
three or four execution sessions in this experiment.

It is not surprising that PHP performs the worst, because
it is not a language for dealing with compute-intensive jobs
by design. Python is also tremendously worse than Java and
Go in this case, which confirms that speed is not a favorable
concern for Python programs in the community. In particular,
a similar trend shared by the Python and PHP runtimes is
that their performance would deteriorate after running a short
period of time. In contrast, the Java and Go runtimes perform
too fast to display clear regular patterns or trends at the
current workload size and visualization scale. Thus, we rerun
this experiment for Java and Go with the 40th Fibonacci

4701

IEEE Access

Z. Li, X. Guo: Do Google App Engine’s Runtimes Perform Homogeneously? Empirical Investigation for Bonus Computing

Java7 Java8 Python Go PHP
1500
£ 1000
2
g
S 500
0 DA A A
1 1121 31 41 51 61 71 81
Number of Trials
(a)
Java7 Java8 Python Go PHP
1500
£ 1000
>
]
3]
= 500
=
0 ~ A A Do oo M

21 31 41 51 61 71 81
Number of Trials

(b)

FIGURE 2. Latency of recursive Fibonacci number calculation in the five
runtimes of the GAE standard environment. (a) The 30th 1ong Fibonacci
number calculation. (b) The 30th doub1e Fibonacci number calculation.

calculation both to enlarge and to zoom in on the potential
difference in their performance, as shown in Figure 3.

It can be seen that the two Java runtimes perform nearly
twice as fast as Go here. In addition, the Go runtime could
have relatively frequent performance drops with around
2.5 times longer latency (invisible in the figures) in both the
long and the double situations. However, compared to
Java 7, the Go and Java 8 runtimes seem to be optimized for
floating-point computing. Go’s floating-point performance is
even slightly better than its integer performance on GAE.

B. NON-RECURSIVE FIBONACCI NUMBER CALCULATION
Recall that Fibonacci number calculation has both recursive
and non-recursive solutions. We are also interested in the
performance of GAE standard environment for non-recursive
workloads. Since the non-recursive solution is merely a for
loop (see the Java code below), calculating a large index of
Fibonacci number will be needed in order to reduce the noises
of performance measurement in this case.

Note that, considering the limited data ranges of the native
data types, we resort to BigInteger and BigDecimal
whose values have theoretically no upper/lower bounds, and
compute the 10000th Fibonacci number in this experiment.

Given the experimental results visualized in Figure 4,
it is clear that GAE runtimes except PHP deliver fairly
similar performance (mostly less than 10ms) and jitters

4702

Java7 Java8 Go
950
. 850
E 750
2
g 650
=
—

550

350

1 11 21 31 41 51 61 71 81
Number of Trials

(a)

Java7 Java8 Go

950
850
750
650
550
450
350

Latency (ms)

1 11 21 31 41 51 61 71 81
Number of Trials

(b)

FIGURE 3. Latency of recursive Fibonacci number calculation in the Java
and Go runtimes of the GAE standard environment. (a) The 40th 1ong
Fibonacci number calculation. (b) The 40th double Fibonacci number
calculation.

import java.math.BigDecimal;

public BigDecimal NonRecurFibonacci (int n) {
BigDecimal first = new BigDecimal ("1.1");
BigDecimal second = new BigDecimal("1.1");
BigDecimal third = new BigDecimal("1.1");

for (int 1 = 2; i < n; i++) |
third = first + second;
first = second;

second = third;

}

return third;

(sometimes as high as more than 100ms) in the calculation
with BigInteger (cf. Figure 4a). When it comes to the
calculation with BigDecimal (cf. Figure 4b), the most
comparable runtimes are Java and Go. In particular, two
Java runtimes show little performance difference between the
calculations with BigInteger and with BigDecimal,
while the peak performance of Go runtime drops about 10ms
in the BigDecimal situation compared to BigInteger
(from 4ms to 14ms).

Unlike Java and Go, the Python runtime and especially
the PHP runtime exhibit unique characteristics and enormous
performance difference between the BigInteger test and
the BigDecimal test, as shown in Figure 5. For exam-
ple, although Python natively supports BigInteger and

VOLUME 7, 2019

Z. Li, X. Guo: Do Google App Engine’s Runtimes Perform Homogeneously? Empirical Investigation for Bonus Computing

IEEE Access

Java7 Java8 Python Go
100
g 80
Z 60
5
= 40 \A
-
20
. LA
0
1 21 41 61 81 101 121
Number of Trials
(@)
Java7 Java8 Go
100
80
£ 60
z
s 40
=
— 20
0
1 21 41 61 81 101 121
Number of Trials

(b)

FIGURE 4. Latency of non-recursive Fibonacci number calculation in the
Java, Python and Go runtimes of GAE the standard environment. (a) The
10000th BigInteger Fibonacci number calculation. (b) The 10000th
BigDecimal Fibonacci number calculation.

its performance is similar to Java and Go (cf. Figure 4a),
the latency of Python’s 10000th Fibonacci number calcu-
lation with BigDecimal varies dramatically and mostly
between 260ms and 760ms. The PHP runtime is mostly
as slow as around 600ms when calculating the 10000th
Fibonacci BigInteger number, while the same level of
BigDecimal calculation can take approximately 5 sec-
onds on average. This phenomenon confirms that, as a
Web-oriented programming language, the PHP runtime is not
an ideal candidate for large-scale compute-intensive jobs on
GAE.

C. FIBONACCI STRING CONCATENATION

Considering that the implementations of BigInteger and
BigDecimal can rely on string representations and oper-
ations. We further tested GAE runtimes against Fibonacci
string concatenation. Here we only use the recursive ver-
sion of Java code to exemplify the experimental benchmark,
as shown below.

When determining the workload size, we found that differ-
ent language runtimes met the out-of-memory error at differ-
ent indexes of the Fibonacci string concatenation, as listed
in Table 2. Considering that the ith string concatenation
occupies the ith Fibonacci number of bytes, Go and PHP
applications seem to be able to enjoy much more memory
than Java and Python applications on GAE. In other words,

VOLUME 7, 2019

Python Biglnteger Python BigDecimal

900
750
600
450
300
150

Laterncy (ms)

1 21 41 61 81 101 121 141
Number of Trials

(a)

PHP Biginteger =~ ——— PHP BigDecimal

6000
so00 i MMM

é 4000

2 3000
5

= 2000
-

1000

0

1 21 41 61 81 101 121
Number of Trials
(b)

FIGURE 5. Latency of non-recursive Fibonacci number calculation in the
Python and Go runtimes of the GAE standard environment. (a) The
10000th Fibonacci number calculation in Python. The 10000th Fibonacci
number calculation in PHP.

public String FibonacciString(int n) {

String result = "";
if (n == 1 || n == 2)
result = "a";
else
result = FibonacciString(n - 1) +
FibonacciString(n - 2);

return result;

GAE’s Go and PHP runtimes have significantly higher mem-
ory efficiency. In particular, we believe it is the default JVM
memory limit (about 124MB in our test of the Java 8 runtime)
that causes the Java runtimes the worst in this case. Note that
JVM’s default maximize size of the memory allocation pool
(MaxHeapSize) is one fourth of the “physical” memory
or 1GB (whichever is smaller).

To avoid possible out-of-memory errors, we decided to
choose 35 as the index of Fibonacci string concatenation.
Also to facilitate observing the performance of five runtimes
in the non-recursive experiment, we triple the 35th concate-
nation to act as the benchmark workload of each trial. The
experimental results are visualized in Figure 6.

In the recursive experiment, although performing better
than PHP on average (cf. Table 2), the Python runtime
exhibits surprisingly high variation roughly between 16 and
40 seconds. By zooming in on the Java and Go runtimes only,

4703

IEEE Access

Z. Li, X. Guo: Do Google App Engine’s Runtimes Perform Homogeneously? Empirical Investigation for Bonus Computing

TABLE 2. Comparison between different GAE runtimes w.r.t. recursive
string concatenation.

Runtime | Average Latency (35th) | Memory Overflow Index
Java 7 1479.0ms 37th
Java 8 990.4ms 37th
Python 8833.7ms 40th
Go 805.5ms 44th
PHP 10058.1ms 45th
Java7 Java8 Python Go PHP
80000
Z 60000
g
P
2 40000
B
j
20000
0 R > " A _

1 21 41 61 81 101 121 141
Number of Trials

(a)

Java7 Java8 Go
6000
2 5000
g
>
E 4000
35
2000
1 21 41 61 81 101 121 141
Number of Trials
(b)
Java7 Java8 Python Go PHP
400
2 300
%
§ 200
<
|

0
1 21 41 61 81 101 121 141
Number of Trials
©

FIGURE 6. Latency of Fibonacci string concatenation in the five runtimes
of the GAE standard environment. (a) The 35th*3 recursive Fibonacci
string concatenation. (b) The 35th*3 recursive Fibonacci string
concatenation. (c) The 35th*3 non-recursive Fibonacci string
concatenation.

Java 8 seems to be a significant improvement from Java 7 at
least for this type of jobs, and Go clearly shows its advantage
while still having regular performance drops.

4704

As for the experiment of non-recursive Fibonacci string
concatenation, surprisingly, the Java runtimes perform the
worst with even large variations. Go still wins in such work,
followed by the Python and PHP runtimes that are both close
to Go in terms of the latency or speed.

D. INVESTIGATION INTO REGULAR PERFORMANCE
DETERIORATION OF THE GO AND JAVA 8 RUNTIMES
By focusing on the Go runtime, we see regular performance
deterioration in many experiments especially the recursive
ones (e.g., Figure 6b). As mentioned in the experimental
design (cf. Section III), each continuous execution session of
our experiments on GAE has about a ten-minute limit, and
thus we had to manually issue a new request (by refreshing the
webpage) roughly every dozen or fifteen minutes to conduct
relatively long-term experiments. Interestingly, the perfor-
mance deterioration of Go runtime seems to happen at every
request. Such a phenomenon reminds us of the observations
on two Java runtimes’ performance during our pilot exper-
iments. When dealing with light workloads like calculating
the 22th or so Fibonacci number, the Java runtimes have
the similar regular pattern. Thus, we reran the two typical
experiments where Java 8 and Go first showed up with regular
performance drops, namely the 22th 1 ong Fibonacci number
calculation in Java 8 (cf. Figure 7a) and the 35th*3 String
Fibonacci string concatenation in Go (cf. Figure 7b).
Considering that an application running on GAE
can dynamically launch multiple instances to satisfy
requests [21], we hypothesize that those performance drops
correspond to the lifecycles of different application instances
on GAE. Following the idea of instance tracking in [21],
we also use a global static variable (i.e. instanceID in
the Go code below) to track GAE application instances.
It is noteworthy that global static variables of an application
instance can be initialized only once and then their values will
never change during the instance’s lifecycle. Thus, by trying
to vary the value of the static variable as the benchmarking
trials proceed, we will be able to identify new application
instances if the variable’s value changes. To emphasize this
generic feature, we use the Go code to demonstrate our
solution:

func handler (w http.ResponseWriter, r
xrhttp.Request) {
ctx := appengine.NewContext (r)
fiboIndex := 35
for instanceID := 1; instancelID <= 150;
instanceID++ {
totalTime := FiboTime (fiboIndex)
dataStore (ctx, instancelID, totalTime)
time.Sleep (20 * time.Second)
}
fmt .Fprint (w, "Finish")

The instance tracking results from our benchmark appli-
cations are illustrated in Figure 8. It is interesting to see

VOLUME 7, 2019

Z. Li, X. Guo: Do Google App Engine’s Runtimes Perform Homogeneously? Empirical Investigation for Bonus Computing

IEEE Access

—— 22th Fibonacci long in Java 8

Laterncy (ms)
o v o

<
~

N | U O R 1 O P

1 21 41 61 81 101 121 141
Number of Trials

(@)
— 35th*3 Fibonacci String in Go
6.5
5.5
4.5
3.5

Latency (s)

2.5

1 21 41 61 81 101 121 141 16l
Number of Trials

(b)

FIGURE 7. Typical performance drops in the Java8 and Go runtimes.
(a) Performance drops of the Java 8 runtime. (b) Performance drops of
the Go runtime.

that the identified eight and six instances exactly match the
aforementioned performance jitters of the Java 8 and Go
runtimes respectively (cf. Figure 7). However, the two run-
times’ performance deteriorations have different occurrence
patterns. On the Java 8 runtime, it seems that performance
drops at the beginning of each application instance’s lifecycle
(cf. Figure 8a); whereas the performance deterioration seems
to happen at the end of every instance lifecycle on the Go
runtime (cf. Figure 8b). In addition, we reckon that GAE tries
to launch multiple (two in this case) instances simultaneously
to deal with potential request flood when running a new
application.

Recall Java’s Just-In-Time (JIT) compilation mechanism
that compiles bytecodes into machine code to improve
applications’ performance at the first run. Since JIT compila-
tion also consumes processing resources as well as process-
ing time, the performance drops of Java 8 runtime can be
explained to be the extra resource/time consumption (about
1.3 milliseconds according to Figure 7a in this experiment)
by the JIT compiler. In fact, it has been confirmed that JVM
needs a “warm up” period before actual working [21] to
initiate a high-efficient and consistent computation. How-
ever, the performance drops of Java runtime become negli-
gible (and invisible) for heavy workloads, as demonstrated
in Figure 3, which indicates that the overhead of JIT com-
pilation could be generally trivial at least in this type of
workloads.

VOLUME 7, 2019

® [nstancel X Instance2 Instance3 + Instance4
A Instance5 Instance6 # Instance? X Instance8
1.6
o + A ¢ X
é 1.2
>
Q
5 08
=
|
0.4
i S Ry
0 20 40 60 80 100 120 140
Number of Trials
(@
@ Instancel X Instance2 Instance3
+ Instance4 A Instance5 Instance6
6.5
oX + A
- 5.5
>
% 4.5
=
—~ 35
R T
1.5

0 20 40 60 80 100 120 140 160
Number of Trials

(b)

FIGURE 8. Tracking instances of the two benchmark applications
corresponding to Figure 7. (a) Instance tracking in the Java 8 runtime.
(b) Instance tracking in the Go runtime.

As for the Go runtime, given the occurrence moments
of the performance deterioration, we believe that the root
cause lies in Go’s garbage collection (GC) mechanism, and
the overhead of GC could take as high as 3.5 seconds in
our experiment. Since our benchmark application footprints
both stack space (recursive Fibonacci) and heap space (string
concatenation) in memory, it would not be surprising for
heavy workloads to trigger GC activities at the end of instance
lifecycles. On the other hand, we do not see any performance
deterioration for lightweight jobs in the Go runtime.

E. COMPARISON BETWEEN THE 11 CURRENTLY
AVAILABLE REGIONS

Developing datacenters in different geographical regions
has become a common practice to improve the reliabil-
ity and scalability of Cloud services. Considering the pos-
sible inconsistency in the datacenter development from
different locations, we are also concerned with the per-
formance homogeneity across all the available regions of
GAE. Given the previous experimental results, Java 8§ is
clearly the most stable one among all the runtimes espe-
cially for recursive programs. Therefore, we choose the
Java 8 runtime to represent GAE in the region-related

4705

IEEE Access

Z. Li, X. Guo: Do Google App Engine’s Runtimes Perform Homogeneously? Empirical Investigation for Bonus Computing

performance study. And also to demonstrate our experiment
with different sizes of workloads, we employ the recursive
calculation of the 45th 1 ong Fibonacci number to benchmark
GAE standard environment within the totally 11 available
regions at the time of writing, namely northamerica-
northeast] (Montréal), us-central (Iowa), us-eastl (South
Carolina), us-east4 (Northern Virginia), southamerica-eastl
(Sao Paulo), europe-west (Belgium), europe-west2
(London), europe-west3 (Frankfurt), asia-northeast1 (Tokyo),
asia-southl (Mumbai), australia-southeastl (Sydney) [30].

Latency (ms)

14000
12000
10000
8000
6000
4000
CRRRRARR
0
S S S EE S

-
ENEINS & & & *\
F L& & ETE TS F I
F F ¥ J g LSS
&) S N N 3) & &
o L ‘\0\) S &S
& ¥ & & &Sy L
& N d & & F S
¥ ¥ & X
S & N
& & L
° N
L
IS
Region

FIGURE 9. Performance comparison of the Java 8 runtime for recursively
calculating the 45th 10ng Fibonacci number in the 11 available regions
(the error bars indicate the standard deviations).

As can be seen from the benchmarking results in Figure 9,
we cannot expect even close runtime performance across all
the regions of GAE. The regions offering relatively the best
GAE environment seem to be europe-west2, europe-west3
and the two Asian ones. Although the Australian and North
American ones and us-east4 also host best-performance
runtimes on average, they have slightly bigger variations.
Compared to these seven regions in this experiment, GAE
runtimes in southamerica-east! and us-centrall show more
than two times worse performance in terms of execution
latency as well as significant performance fluctuations, fol-
lowed by us-eastl and europe-westl.

V. THREATS TO VALIDITY

We aim to conduct a fundamental performance investigation
into GAE runtime environments for squeezing GAE’s free
quota in Bonus computing. The heterogeneous experimental
results show that it is possible to enjoy more computing power
by properly selecting runtime and region of GAE. However,
our study still remains some threats to fully understanding
and assessing GAE.

Firstly, we ignored time-related performance homogeneity
of GAE. It is known that Cloud services may exhibit different
quality due to the uncertain resource competitions at different
times. Thus, a longer-term monitoring would be valuable to
further reveal whether or not GAE performs homogeneously

4706

along the time goes by. Unfortunately, given the free quota
limits of GAE, the whole-day or longer evaluation is not
feasible with our current experimental design. To relieve
this threat at least in theory, we follow the common experi-
ence/suggestion to expect better performance of GAE within
off-peak periods, e.g., during nights in the corresponding
regions.

Secondly, the extensive experiments for comparing differ-
ent language runtimes were conducted in one region only,
i.e. asia-northesastl(Tokyo) by default in our case. We admit
that it is impossible to guarantee the same observations
on different GAE runtimes in the other regions, unless the
experimental results are reproduced in each of them. How-
ever, to answer the question thrown in the title, we have
already been able to draw generic conclusions from the
current investigation (cf. Section VI). In particular, a sin-
gle runtime (the Java 8 runtime in this study) is enough
to confirm that the factor of geographical location does
have impacts on GAE’s performance. On the other hand,
we have designed student assignments of replicating exper-
iments in different GAE regions, in order to supplement our
study.

Thirdly, we only employed Fibonacci number calculation
and Fibonacci-like string concatenation as benchmarks in
this performance engineering study. Due to GAE’s strong
restrictions on programming flexibility inside its sandbox
(e.g., all code in the Python runtime environment must
be pure Python), it is extremely challenging to migrate
the de facto benchmarks (such as Bonnie++ for storage,
NPB benchmark suite for parallel computing, HardInfo for
system as a whole, etc.) to different GAE language run-
times. Nevertheless, it is usually valuable to use different
benchmarks as different lens to reveal the nature of Cloud
services [10]. Driven by this dilemma, we have decided to
start from migrating lightweight open-source benchmarks
(e.g., STREAM for memory), in order to gradually extend
our investigation. As our effort progresses, the ambitious goal
will be delivering a PaaS-friendly multi-language benchmark
suite.

VI. CONCLUSIONS AND FUTURE WORK
To address the potential ethical threats of parasitic comput-
ing and the possible source limits of volunteer computing,
we have proposed Bonus computing and tried to employ
free quotas of public Cloud services to satisfy particular
class of computing demands. The public PaaS GAE is then
selected as a suitable source that provides limited while
free Cloud resources for our Bonus computing. After all,
given its native support for various programming languages
that is closely related to a PaaS’s productivity [31], GAE
has widely been accepted as a flexible and powerful plat-
form for startups and small businesses from the end users’
perspective [32].

Given the multiple options of using GAE standard envi-
ronment, it is beneficial to understand and compare those

VOLUME 7, 2019

Z. Li, X. Guo: Do Google App Engine’s Runtimes Perform Homogeneously? Empirical Investigation for Bonus Computing

IEEE Access

different options to avoid choice overload and help squeeze
the free computing power. As an initial step, we followed
the methodology DoKnowMe and conducted a fundamental
investigation into the free-quota performance of GAE’s five
available runtimes. Our investigation reveals that:

o The PHP runtime can be excluded from our choice list
for its poor computation performance. Recall that, as a
continuation of parasitic computing and volunteer com-
puting, the bonus computing paradigm is also in favor
of distributable and compute-intensive tasks. However,
PHP has widely been used as a web development script-
ing language for dynamic webpage generation rather
than for CPU-intensive computation. Furthermore, com-
pared to the other runtimes, PHP seems to have strict
response time limit by default. For example, with-
out customer configurations, PHP programs can barely
sleep longer than 30 seconds during their execution on
GAE.

« Although the Python runtime has been considered to
be better developed with various advantages, we also
treat its relatively poor computation speed as a signif-
icant weakness in bonus computing. Given the identi-
fied ten-minute time limit of each continuous execution
session, we expect individual bonus computing tasks to
be fine-grained and able to be completed as quickly as
possible.

e Java 8 is the most competitive runtime in terms of
numerical computation on GAE. However, if including
memory as a concern, it seems that the default JVM set-
ting makes the Java runtimes lag far behind the other lan-
guage runtimes in terms of the memory usage efficiency.
In other words, GAE does not optimize environment
variables of the Java runtime on behalf of customers,
and thus Java applications can run out of memory much
earlier than the other language runtimes do. On the other
hand, JIT also causes regular performance deterioration
since it start with a ““warm up”’ to improve computation
efficiency and consistency.

o In addition to the difference in language runtimes,
GAE also performs differently across its 11 geo-
graphical regions. It is not surprising that Google
must have deployed heterogeneous hardware resources
to construct its datacenters all around the world.
From the service provider’s perspective, GAE run-
time environments need to be largely improved in
the regions southamerica-eastl and us-centrall. Before
the provider’s improvement, practitioners had better
avoid selecting these regions when employing the GAE
service.

Overall, although the Go runtime could have performance
deterioration due to GC (cf. Section [V-D), we select Go to be
a well-trade-off and easy-to-use GAE runtime environment
for our Bonus computing, and selecting the Java 8 runtime
to be an alternative that requires optimizing its environment
variables manually. Correspondingly, our future work will be
unfolded along two directions. On one hand, we will focus on

VOLUME 7, 2019

the Java 8 and Go runtimes to conduct more comprehensive
experiments (e.g., multi-thread application benchmarking)
to deeper understand GAE. On the other hand, we will start
implementing Bonus computing prototypes in the Go runtime
environment of GAE.

REFERENCES

[1] M. N. Durrani and J. A. Shamsi, “Volunteer computing: Requirements,
challenges, and solutions,” J. Netw. Comput. Appl., vol. 39, pp. 369-380,
Mar. 2014.

[2] A.-L. Barabdsi, V. W. Freeh, H. Jeong, and J. B. Brockman, ‘“Parasitic
computing,” Nature, vol. 412, pp. 897-984, Aug. 2001.

[3] Z.Li,Y.Chen, M. A. Rodriguez, and L. Deng, ‘“Bonus computing: An evo-

lution from and a supplement to volunteer computing,” in Proc. 27th Int.

Conf. Inf. Syst. Develop. (ISD), Aug. 2018, pp. 1-12. [Online]. Available:

https://aisel.aisnet.org/isd2014/proceedings2018/ISDevelopment/3/

Google. (Oct. 2018). The App Engine Standard Environment. [Online].

Available: https://cloud.google.com/appengine/docs/standard/

S. S. Iyengar and M. R. Lepper, “When choice is demotivating: Can one

desire too much of a good thing?” J. Pers. Social Psychol., vol. 79, no. 6,

pp. 995-1006, 2000.

[6] B. Nice. (Mar. 2017). A Complete List of Computer Programming
Languages. [Online]. Available: https://medium.com/web-development-
zone/a-complete-list-of-computer-programming-languages-1d8bc5a89 1

[7] M. Sherman. (Jul. 2015). Why are There so Many Programming Lan-

guages? [Online]. Available: https://stackoverflow.blog/2015/07/29/why-

are-there-so-many-programming-languages/

Stack Overflow. (Jul. 2009). Choosing Java vs Python On Google

App Engine. [Online]. Available: https://stackoverflow.com/questions/

1085898/choosing-java-vs-python-on-google-app-engine

Quora. (Oct. 2015). Is There Performance Difference Running App Engine

With GO, PHP, Python or Java? If There is Which Language Performs

Best? [Online]. Available: https://www.quora.com/Is-there-performance-

difference-running- App-Engine-with-Go-PHP-Python-or-Java-If-there-

is-which-language-performs-best

[10] Z.Li, H. Zhang, L. O’Brien, R. Cai, and S. Flint, ““On evaluating commer-
cial Cloud services: A systematic review,” J. Syst. Softw., vol. 86, no. 9,
pp. 2371-2393, Sep. 2013.

[11] R. Prodan, M. Sperk, and S. Ostermann, “Evaluating high-performance
computing on Google App engine,” IEEE Softw., vol. 29, no. 2,
pp. 52-58, Mar./Apr. 2012.

[12] P. Fisher, R. Pant, and J. Edberg, Cloud Computing: Assessing Azure,
Amazon EC2, Google App Engine and Hadoop for IT Decision Making
and Developer Career Growth. Berkeley, CA, USA: Apress, Feb. 2010.

[13] Z. Li, L. O’Brien, and M. Kihl, “DoKnowMe: Towards a domain
knowledge-driven methodology for performance evaluation,” ACM SIG-
METRICS Perform. Eval. Rev., vol. 43, no. 4, pp. 23-32, Mar. 2016.

[14] E. Betz. (Aug. 2010). Donated Computer Time Discovers New Star.
[Online]. Available: https://www.insidescience.org/news/donated-
computer-time-discovers-new-star

[15] GIMPS. (Oct. 2018). Great Internet Mersenne Prime Search. [Online].
Available: https://www.mersenne.org/

[16] A.L.Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S. Pande,
“Foldinghome: Lessons from eight years of volunteer distributed com-
puting,” in Proc. 8th IEEE Int. Workshop High Perform. Comput. Biol.
(HiCOMB) Conjunct 23rd Int. Symp. Parallel Distrib. Process. (IPDPS).
Rome, Italy, May 2009, pp. 1-8.

[17] G. Lawton, “Developing software online with platform-as-a-service tech-
nology,” Computer, vol. 41, no. 6, pp. 13—-15, Jun. 2008.

[18] R.Prodan and M. Sperk, ““Scientific computing with Google App engine,”
Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1851-1859, Sep. 2013.

[19] R. Ramasahayam and R. Deters, “Is the Cloud the answer to scalability
of ecologies? Using GAE to enable horizontal scalability,” in Proc. 5th
IEEE Int. Conf. Digital Ecosyst. Technol. (IEEE DEST). Daejeon, Korea,
May/Jun. 2011, pp. 317-323.

[20] I. Shabani, A. Kovagi, and A. Dika, “Possibilities offered by Google App
engine for developing distributed applications using datastore,” in Proc.
6th Int. Conf. Comput. Intell., Commun. Syst. Netw. (CICSyN), May 2014,
pp. 113-118.

[21] M. Sperk, ““Scientific computing in the cloud with Google App engine,”
M.S. thesis, Fac. Math., Comput. Sci. Phys., Univ. Innsbruck, Innsbruck,
Austria, Jan. 2011.

[4

=

[5

—

[8

[9

—

4707

IEEE Access

Z. Li, X. Guo: Do Google App Engine’s Runtimes Perform Homogeneously? Empirical Investigation for Bonus Computing

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

4708

J. Hollingsworth and D. J. Powell, “Teaching Web programming using
the Google cloud,” in Proc. 48th Annu. Southeast Reg. Conf. (ACM SE).
Oxford, MS, USA, Apr. 2010, Art. no. 76.

A. Tabot and M. Hamada, “Mobile learning with Google App engine,” in
Proc. IEEE 8th Int. Symp. Embedded Multicore/Manycore SoCs (MCSoc),
Sep. 2014, pp. 63-67.

S. P. T. Krishnan and J. L. U. Gonzalez, Google App Engine. Berkeley, CA,
USA: Apress, May 2015, ch. 5, pp. 83-122.

A. de Jonge, Essential App Engine: Building High-Performance Java Apps
with Google App Engine (Developer’s Library). Upper Saddle River, NJ,
USA: Addison-Wesley, Oct. 2011.

J. D. Y. Correa and J. A. B. Ricaurte, “Web application deveploment
technologies using Google Web toolkit and Google App engine-java,”
IEEE Latin Amer. Trans. (Revista IEEE America Latina), vol. 12, no. 2,
pp. 372-377, Mar. 2014.

D. Sanderson, Programming Google App Engine with Python: Build and
Run Scalable Python Apps on Google’s Infrastructure. Sebastopol, CA,
USA: O’Reilly Media, Jul. 2015.

J. D. Blower, “GIS in the Cloud: Implementing a Web map service on
Google App engine,” in Proc. Ist Int. Conf. Exhib. Comput. Geospatial
Res. Appl. (COM.Geo), Washington, DC, USA, Jun. 2010, Art. no. 34.
M. Malawski, M. KuZniar, P. Wéjcik, and M. Bubak, ‘“How to use Google
App engine for free computing,” IEEE Internet Comput., vol. 17, no. 1,
pp- 50-59, Jan. Feb. 2013.

Google App Engine. (Mar. 2018). The App Engine Locations. [Online].
Auvailable: https://cloud.google.com/appengine/docs/locations

O. Gass, H. Meth, and A. Maedche, “PaaS characteristics for productive
software development: An evaluation framework,” IEEE Internet Comput.,
vol. 18, no. 1, pp. 56-64, Jan. 2014.

A. Sekhon, “PAAS framework implementation of cloud computing with
Google application engine—A review,” Int. J. Comput. Sci. Eng. Technol.,
vol. 6, no. 6, pp. 218-222, Jun. 2016.

ZHENG LI received the B.Eng. degree from
Zhengzhou University, the M.Sc.Eng. degree from
the Beijing University of Chemical Technology,
the M.E. by Research degree from the University
of New South Wales, and the Ph.D. degree from
Australian National University. He was a Postdoc-
toral Researcher with the Cloud Control Group,
Lund University, Sweden. He was also a Visit-
ing Research Fellow with the Software Institute,
Nanjing University, China, and with Data6l,
CSIRO, Australia. Before studying abroad, he had around four-year indus-
trial experience in China after receiving his M.Sc.Eng. degree. He is currently
an Assistant Professor in software engineering and computer science with
the University of Concepcidén, Chile. His research interests include big
data analytics, cloud computing, performance engineering, and empirical
software engineering.

XUE GUO is currently a Research Master
Student with the Software Institute, Nanjing
University, China. She has been active as a
volunteer to serve the research community, includ-
ing multiple international conferences. In addi-
tion to having scientific papers published in
the Web service composition domain, she also
attended an outreach program toward the collabo-
ration with industry. Her research interests mainly
include service-oriented computing and empirical
software engineering.

VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	EMERGENCE OF BONUS COMPUTING
	PERFORMANCE EVALUATION OF GAE

	EXPERIMENTAL DESIGN
	CLOUD RESOURCE TO BE EVALUATED
	BENCHMARK WORKLOAD
	CLOUD CAPACITY TO BE MEASURED

	INVESGITATION RESULTS AND ANALYSES
	RECURSIVE FIBONACCI NUMBER CALCULATION
	NON-RECURSIVE FIBONACCI NUMBER CALCULATION
	FIBONACCI STRING CONCATENATION
	INVESTIGATION INTO REGULAR PERFORMANCE DETERIORATION OF THE GO AND JAVA 8 RUNTIMES
	COMPARISON BETWEEN THE 11 CURRENTLY AVAILABLE REGIONS

	THREATS TO VALIDITY
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	ZHENG LI
	XUE GUO

