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ABSTRACT In this paper, we present a novel convolutional neural network (CNN)-based model for change
detection in synthetic aperture radar (SAR) images. Considering that change detection task takes image
pairs as an input, we first explore multiple neural network architectures, which are specifically adapted to
the change detection task. There are several ways in which patch pairs can be processed by the network and
how information sharing can efficiently learn the semantic difference between the changed and unchanged
pixels. For this reason, we then design a ‘‘Siamese samples’’ CNN, which treats patch pairs as indiscriminate
samples to extract descriptors and then joins for their outputs. During training, the two patch features are
extracted by the same network instead of separate sub-networks, while the joining neuron measures the
distance between the two feature vectors. Due to ‘‘pseudo-labels’’ with high accuracy that is difficult to
obtain, we modify a joint classifier based on the fuzzy c-means method into joint-similarity classifier as
preclassification to obtain coarse ‘‘pseudo labels,’’ and discard sample selection. Thus, the preclassification
labels with a low accuracy are used to fine-tune the network. Finally, a significantly improved change
detection result can be obtained from the network. The proposed architecture provides a better trade-off in
terms of speed and accuracy among its counterparts (Siamese, Pseudo-Siamese, and 2-Channel networks).
The experiments on several real SAR data sets demonstrate the state-of-the-art performance of the proposed
method compared with the advanced change detection methods.

INDEX TERMS Convolutional neural networks, Siamese networks, change detection, synthetic aperture
radar, local descriptor learning.

I. INTRODUCTION
Image change detection is to identify the changes between the
two images captured in the same area but at different times.
Change detection plays an important role in various fields
such as medical diagnosis, environmental monitoring, video
surveillance [2]–[4]. Especially, when a natural catastrophe
strikes, an efficient change detection technology appears
crucial for disaster relief and disaster evaluation. In addition,
SAR sensor is independent of atmospheric and sunlight

condition, so it can complete earth observation with features
of all-day, round-the-clock work, and high resolution, etc.
Given its unique advantages, it has been widely researched
in the past few decades [5]–[9].

Early works on this problem as mentioned [5], [7], [10],
change detection technologies for SAR images consist of
three steps: 1) Image pre-processing; 2) Producing the dif-
ference images (DI) based on multitemporal images; and
3) Analysis of difference images. The image pre-processing
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techniques including co-registration, radiation correction and
denoising are first used. The research of change detection in
many existing literatures focuses on the last two steps [7]–[9].
Furthermore, SAR images always suffer from the effect of
speckle noises, which results in a more difficult process than
optical images change detection. In order to overcome this
difficulty, a variety of methods are proposed for reducing the
corruption in SAR images [11]–[13]. In the step of generating
DI, ratio operator is commonly used as its robustness and
nonsensitive to speckle noises [14], [15]. In the step of ana-
lyzing the DI, images clustering and threshold strategies are
often used, which can be seen as segmentation problem [3].
The fuzzy c-means method (FCM) is one of the most popular
clustering algorithms, which outperforms hard clustering on
retaining more information in some cases [10]. However,
owing to the original FCM method without considering
spatial context, it is sensitive to speckle noise. In [7], an FCM-
based method (i.e., the MRFFCM method) for SAR image
change detection is shown, which incorporates the MRF
model with a novel form of energy function in the procedure
of FCM, and focuses on the modification of the member-
ship to reduce the effect of speckle noise. In the threshold
methods, it detects changes by obtaining a decisive threshold
to the histogram of the DI. For example, the Generalized
Kittler&Illingworth (GKI) method is proposed in [9], which
considers non-Gaussian distribution of the amplitude values
of SAR images to find an optimal threshold. However, it is
difficult to estimate a proper probability distribution from
the DI in thresholding methods. Researchers have introduced
many advanced approaches such as graph cut and level set
based methods [16], [17].

Recently, there is the idea of deep learning that has
accounted for the mainstream, especially in CNN-based
research and applications [18]–[20]. That has made a great
breakthrough in computer vision tasks such as image recogni-
tion, image classification and image segmentation [21]–[24].
To put it simply, deep learning is able to acquire the high-level
expression of information contributed by multilayer neural
network and the nature of nonlinearity. This makes it be of
the capacity of automatically learning complex relationship
from raw data. In [25], a fast greedy learning algorithm is
proposed, i.e., deep belief networks (DBN), which greedily
train for every layer. Convolutional neural network (CNN) is
one of the earliest deep learning models, and it has become
one of the most popular models. Due to remarkable per-
formance of deep learning in image processing, it has been
introduced to change detection. In existing works [26]–[29],
denoising auto-encoders (DAE) seems to be popular for this
problem. Owing to its favorable property of unsupervised
reconstruction, it can be carried out with a post-classification
comparison manner for feature learning and mapping [26],
[30]. In most cases, this model is used by an integrated man-
ner with other network models [27], which is similar to the
restricted Boltzmann Machine (RBM) [25]. In general, RBM
is used to initialize the weights and bias of the network so that
derives the learning process towards the positive direction

in an unsupervised way [28]. It can improve the network
performance to some extent. In terms of the adoption of DBN
including a stack of RBM, in [28], it concatenates directly two
local patch vectors as a sample, and then feed them into deep
neural network. It turned out that deep learning is potential
and available for change detection. And this provides a fea-
sible scheme for two parallel inputs. This mode of concate-
nation also is used in matching patch pairs using CNN [1],
[31], [32], which join two descriptor vectors at the top fully
connected layer of the network. Due to a natural adaption
of CNN with two parallel inputs, recently, local descriptor
learning has been widely studied using CNN [33], [34]. For
our problem, multitemporal SAR images correspond rightly
to two parallel inputs to the network. The learned descriptors
by CNN are robust to geometric distortions of the input
images. These advantages are perfect for SAR image change
detection. However, to our knowledge, it has rarely been
studied directly.

In addition, in existing change detection methods based
on deep learning, it generally uses a pre-classification result
(‘‘pseudo-labels’’) as sample labels to fine-tune the net-
work [28]. Pre-classification labels are often obtained by
traditional methods or manual [27], [28]. To better learn
mapping relationship and avoid the effect of misclassifica-
tion, the available algorithms tend to pick up the labeled
data with high accuracy to train the network. The common
ways are selecting samples as correctly classification as
possible or most-unlikely-changed feature pairs as training
data [27]. In this way, it comes at the costs in terms of com-
putation and time complexities produced by these additional
works.

In order to address the above problems and take advan-
tage of the recent success in comparing patches via
CNN [35], [36], we try to design and explore different net-
work architectures based on CNN that can process patch
pairs as input for SAR image change detection. Follow-
ing this, we expect that can strongly reduce corruptions of
speckle noise with low complexities of computation and time,
and meanwhile lower the requirement of preclassification
accuracy. We compare the proposed architecture to several
advanced CNN-based architectures (i.e., Siamese, Pseudo-
Siamese and 2-Channel networks shown in [1]) and DNN
method [28] on four real SAR data sets. Experimental results
demonstrate the effectiveness and advantages of the proposed
approach. Above all, it can be summarized for main contri-
butions of this paper into two aspects:

1) We explored and tested multiple CNN-based architec-
tures to learn a classifier, which can classify changed and
unchanged areas for SAR images change detection. These
architectures are specifically adapted to our task. We then
design information sharing of two patches just via a single
branch convolutional networks that can accept patch pairs
as parallel input. The key idea is refer to double samples,
called a ‘‘Siamese samples’’ convolutional neural network.
In contrast to available architectures, the experimental results
demonstrate the designed architecture provides an optical
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trade-off between accuracy and runtime. Owing to end-to-
end local feature detector extracts high-level descriptors from
two patches, the proposed method has strong robustness to
speckle noises.

2) This paper presents a more simplified step for algorithm
framework and reduces the requirement of the accuracy of
pre-classification labels compared with [27] and [28]. That
means there is no samples selection or designed additional
processing. We modified JFCM [28] into simple and efficient
to obtain ‘‘pseudo labels’’. Thus, this method is efficient and
precludes the need for the complications in other works.

The remainder of this paper is organized as follows.
Section II describes related works of CNN settled for match-
ing patches by local descriptor learning. Section III describes
the proposed method in detail. In Section IV, experimental
results on real multitemporal SAR images are presented for
verifying the performance of the approach. Finally, the con-
clusion is drawn in Section V.

II. RELATED WORK
The problem for matching image patches based on CNN
plays an important role in a wide variety of computer vision
community [1], [31]. Many related works have reported
the significant improvements for matching performance by
local descriptor learning [33]–[35]. Matching patches has lots
of applicable situations such as signature verification [29],
the stereo matching [32] and face verification [37]. The key
to the issue is that the network needs to accept two parallel
inputs, i.e., a pair of images, which is fit to the problem of
SAR image change detection so well.

Hence, for our aim of change detection, given two SAR
images, it can be concretely described as identifying whether
change for every pixel based on local descriptor learning. This
in itself is a binary classification problem, i.e., classify each
pixel into changed classes or unchanged classes. The final
change detectionmap is shown by the changed classes labeled
for 1, others labeled for 0 or reverse. Our purpose is thus to
predict such a final change map through the trained network
based on discriminative descriptor learning.

In the example of signature verification, [31] proposed the
time delay neural networks called Siamese network, which
is one of the most popular networks. Based on this net-
work, [37] have improved the loss function (i.e., proposed
the contrastive loss function) to learn a similarity metric for
face verification application, which primarily targets the case
that samples have the large number of categories but each
category has small number and only known a subset of the
categories during training. When the loss function is mini-
mized by training, the similarity metric is driven for being
small if pairs of faces from the same person, and being large
for pairs from different person. The model can later be used
to compare or match new samples from previously-unseen
categories. For matching over a pair of small baseline stereo,
the method in [32] have presented a specific architecture of
CNN, which refreshed the best record on the KITTI stereo
dataset. However, it cannot work well on a different dataset.

We need to design a specificCNN-based architecture for SAR
images change detection. In [36], focusing on training sam-
ples, it proposed the network with positive and negative pairs
(PN-Net) formed by triplets of patches for better learning
discriminative local descriptors and a matching metric.

About the existing and various architectures based on
CNN, the paper [1] provides a conclusive contribution.
It investigated and exhibited different trade-offs and advan-
tages among three basic models, also including Central-
surround two-stream networks. However, in view of the low
complexity for our project, we do not try to employ the latter
network. The three basic structures are Siamese, Pseudo-
siamese and 2-channel, respectively, described by [1].
As aforementioned, we use them as compared architectures,
and analyzing and surveying their advantages and disad-
vantages on change detection of SAR images. By contract,
the experimental results state the excellent performance of the
proposed architecture on accuracy and runtime.

III. METHODOLOGY
The task of change detection is to distinguish the changed
classes and non-changed classes from a pair of co-registered
SAR images Rt1 = {Rt1(i, j), 1 ≤ i ≤ I , 1 ≤ j ≤ J}
and Rt2 = {Rt2(i, j), 1 ≤ i ≤ I , 1 ≤ j ≤ J}, which are
obtained from the identical geographical area but at different
times, i.e., t1 and t2, respectively. In general, the final result
is presented by a binary image map L = {L(i, j) ∈ (0, 1),
1 ≤ i ≤ I , 1 ≤ j ≤ J}, where L(i, j) represents the pixel
value. I × J is the size of the image.
In this section, we describe our method in details. The

proposed method can obtain directly the result of change
detection from raw image pairs, only requiring through the
CNNwithout integrating other models.We still need the label
data to fine-tune the network and learn mapping relationship,
which is the key to our method. The ‘‘pseudo labels’’ are
obtained by a pre-classification method, which no need for a
high accuracy. In our network, discriminative representation
is extracted from the raw data, and then pairs of descriptors
are sent to the top network for learning a distance metric that
identifies changes and unchanges.

A. ALGORITHM FRAMEWORK
The previous works related to algorithms frame-
work [27], [28] can be divided into the following four steps
as shown in Fig. 1: 1) pre-classification for obtaining label
data with high accuracy. 2) selecting reliable examples for
training the network. 3) training and fine-tuning the net-
work. 4) classifying every pixel for changed and unchanged
classes by the trained network. Specially, in [27], it first
obtains each feature representations of two images through
the network, and then generate a DI from two feature maps.
Finally, analyzing the DI leads to produce the final change
detection result. The framework of our proposed algorithm
for change detection consists of three steps: 1) acquiring the
label data by pre-classification method. 2) training and fine-
tuning the network using back propagation (BP) algorithm.
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FIGURE 1. The whole algorithm framework is related to the previous
methods based on deep learning. Only the full line sections are related to
our proposed algorithm.

3) classifying each pixel for changes and unchanges by the
well-trained network, i.e., generate the final change detection
map. The work flow of our algorithm is explicitly shown
in Fig. 2. During preprocessing phase, the training samples
and their labels are obtained, and then both are fed into the
network for training. After training, neighborhood patches of
each pixel of two images are again fed into the network, which
directly outputs the final change map. The class 0 represents
being unchanged, the class 1 represents being changed.

In our system, it requires no sample selection. We use
neighborhood patches of each pixel as training samples to
train the network rather than selecting some special sam-
ples. Compared to [27] and [28], we reduce some additional
works such as omitting the manual parameter used in sam-
ple selection [28]. No sample selection is beneficial for not
only increasing samples diversity, but also can not further
deteriorate the imbalance of samples. They contribute to the
proposed methods for obtaining a competitive performance
and offsetting the effect of mis-reclassification.

B. PRE-CLASSIFICATION METHOD
Our pre-classification method is derived from the joint clas-
sifier based on fuzzy c-means method (JFCM) [28]. It can
be known as joint-similarity classifier (JSC). There is a clus-
tering operation using FCM for each SAR images in JFCM.
However, FCM is the algorithm with an iterative process, and
the quality of result strongly depends on the initial cluster
center. Therefore, it usually is difficult and time-consuming
to obtain an available pre-classification result using JFCM.
In order to improve algorithm efficiency and reduce the com-
plexity, we design to remove the use of FCM from JFCM.
JSC is thus high-efficiency and low-complexity. Although the
accuracy of the result obtained by JSC is far lower than JFCM,
one of the advantages is that the proposed detection algorithm

reduces the requirement for the accuracy of label variations.
That means the proposed method still obtains the excellent
performance even though the pre-classification labels with
strong noises and contamination. JSC is designed for 2-D
images, and the operation is based on gray-level. The general
process of JSC is described in Algorithm 1. The calculation
of similarity is implemented pixel by pixel over two co-
registered intensity SAR image, which is defined as:

Si,j =
|Rt1i,j − R

t2
i,j|

Rt1i,j + R
t2
i,j

(1)

where Rxi,j represents the gray value of images at time x and
the location (i, j), x ∈ (t1, t2).

Algorithm 1 The Process of JSC Method
input: Two original images Rt1 and Rt2.
output: The final binary result L.
1: compute the values of Si,j, vt1i,j and v

t2
i,j for each pixel.

2: compute the global threshold value T according to simi-
larity map S.

3: for for each i ∈ [1, I ] do
4: for for each j ∈ [1, J ] do
5: if vt1i,j ≤ v

t2
i,j then

6: if Si,j ≤ T then
7: Rt2i,j = Rt1i,j
8: end if
9: else
10: if Si,j ≤ T then
11: Rt1i,j = Rt2i,j
12: end if
13: end if
14: end for
15: end for
16: compare R∗t1 and R

∗

t2.

After obtaining the value of similarity, we can further
obtain the global threshold value T by iterative threshold-
ing algorithm [38]. Furthermore, the whole process of our
method only needs to iterate once after acquiring the global
threshold value T . The result generated by JSC is certainly
and extremely coarse. However, the proposed CNN-based
method with it as preclassification can obtain state-of-the-art
performance for change detection. To some extent, it indi-
cates the fact that the network based on discriminative patch
descriptor is of great robustness to noises and contamination,
and it seems to be able to discover the hidden structure
(changed regions) in extremely coarse label map.

Next, according to the principle of minimizing variance,
the classifier determines the reference point from pixel pairs
for classification. We design the pixel with small variance is
chosen as the reference point. It guarantees the result that
unchanged areas have the same pixel value; changed areas
have the different pixel value. The formula of variance is
written as follows:

vxi,j = wxi,j(R
x
i,j − Gi,j)

2 (2)
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FIGURE 2. The work flow of the proposed algorithm. (1) Given two co-registered SAR images, producing the label data by
pre-classification method and processing each pixel into corresponding neighborhood patch as training samples.
(2) Learning a classifier by training and fine-tuning the network. (3) Generating directly the final change map
by the trained network.

where wxi,j is the weight of gray level, and Gi,j is the average
gray value of the weight. The definitions of both are written
as:

wxi,j =
Rxi,j

(Rt1i,j + R
t2
i,j)

(3)

Gi,j =
t2∑

x=t1

wxi,jR
x
i,j (4)

Then, bring (3) and (4) to (2), we can get the formula as
follows:

vxi,j =
Rxi,j

(Rt1i,j + R
t2
i,j)

[Rxi,j −
(Rt1i,j)

2
+ (Rt2i,j)

2

Rt1i,j + R
t2
i,j

]2 (5)

Above all, we eventually obtain the following expressions of
variance pixel by pixel:

vt1i,j = Rt2i,j
Rt1i,jR

t2
i,j

(Rt1i,j + R
t2
i,j)

[Si,j]2 (6)

vt2i,j = Rt1i,j
Rt1i,jR

t2
i,j

(Rt1i,j + R
t2
i,j)

[Si,j]2 (7)

Finally, the classified maps Rt1i,j and R
t2
i,j of two images are

gotten, in which unchanged areas is labeled for the same
gray value, changed areas is labeled for the different gray
value. By direct pixel-wise comparison, we can obtain the
pre-classification result L.
In addition, we design the variant of JSC for surveying the

influence of the mis-preclassification degree on the proposed
architecture (see Section IV. F). The algorithm is described in
Algorithm 2. Generally, JSC-variant can obtain the result with
less white noise spots. But in some cases, it often loses more
detail information of changed areas. The difference between
JSC and JSC-variant is that whether classification is iterated
according to iterative thresholding algorithm.

C. ARCHITECTURES
We first introduce three existing and basic models based on
CNN [1] for change detection. These several models are spe-
cially adapted to our task. They all can complete information
sharing for patch pairs. Grayscale patches are adopted for
training the network. On the whole, the goal of the network is
to construct a detector, which can learn semantic difference
between changed and unchanged pixels. Inspired by these
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Algorithm 2 The Process of JSC-Variant Method
input: Two original images Rt1 and Rt2.
output: The final binary result L.
1: compute the values of Si,j, vt1i,j and v

t2
i,j for each pixel.

2: compute an iteration value T according to similarity
map S.

3: execute steps 3-15 in Algorithm 1.
4: repeat steps 1-3, until the termination of the iterative

threshold algorithm.
5: compare R∗t1 and R

∗

t2.

three basic models, we treat patches pairs as indiscriminate
sample, proposing ‘‘Siamese samples’’ architecture, which
extracts descriptors of two patches by only single network
without sub-branches. And then the outputted descriptor pairs
are joined to learn a detecting metric by minimizing objective
function loss. In this section, we described the proposed
architecture in detail.

1) SIAMESE NETWORK
As shown in Fig. 3, the Siamese network computes descrip-
tors of patch pairs by two branches, each branch takes
as input one of the two patches. For two sets of patches,
Dt1 = {d t1n (i, j), 1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ n ≤ N } and
Dt2 = {d t2n (i, j), 1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ n ≤ N }, where
d t1n (i, j) and d t2n (i, j) both represent the neighborhood patches
at the position (i, j) in two images, respectively, N represents
the number of samples and N = I × J , the two sets are
independently fed to the two branches. The same architecture
and the same weight sets are shared in the two branches [31].
The output of two branches, i.e., computed descriptors, are
concatenated and successively fed into the top fully con-
nected layer. During training, the function loss is minimized,
which drives a similarity metric to be discriminative. The
updating of parameters is implemented by the sum of the
gradients of two sub-branches [37].

FIGURE 3. The shared parameter represents Siamese network. The
unshared parameter represents Pseudo-siamese network.

2) PSEUDO-SIAMESE NETWORK
The Pseudo-siamese network differs from Siamese net-
work only in that whether sharing parameters between two
branches [1]. It is no shared for the weights of the two
branches in Pseudo-siamese network. Similar to Siamese
network, the two sub-network in the first half of the network
aims at computing descriptors of patch pairs (see Fig. 3). Due
to uncoupled weights and architectures, the Pseudo-siamese
network increases the number of parameters, and generally
with a large complexity. On the contrary, this also makes it
more flexible.

3) 2-CHANNEL NETWORK
There are no two independent descriptors that are extracted
by the networks for two patches. The architecture takes two
patches as two feature maps, which are directly fed into the
network [1]. Therefore, after the first convolutional layer
of the network, pairs of patches d t1n (i, j) and d t2n (i, j) are
integrated into one d tn(i, j) [see Fig. 4(a)]. Then the fusion
features are further computed for higher-level representation
by convolutional, sigmoid and pooling layers. The output of
this bottom part is then fed into a top fully connected layer.
In general, the network runs more fast during training and test
than other architectures due to it makes data by half at the first
layer of the network.

FIGURE 4. (a) 2-channel network. (b) The proposed network.

4) THE PROPOSED NETWORK
Above all, we simply consider the two patches of an input
pair as two indiscriminate samples, which are directly fed
to the first convolutional layer. Specifically, the network
takes ordered sample sequence D = {[d t1n (i, j), d t2n (i, j)],
1 ≤ i ≤ I , 1

¯
≤ j ≤ J , 1 ≤ n ≤ N } as input, (where [·, ·]

represents the two samples with respect to patch pairs at the
position (i, j) and indicates the location relationship of patch
pair as two independent samples, i.e., two samples corre-
sponding to patch pairs is next to each other when feeding into
the network. Notice that the total number of samples is 2N ).
Different from Siamese network with two sub-network,
per-branch accepts one of pairs of patches as input.
Comparatively, our network with a single branch directly
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accepts double samples as input. After the descriptors are
obtained by bottom network, i.e., convolutional, sigmoid
and pooling layers, and then the concatenation vectors of
descriptor pairs are fed to the top fully connected layer to
learn a detecting metric for identifying whether changes. The
concatenated descriptors can be expressed by equation as
Dv∗ = {dv∗n = (d t1n (i, j) ◦ d t2n (i, j), 1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤
n ≤ N }, (where dv∗n is one sample and (· ◦ ·) represents the
concatenating of vectors of two descriptors, and it is worth
noticing where the number of samples is N instead of 2N ).

In a sense, this network [see Fig. 4(b)] can be viewed as
sharing the parameters via a single branch for two parallel
inputs. It treats a pair of patches as indiscriminate samples at
descriptor learning phase, but needs to keep their positional
relationship for convenience to concatenating two descriptors
at a top decision layer. In this case, the gradient of the loss
function with respect to the parameter vector controlling dou-
ble samples is computed using back-propagation. The gradi-
ent is updated as ordinary network but with double samples.
This differs from Siamese network that the parameters are
updated using the sum of the gradients contributed by two
sub-branches. The proposed architecture contributes benefi-
cially to the robustness to speckle noises for learning a better
representation. On the contrary, 2-channel network makes
two patches information joint, which may drives speckle
noises joint and not easy to remove as shown in Section IV.
The proposed architecture gives a better trade-off between
accuracy and runtime than comparative architectures under
the same environment configurations.

D. IMPLEMENTATION DETAIL AND TRAINING PROTOCOL
Our network is easy to implement. Compared with the
ordinary single branch CNN, we only need to adjust

corresponding parameters to adapt double and siamese sam-
ples for running. The work detail of the proposed architecture
is illustrated in Fig. 5. The specific architecture consists of
four layers. In the experiments, we try various architectures
such as setting more layers, different size of convolutional
kernel and mean pooling, etc. These results have no signifi-
cant difference.

Fig. 5 shows one of best-performing structures. In order
to follow-up easy to use, this architecture can be represented
as (C4-2)-S2-(C2-6), where (Cx-y) denotes a convolutional
layer, x denotes the size of convolutional kernel, y denotes
the number of feature map; Sz denotes a mean pooling layer,
z denotes the pooling scale, and there is one fully connected
layer at the top layer by default for ease of notation. During
training, the network takes neighborhood patches of each
pixel as input, and the pre-classification provides their corre-
sponding labels (change or unchange). The parameters of the
network are randomly initialized. We use mini-batch stochas-
tic gradient descent (mini-SGD) algorithm and the squared-
error cost function to fine-tune the parameter set for optimal
classification. The squared-error cost function is represented
by:

θ∗ = argmin
θ

1
2N

N∑
i

‖yi − ŷi‖22 (8)

where yi is the classification result, ŷi is the label of sample i,
θ represents the parameters of the network, N represents
the number of samples in one of image pairs. In addition,
we adopt sigmoid function as activation function and output
label is set for two classes (0, 1) corresponding to unchanged
pixels and changed pixels, respectively. We set the batch size
and epoch to 100 and 30, respectively, and the learning rate
with α = 1.0. After training, the neighborhood patch of each

FIGURE 5. The specification of proposed ‘‘Siamese samples’’ architecture. The input is ordered sample sequence. A pair of
patches at the same position in two images is treated as indiscriminate samples, extracting descriptors at the bottom layer
and then concatenating their vector descriptors to learn a detection metric at the top fully connected layer. During
back-propagation at the bottom layer, the gradient is processed with 2N samples by correspondingly reshaping.
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pixel in image pair (i.e., training sample) is fed into the trained
network for predicting their joined class label.

IV. EXPERIMENTS
The proposed network is very small but unusually effective
to reduce speckle noises. We find that the networks are able
to learn correct semantic difference between changed and
unchanged pixels even though the labels with much mis-
preclassification. In this section, the experiments are pre-
sented for evaluating the proposed methods on four real
SAR image data sets. We compare our method with popular
Siamese, Pseudo-siamese and 2-channel networks as well as
DNN method [28]. For a fair comparison, the preclassifica-
tion method (JSC) is used in all neural network classifiers
and the same hyper-parameter set is used in these CNN-based
architectures. Besides, all networks can receive image pair
of any size as input and thus scale well. The training set
of each network is collected according to its own structure
and design partly described in Section III. C. We also listed
the more description about training sets of different networks
shown in Table. 1. Experimental results verified the state-of-
the-art performance of the proposed method. We made the
best results bold.

TABLE 1. Details of training sets with 5 × 5 neighborhood for different
networks.

Our codes are written in Matlab language. The envi-
ronment of running codes is shown as follows: Intel(R)
Core(TM) i5-4200M CPU @ 2.50GHz, RAM 12.0GB,
Windows7 Pro (64-bit) and Matlab R2015b (8.6.0.267246).

A. DATA SETS
The Coastline (450 × 280 pixels) and Farmland
(257 × 289 pixels) data are from the same areas, i.e., the
yellow River Estuary areas of China. The original size of
yellow River Estuary image pairs is 7666 × 7692, which
is captured in June of 2008 and 2009 by Radarsat-2 senior,
respectively. It is necessary for two SAR images pairs to
highlight that they are single-look and four-look images,
respectively. That means they are affected by noises at the
different level, the single-look one is much greater than the
four-look one. As shown in Fig. 6 and Fig. 7, the two data
sets are selected at the different and special segment from
original yellow River Estuary image pairs. For the two data
sets, it is more difficult to detect the changed regions. Besides,
reference image (ground truth) shows the actual changed
areas based on the original multitemporal SAR images, which
is acquired by integrating prior information with the photo-
interpretation.

FIGURE 6. The Coastline data set: (a) The SAR image obtained
in June 2008. (b) The SAR image obtained in June 2009.
(c) The ground truth.

FIGURE 7. The Farmland data set: (a) The SAR image obtained
in June 2008. (b) The SAR image obtained in June 2009.
(c) The ground truth.

The Ottawa data set is a section (290 × 350 pixels) of
SAR images pairs, which is related to the city of Ottawa
acquired by the Radarsat SAR sensor and provided by the
Defence Research and Development Canada, Ottawa. The
available ground truth is shown in Fig. 8(c), which is acquired
by integrating prior information with the photo-interpretation
based on two input images Fig. 8(a) and (b).

FIGURE 8. The Ottawa data set: (a) The SAR image obtained in
July 1997 during summer flooding. (b) The SAR image obtained in
August 1997 after the summer flooding. (c) The ground truth.

The Bern data set is a section (301 × 301 pixels) of SAR
images pairs, which is related to an area near the city of
Bern, Switzerland, in April and May 1999, and acquired by
European Remote Sensing 2 satellite SAR sensor. Between
the two dates, River Aare flooded parts of the cities of Thun
and Bern and the airport of Bern entirely. Therefore, the Aare
valley between Bern and Thun was selected as a test site to
detect flooded areas. The ground truth presented the actual
changed areas, i.e., affected areas, which is acquired by inte-
grating prior information with the photo-interpretation based
on Fig. 9(a) and (b).

B. EVALUATION CRITERIA
We evaluate the performance of our algorithm using the
popular strategy in SAR images change detection [7], [10],
[14], [28]. The change detection result is a binary image,
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FIGURE 9. The Bern data set: (a) The SAR image obtained in April 1999
before the flooding. (b) The SAR image obtained in May1999 after the
flooding. (c) The ground truth.

where white areas represent the changes, black areas repre-
sent the unchanges. Given the result and available ground
truth, a quantitative analysis can be carried out. False nega-
tive (FN) and false positive (FP) both represent the number of
pixels that are wrongly detected. The former is changed pixels
but undetected, the latter is unchanged pixels but detected
wrongly as changed pixels. The overall error (OE) is the
sum of FN and FP, i.e., OE = FP + FN. The percentage
of correct classification (PCC) is calculated by the following
expression:

PCC =
TP+ TN

TP+ TN + FP+ FN
(9)

Where TN and TP also are the number of pixels but correctly
detected. TN is true negative, i.e., changed pixels is detected
correctly. TP is true positive, i.e., unchanged pixels is detected
correctly.

Kappa coefficient is another measure for accuracy assess-
ment [39], whose value ranges from 0 to 1. And, the higher
value kappa is, the better the change detection result is.
Generally speaking, it is of more authority than PCC to assess
the result of change detection. Because the kappa is involved
in more information based on difference between the error
matrix and change agreement. It is obtained by:

KC =
PCC − PRE
1− PRE

(10)

where

PRE =
(TP+ FP) · (TP+ FN )+ (FN + TN ) · (FP+ TN )

(TP+ TN + FP+ FN )2
(11)

A better result will be lower values of both FP and FN,
the higher values of both PCC and Kappa.

C. DISCRIMINATIVE PATCH DESCRIPTOR ANALYSIS
FOR DENOISING
As described above, speckle noises are eliminated well by
the proposed network. However, it is not clear yet how the
speckle noises are eliminated and also what the network
have learned. Therefore, we set the size of input examples
for 9 × 9 to train the developed network in Ottawa data
set, and then we visualized convolutional kernels, activation
maps and processed feature maps of two original images over
C1 andC3 (see Fig. 10). In the first column of Fig. 10, we can
see that the filters of initialization present disorderly as their
values are random. However, after training, they become
well-organized. Furthermore, two kernels of C1 seem to
learn a white filter (represents changes) and a black filter
(represents unchanges), respectively. Due to the kernel of C3
is too small 2×2, it is difficult to observe visually the pattern.
In the second column of Fig. 10, the more discriminative
representations of input patches are extracted through higher
layer. In addition, with the patch descriptor more clearly
represented for white or black, the speckle noises are reduced
well. Similarly, in the higher layers, the feature maps of
original SAR image pair are more abstract and discriminative
for identifying the changed and unchanged areas (see the third
and fourth columns of Fig. 10). To sum up, the network can
grasp the crucial information for learning a binary classifier,
in which discriminative descriptor is extracted and simulta-
neously speckle noise is reduced.

D. RESULTS ON DIFFERENT DATA SETS
1) RESULTS ON THE COASTLINE DATA SET
In this data set, on the one hand, it has an imbalance data
between changes and unchanges, which is adverse to the
methods based on deep learning. That means unchanged
samples account for a much great proportion while training
the network, which usually lead to a harder process to learn
an excellent estimator for detecting changes. On the other
hand, the preclassification result [see Fig. 11(a)] is extremely
coarse, changed areas are drowned in dense white noise
spots and only changed outline can be observed. These two
aspects both are challenges for classifiers to obtain a better
performance. The final results obtained by six methods are
shown in Fig. 11 and their quantitative analysis is presented
in Table. 2. First of all, in terms of accuracy, although the
deep neural network (DNN) [28] method selects samples as
correctly preclassification as possible to train the network,

TABLE 2. Change detection results of Coastline data set.
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FIGURE 10. Feature visualization of convolutional layers. (a) The first column: randomly initialized convolutional kernels of
C1 and C3 layers, trained convolutional kernels, (b) The second column: input patches, extracted descriptors/activation
maps at C1 and C3 layers, (c) The third and fourth columns: original SAR image pair I1 and I2, processed feature maps at
C1 and C3 layers. The first, second and third rows represent initialization, C1 and C3 layers, respectively.

FIGURE 11. Pre-classification and change detection results on Coastline
data set obtained by (a) JSC, (b) DNN, (c) 2-channel, (d) Pseudo-siamese,
(e) Siamese, (f) The proposed.

it can be observed that it missed some changed details and
existed many noise spots in Fig. 11(b). Under our algorithm
framework, the CNN-based methods all acquired excellent
performance even though omitting sample selection. In addi-
tion, there are the extraction of discriminative descriptors in
Siamese, Pseudo-siamese and the proposed network from
patch pairs, then the joined descriptors are fed to a fully
connected layer for deciding the classes. Therefore, they are
more robust to speckle noises and contamination than JSC
and DNN methods. It can be observed that the proposed

method yields the highest kappa value of 90.4264%.
The result obtained by 2-Channel network is the worst
among Siamese, Pseudo-siamese and the proposed networks.
Focusing on Fig. 11(c), there are many noise spots in the
upper left corner. It is because 2-Channel network processes
the two patches jointly, which preserves relative much detail
information, especially speckle noises. It has opposite effect
on eliminating noises, while outstanding the changed regions.
Secondly, in terms of runtime, the proposed architecture
ranks only second to 2-channel network. Due to Siamese
and Pseudo-Siamese networks have two branches in their
networks, the proposed has only one with double numbers
of samples. Both of them thus spent more train-time and test-
time than the proposed (see Table. 2). Note that the train-
time in the table is the average time of each epoch. In all,
our method performs favorably against state-of-the-art algo-
rithms in accuracy, while achieving much faster runtime
performance. The proposed architecture can learn better
representations for our task.

2) RESULTS ON THE FARMLAND DATA SET
On this data set, experimental results are shown in Fig. 12 and
the quantitative evaluations are listed in Table. 3. As shown
in Fig. 12(a), the preclassification result obtained by
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TABLE 3. Change detection results of Farmland data set.

FIGURE 12. Pre-classification and change detection results on Farmland
data set obtained by (a) JSC, (b) DNN, (c) 2-channel, (d) Pseudo-siamese,
(e) Siamese, (f) The proposed.

JSC method is polluted by catastrophic noise spots. It is
merely able to be observed a profile of changed regions. The
DNN method gives the best performance about the oblique
line section surrounded by the red ellipse in Fig. 12(b), but the
rest white changed areas lost lots of detail information. The
result obtained by the proposed network is rightly opposite
as shown in Fig. 12(f), which gives the better performance
of changed areas surrounded by the red ellipse. However,
in terms of detecting accuracy, Siamese and the proposed
architectures are higher than DNN method (see Table. 3).
In Fig. 12(c), it can be seen that the result obtained by
2-Channel architecture is the worst, i.e., false alarms and
missed alarms both are high. In all, different method or archi-
tectures give a different balance between FP and FN. The
proposed architecture exhibits the best Kappa and FN. Due
to the weights of the network are randomly initialized and the
difference on gradient updating, the performance of the devel-
oped network is better than Siamese network. In addition,
the runtime of the proposed network outperforms Siamese
and Pseudo-siamese networks. Although 2-channel network
spent the least time, the accuracy is low. Our method not
only yielded the best accuracy, but also spend relatively less
training and test times.

3) RESULTS ON THE OTTAWA DATA SET
As a result, the above two experiments show that the pro-
posed method can significantly overcome the effect of mis-
preclassification and filter out speckle noises, as well as
preserve more detail information. On this data set, the detec-
tion results and quantitative analysis are shown in Fig. 13
and Table. 4, respectively. In the preclassification result
obtained by JSC [see Fig. 13(a)], dotted and sparse speckle
noises are distributed unlike the above two preclassification
results. Our proposed method and comparative algorithms
all yield good results, but the performance of the proposed
method is best. On conserving detail, our architecture outper-
forms comparative methods. This experiment on this data set
states the proposed architecture presents the best performance
under the pseudo label with less mis-preclassification. On the
other hand, our proposed architecture yields the best FN
of 2.4935% and dominant time-consuming, compared with
Siamese, Pseudo-Siamese and 2-Channel networks.

FIGURE 13. Pre-classification and change detection results on Ottawa
data set obtained by (a) JSC, (b) DNN, (c) 2-channel, (d) Pseudo-siamese,
(e) Siamese, (f) The proposed.

4) RESULTS ON THE BERN DATA SET
From Fig. 14 and Table. 5, we can see that our pro-
posed algorithm shows better performance than comparative
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TABLE 4. Change detection results of Ottawa data set.

TABLE 5. Change detection results of Bird data set.

FIGURE 14. Pre-classification and change detection results on Bird data
set obtained by (a) JSC, (b) DNN, (c) 2-channel, (d) Pseudo-siamese,
(e) Siamese, (f) The proposed.

methods. In terms of the quality of preclassification result
[see Fig. 14(a)], the difficulty of this data set is that the noise
spots of mis-preclassification gathered into large or small
blocks. That is a more difficult for classifiers to correctly
detect changes and preserve details. In this data set, the result
obtained by Pseudo-siamese network is worse and only out-
performs JSC method (see Table. 5). However, the proposed
still obtains the excellent performance. Although 2-Channel
network spent less runtime, it was worse on reducing noises.
DNN method obtained relative good result, but failed on
reserving much changed details. In addition, it can be
observed the proposed is better on reducing false alarms than
Siamese network under the same parameter configuration.
In general, the proposed network has a good performance on
the accuracy and runtime.

E. ANALYSIS OF PARAMETERS
1) THE SIZE OF THE NEIGHBORHOOD
The size n × n of the neighborhood patch is an important
parameter, which has an effect on speed and accuracy of
detection. In [28], it sets the size of the neighborhood to
5 × 5, which obtained the best performance on Ottawa data
set. In [13], the size 11×11 of the neighborhood is adopted by
experiment verification. Based on these previous works and
our specific network architecture (shown in Section III. D),
as well as considering the dimension of neighborhood fea-
tures reduces with increasing network layers, so we set n to
7, 9, 11, 13 and 15 to survey the different trade-off among
FP, FN, PCC and Kappa on Coastline data set. As shown
in Fig. 15, when n = 9, values of FP and FN are the nearest,
values of PCC and Kappa are the highest, i.e., it yields the
best balance between noise restriction and detail preservation.
However, if the size of the neighborhood is too large or too
small, detail information both are more lost with the high FN.
In addition, the ablation studies over the variation of training
time with increasing size of neighborhood indicate: the larger
size of neighborhood, the longer training time is. The larger

FIGURE 15. The influence of size of the neighborhood with
(C4-2)-S2-(C2-6) specification architecture on Coastline data set.
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image is the same case. Because it is easily foreseeable,
we did not show the corresponding experimental results.

2) THE PARAMETERS OF THE NETWORK
Furthermore, we explore the influence of different sizes of
convolutional kernel and pooling on detection performance.
The following two networks are shown for comparing. One is
described in the part of Section III. D, which is represented as
(C4-2)-S2-(C2-6). Another is (C2-2)-S2-(C2-6). They differ
in the size of the first convolutional kernel. The results of
the two networks with different sizes of the neighborhood
are shown in Fig. 16. We can see that the former results is
better and more stable. The reason is that the size of the
latter convolutional kernel is too small, which leads to the
descriptor extracted by the network is not robust enough to
noises.

FIGURE 16. The influence of (C4-2)-S2-(C2-6) and (C2-2)-S2-(C2-6) in
terms of Kappa accuracy on Coastline data set.

In addition, we study other network architectures such as
9-(C4-2)-S3-(C1-6), 11-(C2-2)-S3-(C2-6), 13-(C5-2)-S3-
(C2-6), 15-(C4-2)-S3-(C2-6), where the first number repre-
sents the size of the neighborhood. And we try to set various
combinations of the number of feature maps at the first and
third convolutional layers. We also attempt deeper layers.
However, they all have no significant improvement in the
detection results.

F. INFLUENCE OF MIS-PRECLASSIFICATION
Due to deep learning algorithm is usually supervised, need-
ing the label data to fine-tune the network, so we can
use a preclassifcation strategy to obtain the pseudo labels.
However, mis-preclassfication in the pseudo labels always
exists. For simplicity and remaining more changed samples,
we have no selecting samples pre-classified correctly to train
our network. So, what is the effect of mis-preclassification

on the proposed method? In order to study this, we use
JSC-variant as contrast to carry out this experiment on two
data sets. As shown in Fig. 17 and Fig. 18, we can observe
that the results based JSC-variant exist less white noise spots
on the whole. Quantitative evaluations are listed in Table. 6.
On Coastline data set, the result obtained by JSC-variant is
less noises, but lost much more changed detail information
[see Fig. 17(a)]. Therefore, we could not acquire a better
result than based JSC method after fine-tuning. That means
missed changed details can not be recovered completely pas-
sages through the network. In contrast, the result obtained by
JSC is covered by dense white noise spots, but we can see the
changed information ismore remained [see Fig. 11(a)]. In this
case, the network overcomes the interference and yields the
better performance. However, on Bern data set, JSC-variant
eliminates the nubby noises. The proposed method based
on the results of JSC-variant yields state-of-the-art detection
result with Kappa of 87.6037%. That is because the distribu-
tion of noises is block-shaped in the result obtained by JSC
method, which is learnt as changed classes by the networks.
From that, we can see that the proposed method can capture
useful features when the preclassification with dense noise
spots. However, it is helpless andwondering for nubby noises.

FIGURE 17. Pre-classification and change detection results on Coastline
data set obtained by (a) JSC-variant, (b) The proposed network.

FIGURE 18. Pre-classification and change detection results on Bern data
set obtained by (a) JSC-variant, (b) The proposed network.

All in all, for sample label is very coarse, the pro-
posed algorithm can exploit potential changes under noises

TABLE 6. Change detection results of Coastline data set and Bern data set with sample labels obtained by JSC-variant.
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masking; for the noise is relatively less, it can be fruitful to
reduce noise, and eventually obtain a significant improve-
ment for the accuracy of detection result. Our network is
constructed like a strong noise canceler. The deep learning
algorithm has a strong capacity of learning features even
if fine-tuning using corrupted labels. Be similar to DNN
method [26], the preclassification labels can be obtained
by the traditional suitable algorithms to further improve the
performance for different data sets.

V. CONCLUSIONS
In this paper, we explore multiple available CNN-based
architectures, which are especially appropriate for change
detection task, i.e., take two patches as input. Following
the different trade-offs among them, we design ‘‘Siamese
samples’’ network to receive patch pair as input. The
‘‘Siamese samples’’ network learns discriminative patch
descriptor by single branch with double samples and then
establishes a binary classifier (i.e., identify changed class
and unchanged class). The proposed architecture offers a
better balance between accuracy and runtime than Pseudo-
Siamese, Siamese and 2-channel networks, and it is very
robust to speckle noise. Moreover, the proposed method is
with the more simplified algorithm framework and reduces
the requirement for the accuracy of preclassification label
compared with the state-of-the-art.

Experimental results on several real SAR image data sets
show the significant improvement in terms of preserving
detail features and reducing speckle noises. Taken together,
the proposed method is like a strong speckle noise canceler,
which improves significantly the final detection performance
under an extremely coarse label map. It is simple and effi-
cient to collect labeled samples so that train a classifier with
supervision. However, if an initial and available result cannot
be obtained, the networks will be unable to work like existing
most change detection methods based on deep learning. That
will be our next work to decrease the dependency on labeled
data and develop semi-supervised or unsupervised methods.
Furthermore, we consider to apply deep learning to change
detection of heterogeneous and hyperspectral images, which
also is a promising area in the future.
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