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ABSTRACT Cardiovascular diseases currently pose the highest threat to human health around the world.
Proper investigation of the abnormalities in heart sounds is known to provide vital clinical information that
can assist in the diagnosis and management of cardiac conditions. However, despite significant advances
in the development of algorithms for automated classification and analysis of heart sounds, the validity
of different approaches has not been systematically reviewed. This paper provides an in-depth systematic
review and critical analysis of all the existing approaches for automatic identification and classification of the
heart sounds. All statements on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
2009 Checklist were followed and addressed thoroughly to maintain the quality of the accounted systematic
review. Out of 1347 research articles available in the academic databases from 1963 to 2018, 117 peer-
reviewed articles were found to fall under the search and selection criteria of this paper. Amongst them:
53 articles are focused on segmentation, 72 of the studies are related to the feature extraction approaches and
88 to classification, and 56 reported on the databases and heart sounds acquisition. From this review, it is clear
that, although a lot of research has been done in the field of automated analysis, there is still some work to
be done to develop robust methods for identification and classification of various events in the cardiac cycle
so that this could be effectively used to improve the diagnosis and management of cardiovascular diseases
in combination with the wearable mobile technologies.

INDEX TERMS Segmentation, feature extraction, classification, heart sounds databases, wearable cardiac

monitoring, heart sounds analysis.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of
mortality worldwide resulting in over 17.7 million deaths
each year [1]. This number is predicted to increase to approx-
imately 23 million per year by 2030 [2]. Apart from the
personal consequences, the high prevalence and cost of car-
diovascular diseases constitute a serious social and financial
burden. As an illustration, 85 million Americans suffer from
cardiovascular diseases resulting in an approximate health-
care cost of $320 billion annually, with a projected increase
to nearly $1 trillion by 2030 [3]. While the estimated num-
ber of cardiac patients and health care costs are too high,
an important thing to consider is that most cardiovascular
diseases are preventable and curable. However, this requires

early-stage diagnosis and proper disease management [4].
Consequently, there is an urgent need to improve technologies
to intensively monitor and analyze physiological parameters
related to cardiac function in a timely and cost-effective man-
ner. With recent evolution of mobile technologies, there is a
growing, justified, interest on finding ways to continuously
track the cardiovascular system for long periods of time, as a
potentially more effective way to both diagnose and manage
cardiac conditions.

In literature, both invasive and non-invasive approaches
for monitoring the cardiovascular system using different
sensing schemes have been investigated. However, some of
these approaches are not suitable for long-term continu-
ous real time monitoring of cardiac signals in unsupervised
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environments, which would, however, be the optimum way of
monitoring/managing some cardiac conditions. An example
is atrial fibrillation, in which events do happen scattered in
time and hence might not be caught in short monitoring
sessions [5].

Recent advancements in computing together with the ever-
shrinking size of electronic devices have enabled the design
of wearable devices loaded with sensors that can perform the
task of long-term continuous monitoring and have the poten-
tial of facilitating timely medical interventions for treatment
and care. Wearables have the advantage of usability. Thus,
wearables can allow self-health monitoring and save the time
required for clinical appointments. This is why wearables
have attracted a lot of attention from scientists in this field.
Though, potentially, available cardiac wearables can assist
in real time monitoring, it is challenging to obtain a high
degree of accuracy, especially under varying environmental
conditions. Furthermore, in some cases, algorithms for signal
interpretation have been validated with a limited database and
hence their clinical reliability and diagnostic accuracy cannot
be extrapolated for real clinical applications.

The sensing modality, and hence the measured physiolog-
ical signal, used by different kind of wearables varies and
which one to choose depends on a number of tradeoffs that
need to be made considering the particular clinical applica-
tion, usability aspects and accuracy, amongst others. In the
case of wearables for cardiac applications, one of the phys-
iological signals that can potentially provide a lot of infor-
mation is the sounds generated by the heart. Heart sounds
auscultation is a simple, convenient, cheap and non-invasive
approach that has been used for over a century by physicians.
More recently human-only stethoscope based interpretation
is being complemented by computer-aided heart sounds. This
has a potential advantage that the interpretation of heart
sounds is not as subjectively dependent on factors such as
ear sensitivity, skills, and the experience of the individual
physicians [6], [7]. Furthermore, a wearable automated sys-
tem capable of processing cardiac sounds could potentially
be used for the early cost-effective screening of cardiovas-
cular diseases, as well as to manage the progression of the
condition. However, in order for this to practically happen,
algorithms are required that can shift the signal interpretation
load from the clinician to the technology, since otherwise
the amount of information generated would be unmanageable
in practice. This is a reason why automated analysis and
interpretation of heart sounds is a prolific area of research,
with an also rapidly increasing interest. Though computerized
analysis of heart sounds has been the focus of increasing
number of studies recently, a consistent approach to ana-
lyze various heart sounds signals has not been established
and a comprehensive critical review of available approaches
together with performance comparison has not been car-
ried out. Previous reviews [8]-[12] present a well-organized
discussion of the origins of heart sounds, sensing systems,
and recent developments in heart sounds analysis. However,
the validity of the different approaches and performance
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FIGURE 1. PRISMA 2009 flow diagram for this systematic review.

comparison of algorithms for segmentation, feature extrac-
tion and classification of heart sounds in different applica-
tions have never been systematically reviewed.

This paper goes beyond previously published reviews by:

1) Evaluating different methods reported for automated
heart sounds analysis, specifically for detection and
classification of cardiac abnormalities, and analyzing
the different performance metrics reported.

2) Synthesizing the heart sounds’ detection and classi-
fication approaches accuracy evidence from existing
research works.

3) Comprehensively reviewing all features relevant to
pathological sounds detection as well as heart sounds
databases.

The rest of the paper is organized as follows: Section II
describes the methods used in this systematic review.
A description of the pathophysiology of normal and abnormal
heart sounds is presented in Section III. Approaches for seg-
mentation, feature extraction and classification are reviewed
in Section IV. The evidence collected from different research
works is synthesized in Section V and findings are discussed
in Section VI. Finally, the study limitations and concluding
remarks are covered in Sections VII and VIII, respectively.

Il. MATERIALS AND METHODS

This systematic review adopts the guidelines published by the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) consortium reported in the PRISMA
2009 Checklist [13]. All preferred reporting items on the
PRISMA statement were addressed thoroughly and has been
provided as an evidence in Appendix file. Furthermore,
Fig. 1 establishes the PRISMA flow diagram for this system-
atic review. The main objective of this study is to present a
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detailed discussion of the state-of-the-art algorithms for heart
sounds analysis and classification, and to highlight existing
limitations.

A. LITERATURE SEARCH

Based on the primary search strategy, a systematic search
of the literature was carried out in the following databases:
IEEE Xplore, Scopus, PubMed, Web of Sciences (Web
of Knowledge), ScienceDirect, Google Scholar, EMBASE,
and ACM Digital Library. Publications were extracted from
these databases using key search terms and their possible
combination using logical operators ‘and/or’. Key search
terms included ‘heart sounds’ or ‘heart sounds analysis algo-
rithms’ or ‘heart sounds classification’ or ‘identification of
heart sounds’ or ‘phonocardiography’ or ‘continuous mon-
itoring of cardiovascular diseases’ and/or ‘wearable cardiac
monitoring devices’. A non-automatic search of references
listed in the relevant publications was also performed to
discover additional studies. Articles with algorithms for heart
sounds detection, classification, and analysis were the focus.
Articles with uncertainty regarding the eligibility were fully
evaluated before taking a decision for their inclusion in the
study.

B. EXCLUSION CRITERIA FOR THE SYSTEMATIC REVIEW
Specific eligibility criteria were followed to shortlist the
research articles to be included in this systematic review.
Studies found within the searched databases were screened
after the initial search. Initial removal of duplicates and suit-
ability check of articles were performed after examining the
title and abstract first, and then through the full text. Only
articles in which the methodology for data acquisition, analy-
sis, and processing of heart sounds were reported with a clear
demonstration of the approaches, met the eligibility criteria.
All papers found were included in the review apart from the
following: (1) papers which did not include quantification of
results; (2) papers others than peer-reviewed articles; and (3)
articles published in languages other than English.

C. STUDY DESIGN

The review is organized as follows: Various databases used
for the validation of algorithms for heart sounds analysis
are reviewed and discussed. This is followed by a review of
approaches for heart sounds segmentation, feature extraction,
and classification. Articles on segmentation and classification
of heart sounds are the main focus of this systematic review.
Apart from this, pathophysiology of normal and abnormal
heart sounds is summarized in the context of automated
continuous monitoring systems.

D. STUDY SELECTION

The initial search output contained 33,189 research articles
published from 1947 to 2018. Out of these, 1347 articles were
included after initial screening and removal of duplicates.
Further, 979 articles were omitted based on abstract and title
screening. 368 articles were finally shortlisted for review and
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out of these 117 articles met the inclusion criteria. A total
of 56 reports on databases and heart sounds acquisition, were
also included. Additional articles were used in this study to
inform the background of data acquisition systems, feature
extraction approaches and other relevant information related
to this systematic review.

E. STUDY LIMITATIONS

Performance parameters of existing algorithms cannot be
directly compared mainly because of the diversity of the test
datasets used for evaluation. In addition, no standard valida-
tion methods were used in the articles, consequently leading
to non-uniform performance assessments. Further, in some
cases, statistical validation was not reported, or partial results
were provided, limiting the usefulness of the assessment
metrics.

F. DATA EXTRACTION AND SYNTHESIS OF RESULTS

Data from eligible articles were extracted and summarized
in the tables for discussion. Methods and approaches were
classified into different categories to present a significant
comparison among the class. The data extracted was related
to the type of approach and level of analysis for heart sounds
segmentation, feature extraction, and classification. For accu-
racy measurement under different conditions, performance
parameters such as segmentation rate (SR), accuracy (Acc),
sensitivity (S.), specificity (S,), positive predictive value
(PPV), number of features, and classification accuracy (CA)
were extracted. Additional information included the demo-
graphics of the study group in the relevant database (such
as the age and type of subjects); the signal investigated; the
number of heart sounds recorded; the duration; the sampling
frequency; and the type of device used for recording signals.
Overall accuracy measures were also obtained from selected
studies that reported significant information for evaluation.
Finally, the synthesis of results is reported.

lll. PATHOPHYSIOLOGY OF NORMAL AND ABNORMAL
HEART SOUNDS

The electrical activity of the cardiovascular system causes
atrial and ventricular contractions that assist in blood circula-
tion between the chambers of the heart and around the body.
Mechanical interactions between the blood flow and the dif-
ferent valves that operate to regulate the circulation of blood,
contribute to rhythmic heart sounds and murmurs. Heart
sounds are audible on the chest wall and can be captured using
acoustic sensors from different auscultation areas associated
with the valve locations [14], [15]. Heart sounds can also
be graphically represented as a phonocardiogram, in which
pathological signs are used as diagnostic features. However,
the correct interpretation of phonocardiograms is challenging
because of the overlapping of normal and abnormal heart
sounds in the cardiac cycle. This section briefly summarizes
different types of heart sounds that may be observed in a
cardiac cycle. Characteristics of adventitious heart sounds are
also tabulated in Table 1.
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TABLE 1. Pathophysiology of normal and abnormal heart sounds.

Heart Sounds Frequency Range Qualitative sou nds Duratlon/!ocatlon in the Cause Description
characteristics cardiac cycle
First heart sound (S)) or 10-200 Hz 0.12-0.15 seconds Closure of the atrioventricular
lub sound (lower pitch than S) Dull and prolonged (longer than S)) valves Composed of M, and T; components
Second heart Sound (S5) 20-250 Hz 0.08-0.12 seconds Closure of the semilunar valves
or dub sound (higher pitch than S)) Sharp and short (shorter than S)) (at the end of systole) Composed of 4, and P, components
) 25-70 Hz Soft and thudding ~0.04 s, carly-diastole Early diastolic filling qf thfs Due to the excess bloqd volume in
Third heart sound (S5) | (very low frequency, lower ualit (140-220 ms after S») ventricle by blood rushing in | the ventricle (left ventricle failure),
pitch than S, and S,) quaiity 2 from the atria benign in children and in pregnancy
Fourth heart sound (Sy) 15-70 Hz Weak and rumbling, s ;iiiechd;?:tﬁgdgr:f;re Diastolic dysfunction because of| Due to atrial contraction, manifests
4 (lower than S5 low pitch) | less loud than S or S, 4 ’ 3‘% Y the stiff ventricle coronary heart disease
1
Ventricular (S5 ~0.15 s after S, early- Durlr_1g S due to rapid . Gallop rhythms indicate serious
. . . deceleration of blood flow into . .
. gallop rhythm) 15-50 Hz Galloping rhythm, lilt, diastole the ventricle myocardial dysfunction
° - (very low frequency, low trot or canter quality - -
= Atrial (S; gallop . K ~0.08 —0.20 s just During Sy, due to decreased . .
< -
8 thythm) pitch, short and faint) before S, ventricular distensibility S4-S) may be confused with a split S,
Summing (both S3 Quadruple rhythm, loud . . . . Occurs with the improvement of
and S, gallops) sound During diastole period (Both S5 and S, are superimposed heart failure
. 120-250 Hz . ‘Whooshing, roaring, | Mostly in early-systole, Due to thc_ turbulent ﬂow_ of_thc Frequently heard in children and
M (mid-range frequency, high . . . blood which may occur inside . . .
. turbulent fluid noise short duration . during exercise, position dependent
pitch) or outside the heart
g Up to 600 Hz Rasping and blowin
é M (frequency range usually usﬂalig crescen do—g’ Early-, mid-, late- or Mechanical systolic and Includes PS, AS, ASD, HOCM, M1,
E] lower than DM, high pitch) y holo-systolic ventricular ejection TI, MVP, PDA and VSD
s decrescendo
Puffing and rumbling . . . .
Up to 600 Hz g Early-, mid- or late- Ventricular relaxation and Difficult to hear, Includes PI, Al,
DM . . quality, usually . . .
(high or low pitch) diastolic filling MS, TS
decrescendo
Opening snaps Snapping sound During diastole period | Inspissating of valve leaflets The sudderegi:)r[; Tr\l/l;% :f the stiff
Loudest in systole and
Rubs 100-800 Hz Scratching, harsh, can be heard in the Friction between layers, Depends on the body position and
(high pitch) creaking sound beginning and end of | abrasion of pericardial surfaces breathing
diastole
) Very egrly §ystole, mid- | Due to the opening of arigid Includes AEC, SEC, mechanical
Clicks Short and loud systolic click, may be and calcifies aortic or . . .
b . valve click, or prosthetic valve click
immediately after S; pulmonary valve

*Information regarding frequency range and timings from [14], [19], [24]-[27]

Abbreviation: IM: innocent murmurs, SM: systolic murmurs, DM: diastolic murmurs, PS: pulmonary stenosis, AS: aortic stenosis, ASD: atrial septal defect, HOCM: hypertrophic
obstructive cardiomyopathy, MI: mitral insufficiency, TI: tricuspid insufficiency, MVP: mitral valve prolapse, PDA: patent ductus arteriosus, VSD: ventricular septal defect, PI:
pulmonary insufficiency, Al: aortic insufficiency; TS: tricuspid stenosis, MS: mitral stenosis; AEC: aortic ejection click, SEC: systolic ejection click.

A. FUNDAMENTAL HEART SOUNDS -S; AND S,
Mechanical actions of heart valves produce heart sounds
including fundamental heart sounds (FHSs), S; followed by
S5 [16]-[18]. The first heart sound (S) is heard at the onset
of the systolic phase. This sound results from the sequen-
tial closure of the atrioventricular (AV) mitral and tricuspid
valves [19]. S has a frequency range between 10 and 200
Hz. Its amplitude has a great correlation with cardiac output
[20]. Normally, S; is heard as a single sound with internal
components M; and T, separated by a very small gap of
nearly 20-30 milliseconds (ms) [21]. However, during some
cardiac abnormalities (such as right bundle branch block)
splitting of S1 can be observed.

The second heart sound (S2) occurs at the beginning of the
diastolic phase, and is caused by the closure of the aortic and
pulmonic valves. S> is a higher-pitch sound than S;, with a
frequency range between 20 and 250 Hz, and is also shorter
in duration. $7 is heard as a single sound with internal compo-
nents Ay and P,. However, during cardiac abnormalities, S
may be observed as two split beats of A, and P», because of
a noticeable time gap existing between the closure of A, and
P;. This gap may vary between 30 to 80 ms during inhalation
and may reduce to 15 ms during exhalation [22], [23].

VOLUME 7, 2019

B. ABNORMAL HEART SOUNDS

During normal cardiac operation, a clear S1-S, pattern with
a systolic period (S7 to S») and diastolic period (S> to Sp)
is observed. However, in the case of abnormalities being
present, apart from S7 and S, other sounds, such as a third
heart sound (S3), fourth heart sound (S4), gallops, clicks,
opening snaps (OS), and murmurs might occur.

Early diastolic filling of the ventricle, caused by blood
rushing in from the atria, produces S3 shortly after S;. This
is due to vibrations caused by blood going backwards and
forwards between the walls of the ventricles. S3 is noted as
a benign sound in the case of young people, athletes, and
during pregnancy. In other cases, however, it is considered
an important indicator of reduced systolic function. Diastolic
dysfunction because of a stiff ventricle gives rise to an audible
S4 happening shortly before S; that contributes to the late
diastolic filling. The occurrence of Ss is considered as a
significant indicator of cardiac abnormalities.

Clicks and snaps are also important evidence of abnormal-
ities related to the operation of the valves. Systolic clicks
are brief and high-pitch sounds, usually noticed during the
opening of the semilunar valves. These occur shortly after S;.
Opening snaps may be observed shortly after S», with the
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FIGURE 2. Different steps involved in the automated heart sounds analysis and classification.

opening of the mitral and tricuspid valves. These abnor-
mal sounds are indicators of mitral valve prolapse (MVP),
mitral regurgitation (MR), and other pathological conditions.
Gallops are sounds that resemble galloping rhythms. These
signpost serious myocardial dysfunction because of noncom-
pliance of one or both ventricles. Gallop sounds may be
observed during S3 or S4 or both [19], [28].

Turbulence due to accelerations and de-accelerations of
blood in chambers of the heart, stiffening/narrowing or incom-
petence of the heart valves because of regurgitation, produce
mechanical vibrations that propagate to the surface and give
rise to audible whooshing sounds called murmurs. Most
murmurs are intra-cardiac events observed in the frequency
range between 20-600 Hz. The frequency spectrum of mur-
murs, artifacts, fundamental heart sounds and other heart
sounds present in the cardiac cycle, overlap significantly.
However, murmurs are more chaotic in nature. Murmurs
can be broadly classified based on their characteristics: tim-
ings (systolic murmurs, diastolic murmurs, or maybe both);
shape (crescendo, decrescendo or crescendo-decrescendo)
and location in the cardiac cycle (early, mid or late or con-
tinuous) [29]. They may be also classified as stenosis (such
as aortic stenosis (AS)) or regurgitation (such as mitral regur-
gitation (MR)) murmurs. Murmurs may be innocent or else
may indicate clinical signs of cardiac diseases.

IV. REVIEW OF ALGORITHMS FOR HEART SOUNDS
ANALYSIS

Many algorithms have been reported for automated classi-
fication of heart sounds with approaches that range from
traditional thresholding methods to recent statistical machine
learning and neural network based ones. The main aim of
automatic heart sounds analysis is to achieve a precise clas-
sification of the pathological events present in the cardiac
cycle. The different steps involved (as shown in Fig. 2) in the
automated heart sounds analysis are reviewed in the following
sections.

A. DATABASES FOR HEART SOUNDS ANALYSIS

Non-availability of standardized, good-quality, thoroughly
validated, and documented datasets hinder the development
of algorithms for heart sounds analysis. Currently, the most

extensive database of heart sounds recordings is PhysioNet
[10], [14], [30], [31]. Other databases used for the validation
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of algorithms in the reviewed papers included the PASCAL
database [32], the Open Michigan Heart Sound & Murmur
Library (OMHSML) [33], the Cardiac Auscultation of Heart
Murmurs database (eGeneralMedical) [34], the heart sounds
library by Thinklabs [35], the heart sounds Podcast Series
by Robert J. Hall Heart Sounds Laboratory, Texas Heart
Institute, Texas [36], Bioscience normal and abnormal heart
sounds database (BHSD) [37], and the Cardiac Auscultatory
Recording Database (CARD) [38]. In addition, a book by D.
Mason comprises a CD with a limited number of heart sounds
and murmurs [19]. Similarly, heart sounds signals from an
audio-visual presentation by Tavel et al was also used as a
database in some of the reviewed papers [39].

Other than these available databases, researchers have also
collected their own data. Most of these recordings were
obtained during clinical trials in hospitals by auscultation
using a digital stethoscope/microphone. A list of existing
databases and their characteristics is provided in Table 2.
Most of the existing databases are restricted by the number
of recordings, duration and sampling frequency. Also, other
potentially important information such as gender, age and
auscultation positions are not always specified, despite these
being important for proper algorithm validation. In addition,
in many cases, the signals had been pre-processed leading to
the loss of both, pathological characteristics, as well as real-
world artifacts which are nonetheless important to take into
account when designing the algorithms/acquisition systems.
Also, the length of the individual recordings available is
not sufficient to validate algorithms intended for continuous
heart sounds analysis, and are not in agreement with the
Task Force recommendations [40] that suggest short-term
5-min recordings to evaluate parameters such as heart rate
variability (HRV).

B. HEART SOUNDS SEGMENTATION

The purpose of heart sounds signals segmentation is to local-
ize sounds peaks including the fundamental heart sounds
(81 and S7). The peaks of S and S, are required for deter-
mining the systolic and diastolic phases and to help in
the subsequent estimation of cardiac cycles. This facilitates
identification and extraction of acoustic signals of inter-
est in each cardiac cycle. Broadly, reported segmentation
methods can be classified into: envelope based methods
[47], [57], [58], [68], [79], [84]-[89], ECG and/or carotid
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TABLE 2. Databases used for validation of algorithms for heart sounds analysis.

8 Age en Iy .
§ Source Type of sound/ # (Mean Gender Sensor Sensor Format atfi(:ialamt %- 2 § E (l;l;z)t::ir; Comments
L‘E # Subjects recordings +SD) (M/F) position P s P g g g = )
[~ years ©n 3
(a) Public heart sounds databases
PhysioNet 1297 Open access
(14 database N Land 4,43g (1072 data‘tbase,'
. | (Computineg in ormal an records . . . . ) comprises nine
[30], ¢ e pathological | (including | Variable | Variable Variable lefe}' ent Variable 1nclufie?d Variabl | Variabl | 5-120's databases,
Cardiology .. positions for training e e each
[31] sounds training and performance of
Challenge and test
v test sets) dataset) dataset reported
2016) in [10], [41]
MITHSDB Normal (38) | 117 records Welch Allyn 9 different Simultaneously
llectivel M (34) 118 records Meditron o 9-37s recorded with
[42],| (collectively positions 20-20k
[43] from [42], MVP (37) 134 records - - stethoscope and - 121 44.1 Hz Hz each ECG, MITHS
v AD (5) 17 records (Skaneateles, orientations (3345 5) database
(43D MPC (7) 23 records USA) included in [14]
TUTHSDB Normal (28) 1?orticl,
- pulmonic,
[25],| (collectively and 15 s each |TUTHS database
[44] | from[25], | pathological | 4TeCOrds| - - i i‘giﬁ;’ﬁ - 44 AkHz |- osition | included in [14]
[44]) ¥ (16) i
positions
AADHSDB | Normal (121) |544 records 4N ICS at
[45] (collectively the left 20 - AADHS
46 ' from [45] - 93M/58F jj sternal - 151 4kHz | 1000 | 8seach database
[40] [46]) ¥ ’ CAD (30) | 151 records border on Hz included in [14]
the chest
UHAHSDB 18 t0 40
(database in Normal (25) | 39 records years - Prototype ! UHAHS
[471, : electronic wav 55 8 kHz 6-49 s database
[48] | PhysioNet | pathological 40 records | #4190 | 5om/10F | stethoscopes B format ) each |4 cluded in [14]
[30) ¥ sounds (30) years P
AUTHHSDB | Normal (11) [ 11 records |29.3+10.7| 4M/7F Auscultatio
(databasein | MR (17) | 17 records | 75.3£10.2] 6M/10F | Custom-made | "o "0 0 way 10-122s | AUTHHS
[49] PhysioNet electronic murmurs & | format 45 44.1 Hz| 4kHz | each (50 database
[30) ¥ AS (17) 17 records | 76.1+7.2 | 6M/10F stethoscope apex arca +265s) | included in [14]
Microphone
41035 . 8 kHz —
sensor Various 209+ 78
s DUTHSDB Normal (174) |338 records iye;.rs 2(115) 172M/2F (MLT201) or sites 2212250 s cach BUTHS
[50] | (database in years piezoelectric WAV Variabl
- ; 509 database
(53] PhysioNet 10 to 88 format € included in [14]
[30) ¥ years (60 | 108M/227 Mitral site 1712
CAD (335) |335 records 12 F jj at the chest 8 kHz cach
years)
(SdUASSDB Normal (79) 16 to 88 8 LHIZ’ 04606
atabase in and years (56 An electronic - |20-1000 ] SUAHS database
[541]  PhysioNet pathological 14 records| °7, )¢ A3M/69F stethoscope Apex - 12 kHz Hz |39 ncluded in [14]
and 384 each
[30) ¥ (33) years) KHz
SSHHSDB Normal (12)
147 | (@atabase in and 35 record m s s 1356?152 SSHHS database
[141]  PhysioNet pathological records - - - intercostal - z - (s) cach included in [14]
30 ¥ (23)
SUFI:SDB Fetal (116) |119 records - - s::t%;ligg:r(lgs 8 kHz 8 kHz 20_}11200
database in
(41| it Technlogy o~ |and4a| 225 | 38 (00T Y
(30) ¥ Maternal (109) | 92 records years 109F Ltd, South kHz kl-iz -
Korea)
Daniel Normal and Book with CD
[19] | Manson 2000 |  pathological ezz(r)rldio - - - - ;())‘/rﬁl:t - - - Variable recordings,
v sounds reported in [55]
D;l]taset A Segmented data
ormal, 176 d 44.1 ith S1 and S
The PASCAL | murmur, EHS records i kHz with 51 and 5
database & artefact WAW 1-30 locat{on,
[32] - - - aif - - S reported in [56]
(CHSC 2011) Dataset B: format cach low-pass ’
* Normal, w-p
656 records I 4 kHz filtering at 195
murmur and Hz
extrasystole
OMHSML .
(The Normal and Apex, aortic .
[33] | University of pathological | 23 records - - Stethoscope and . MP3 - 44.1 - Total of | Reported in [57],
Michigan sounds pulmonic kHz 1496.8 s [58]
area
database) 4
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TABLE 2. (Continued.) Databases used for validation of algorithms for heart sounds analysis.

CAHMDB Pathological Total of Requires
34] (eGeneral nd ngn 64 record WAV 11/8 338s(l-| permission,
Medical Inc. p;holo‘;ic'al ceords - - - - format - kHz - 10s | reported in [14],
database) 4 each) [59]-[61]
Heart sound . . .
(35] library by Normal i_md 41 records _ _ Thinklabs _ _ _ _ _ Variable Avallab]e.onlme,
Thinklabs ¢ pathological stethoscope reported in [58]
inklabs
Texas Heart Pathological rep(]))rggbizs&z]’
[36] Institute . (0) . 50 records - - Stethoscope - MP3 - 44.1 - Variable more
. (information kHz information in
database from [62]) 3]
Normal and WAV Total of |Online available,
[37]| BHSD ¢ pathological 25 records - B - B format - - B 49.94 s | reported in [64]
Login required
to access
CARD Normal and ) Hewlett Packard MP3 database, ECG
[38] . thological Variable - - 21050A - format - - - 20 s each records
database pathologica microphone orma available,
reported in [64],
[65]
(b)  Heart sounds recorded by researchers for validation of algorithms
Aortic,
Naseri and Pathological pulmonic, Total of
[25] | Homacinezha | (AS, AR, MS, | 50 records (‘geyrza‘:) 25M/25F 1 apex and - 50 4kHz |700Hz | 52 Fl;:o{ii dd;“;a[b&s]e
42013 ¢ MR) (50) g tricuspid minutes
positions
. Normal and No age 8,11,
[29] Ari et al 2008 | pine different 71 records roug * WAV 7 22 & | Below ECG signals for
¢ pathological aszsgociart)ed - Tand ¥ - format 44.1 | 150 Hz - validation
sounds kHz
Apex and Simultaneously
Normal (30) left lower recorded EKG
[42] | Syed 2003 ¥ and MVP (21) 102 records - - - sternal - 31 440Hz| - - signals, included
border in [14]
Sayed et al muz?::;?lw) Left apex 4096 | 30-40's S;;Ts:éigegléséy
[43] > | 39 records - - ¥ and left - 39 44.1 Hz . .
2007 ¥ MR (11) and arasternal Hz each |signals, included
normal (13) P in[14]
; Normal and | 63 normal pLﬁnt:I::i,c 2
Naseri et a i >
pathological and 63 . TUTHS database
411 50139 | (AS, AR MS, |pathologica| ™ - i apexand | - - AkHz | -] minutes |5 ded in [14]
MR) 1 tricuspid each
positions
4N ICS at 40
Schmidt et al Norx:;l‘lj(l?s) i (h dheld the left (training Without ECG
. records - - sterna - ata) and z - s each |signals, database
[45] v athological 73 d andhe 1 data) and | 4 kH: 8 h | signals, datab:
2010 p (1oog) stethoscope) | porder on 73 (test included in [14]
the chest data)
60.1£9.9 | 35M/35F 4hICS at
Schmidt et al ] 231 (Non- |  (Non- (Non- the left . Unsupervised,
[46] v I:;’g g/fg ((6730)) CAD)and | CAD) & | CAD) & T sternal - 133 | 4Kz 20&200 8secach |  database
2015 204 (CAD) | 66.1£10.7 | 47M/16F border on included in [14]
(CAD) (CAD) the chest
18-40
Moukadem et Normal 40 records years Prototype WAV 6-12 s UHAHS
[47] . Thological 741090 - electronic - format - 8 kHz - cach database
al 2013 pathologica 40 records ° stethoscopes included in [14]
sounds years
Normal (14) | ! (f’gg 203£107| 4M/TF .
Papadaniil and cycles) ) Auscultatio AUTHS
[49] | Hadjileontiadi | mR (19) | 10 B27 |753.102| emyrop | Elecwonic jnforvalve | WAV 4 gy -y | g (191225 qaabase
. cycles) stethoscope | murmurs & | format each included in [14]
s2014 AS (14 16 (1077 76,1472 | 6M/10F apex area
(14) cycles) T
Simultaneously
Tang et al Normal (3) and Vibration Belo recorded with
[52] v pathological | 26 records - - (piezoelectric) | Mitral site - 26 2 kHz 600 I—\I)vz - ECG, DUTHS
2012 (23) sensor database
included in [14]
Li et al 2011 i ~ DUTHS
[53] . I\;‘t’g‘(ﬁ? ?::1 270“211‘“ - - - Mitral site - - 2kHz | - eaihs database
patholog 4 included in [14]
Normal (45) 600 s
ASD (14) | 3390sof 6205
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TABLE 2. (Continued.) Databases used for validation of algorithms for heart sounds analysis.

F4 (7) CHD, 3940 270's Michigan HSs
57 Sun er al 2014 DA (10 s of RHD Tricuspid 121 4.1 | 20— I—5 database [33]
(571 v (10 and 600 s - - i site - kHz |20k Hz 59 OS also considered
YSD G3) of normal s for validation
Mlx(eldz()jHD HSs 660 s
RHD 3940 s
Varghees and Databases from
Ramachandra
[64] Normal heart 25 records - - Microphone - - - 2 kHz | 800 Hz - other sources
n2017 sounds also used for
(AUHSD) ¢ validation
HSs with
a";::::l'l“g 10 records | 20£12y | 8M 12 40 s each | Single-lead ECG
66 Amit et al resistance 20-250
S 2000 w ) B B ) Hz | 5 45 | Dobutamine
Pharmacologica _ 60+14y 1M 1 minutes stress
1 stress data cach echocardiograph
y
Gupta et al
(67] p Normal and 340 HSs _ _ _ _ _ 41 S kHz | 4 KHz _ . No ECG
2007 ¢ murmurs segments information used
Javed et al i -4k and i
5] oocw P af;‘ﬂgical 40 records 13;;39 - ¥ - WAV | 40 | 8kHz| - |8scach f:f::(;ﬁgg
format
Acuson Sequoia
Normal (95)
Turkoglu ez al and 151080y 512 Model 0.5-10 Doppler HSs
[69] . thological 215 records | (average | 132M/83F Doppler Chest - 215 20 kHz KHz S seach sionals
2003 pa (?2%%lca 48.77y) Ultrasound &
system
Normal (16) 50 records, Welf:h Allyn )
70 Safara et al and 304 heart Meditron and 4 kHz 15 s each ECG is recorded
(70] 2013 ¥ athological - - ECG analyzer, - - - - simultaneously
P g cycles
43) i Meditron
Pathological . .
Banerjee and (60) 45M/16F Re'cqrdlngsdm
[71] | Mondal 2015 ™ Non- - - % - WAV g6 | skHz | 2kHz | - sitting an
. format relaxed
v pathological 15M/10F conditions
(60) )
N (60), FM 187
Iwataetal | (40), MI(32), | samples 4-channel PCQ Cardiac | Magneti ECG and PCG
[72] ’ > 2 - - (Fukuda Densi 69 2 kHz | 880 Hz - are recorded
1980 ¥ AT (38), ASD | 881 cardiac EMR60SD) apex area | ctape simultancously
(9), & VSD (8) cycle
18-60 y
| (mean Color Doppler
Normal (88) | 88 records 35.64+7.5 44M/40F Selfdeveloned on Ultrasound
Zheng et al ) c-develope 11025 N | medical machine
[73] cardiac reserve Apex - 152 - minute .
20159 38-70 - Hz (Vivid-7, GE
. y monitor each
CHD patients 64 records (mean 36M/28F company, USA)
(64) 61.56+9.7 also used
)
N (225) and .
Pathol
Zhang et al | abnormal (180) 405 (225 Phonocardiogra . 11025 | 2205 athologies
[74] (N) and - - Precordium - 405 - confirmed by
2014 ¢ (MS (60), VSD m sensor Hz Hz
(60) & AS (60)) 180 (AN)) experts
Guillermo et Pathological 92 cardiac Self—devsloped
! cycles (38 . 30-600 cardiac
[75] a and non- (PI) and 54 - - Microphone - - - 8 kHz Hz 15 s each monitorin
2015 ¢ pathological (D) platformg
Sounds from
Elgendi et al . 3 months Cardiac Over 20 subjects
[76] g2 014 ¢ };2::;‘2115;%1;10:11 - to 19 12M/15F i apex and 2™ f‘z— g;/t 27 4 kHz - seconds undergoing
years LICS each cardiac
catheterization
N (5), VSD
) (36), ASD (12) | 100 records
(77 Hassanieral | & ASD and (14,000 126 100 44.1 | Below Heart sounds
] 2014 ¢ VSD (6), TOF | cardiac y - - - - kHz | 800 Hz - from children
(10), PS (10) & | cycles)
21 others
N (6) and
Choi and pathological 196 (N) | 30£14y . Four Self-developed
and 293 N), Electronic .
(78] .. . (34) (AF, AL (AN) 4719 - stothoscone auscultation - 40 8 kHz | 700 Hz |12 s each| stethoscope to
Jiang 2010 AS, MR, MS y P sites record signals
and Splif) records (AN)
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TABLE 2. (Continued.) Databases used for validation of algorithms for heart sounds analysis.

N (45), M (48), 441
Zhangetal | EHS (27)and |176 records T i
2017 artefact (56) “
[79] (The Pascal N (336), M _ _ _ WAV _ 2 KHz _ Database from
CHSC 2011) (105), format [32]
. extrasystole 507 records I 4 kHz
(66)

) Normal (38), S 12181 Parasternal,
[80] Springer et al | MVP (37), IM and Sy ) ) - apical, ) 123 4.1 | | g, | Totalof | Verified using

2016 ¥ (36), AD (5), 11627. * aortic, and kHz 10172 s ECG

MPC (7) pulmonic
Turkoglu ef al Normal and 15-80 y Acgignl\iggzlola 92. on1’ Doppler HS

[81] pathological |215 records| (average | 132M/83F Doppler - - tra;nluzlg 20 kHz | 500 Hz | 5 s each opp crl s

20034 | AV and MV) 4877y) Ultrasound and 123 signals

system for testing
Normal (40), edk/
[82] | Uguz 2012 4 |PS (40) and MS - 4-65y | 55M/65F 1 - WAV 120 8 kHz - - -
(40) format
Innocent RUSB,
Kang et al murmurs (87) [257 records LUSB, 40-500 | 3-8s Heart sognd;
[83] 2017 4 and (1212 - - j: LMSB, - - 8 kHz Hz cach from pediatric
pathological cycles) LLSB and patients
murmurs (170) apex

Note: Data collected in controlled conditions is indicated with symbols ‘¥, while ‘4’ symbol is used where no information related to recording conditions is available. iStethoscope

is indicated with symbol "f", electronic stethoscope 3M Littmann is indicated with symbol ‘i’ and Meditron (NY, USA) stethoscope with symbol 3‘&

Abbreviation: N: normal heart sounds, M: murmurs, EHS: extra heart sounds, CAD: coronary artery disease, CHD: congenital heart disease, EAS: early aortic stenosis, LAS: late
aortic stenosis, FM: functional murmurs, MI: mitral insufficiency, Al: aortic insufficiency, ASD: atrial septal defect, VSD: ventricular septal defect, PCHSC: Pascal classifying
heart sound challenge, IM: innocent murmurs, MPC: miscellaneous pathological condition, AD: aortic disease, LICS: left intercostal space, ICS: intercostal space, MVP: mitral
valve prolapse, AS: aortic stenosis, AR: aortic regurgitation, MR: mitral regurgitation, MS: mitral stenosis, RUSB: right upper sternal border, LUSB: left upper sternal border,
LMSB: left middle sternal border, LLSB: left lower sternal border, AUHSD: Amrita university heart sounds database, TOF: tetralogy of Fallot, AF: atrial fibrillation, MITHSDB:
the Massachusetts Institute of Technology heart sounds database, AADHSDB: the Aalborg University heart sound database, AUTHHSDB: the Aristotle University of Thessaloniki
heart sounds database, UHAHSDB: the University of Haute Alsace heart sounds database, TUTHSDB: The K N Toosi University of Technology heart sounds database, DUTHSDB:
the Dalian University of Technology heart sound database, SUAHSDB: the Shiraz University adult heart sounds database, SSHHSDB: the Skejby Sygehus Hospital heart sounds

database, SUFHSDB: the Shiraz University fetal heart sounds database.

pulse reference based methods [72], [90]-[99], probabilistic
models [45], [52], [65], [67], [77], [80], [100]-[105], fea-
ture based methods [25], [29], [49], [61], [75], [106]-[108],
time-frequency analysis based methods [55], [59], [62],
[109], [110], and learning based methods [50], [111]-[113].

1) ENVELOPE-BASED METHODS

The envelope of heart sounds is used to identify S| and S in
the cardiac cycle using different approaches. Typical methods
used for the envelope extraction are: normalized average
Shannon energy, homomorphic filtering, Hilbert transform,
moving window Hilbert transform, and short-time modified
Hilbert transform.

Most of the envelope based segmentation algorithms per-
form heart sounds segmentation with an assumption that the
systolic period is shorter than the diastolic period. However,
this may not be true in the case of infants and other cardiac
patients having abnormal heart sounds [114]. In addition,
envelope-based methods generally fail when additional peaks
(such as those caused by artifacts) appear superimposed to the
fundamental heart sounds [91], [115]. Furthermore, medium
amplitude peaks including murmurs are attenuated in the
envelope analysis while large and low peaks may appear as
a single envelope [108]. Thus, these methods fail to locate
peaks of very low amplitude present in the cardiac cycle [61].
Also, in some cases, manual selection of threshold to localize
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fundamental heart sounds may result in loss of some of the
peaks of interest.

2) ECG AND/OR CAROTID PULSE REFERENCE BASED
METHODS

A number of the reported segmentation approaches require
an auxiliary signal (ECG signal and/or carotid pulse) as a ref-
erence to identify the locations of fundamental heart sounds
in the cardiac cycle [72], [90]-[99], [116].

The general disadvantage of these methods is that a sec-
ondary signal is required, which is more complex both, from
the point of view of a sensing and also synchronization.
Also, these methods are affected by the mismatch in timing
between the electrical and mechanical (E-M) activities of
the cardiovascular system, which in turn depends on the
pathological conditions of patients [115]. Also, methods that
require the identification of R-peaks and T-peaks are more
computationally hungry and demanding in processing power.
In addition, accuracy also varies with low amplitude and
abrupt changes in the QRS morphologies, which can make
the identification of the R-peaks and T-peaks complex on its
own.

3) PROBABILISTIC MODELS FOR SEGMENTATION
As envelope-based methods have shown a modest success,
many probabilistic models for segmentation were reported
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in recent studies to try to overcome their shortcomings. The
aim of probabilistic models is to characterize the fundamental
heart sounds based on some discriminative features, such
as temporal correlation, waveform function, time-frequency
energy, and other information. Among all available proba-
bilistic models, HMMs were mostly used for the segmenta-
tion of heart sounds in recent articles.

Though probabilistic models were efficient in improving
the performance of the segmentation methods, the overall
performance of these methods still needs to be validated
using a larger datasets. This is because, amongst other things,
the characteristics of the fundamental heart sounds which
were used to develop the various models, varies largely from
infants to old people and from healthy to cardiac patients.

4) FEATURE-BASED METHODS

Feature-based methods are based on extracting certain
features such as energy fraction, sample entropy, total vari-
ation filtering, Shannon entropy, instantaneous phase bound-
ary, boundary location identification, likelihood computation,
etc., to identify peaks present in the cardiac cycles. The main
drawback of these methods is that the extracted features may
vary with the signals they are tested on and hence they need
to be verified using standardized databases.

In recent approaches, researchers segmented cardiac sig-
nals directly into cardiac cycles and skipped the steps used
to identify individual locations of S; and S» peaks [56], [79],
but this requires prior knowledge of the cardiac cycles. These
methods have similar drawbacks to the envelope analysis.

The works reported using the different segmentation meth-
ods have been classified in the following and summarized
in Table 3. In general, accurate segmentation is one of the
most challenging tasks in heart sounds analysis, especially,
when the signals are corrupted by real-world artifacts. Also,
most of the available algorithms are designed to segment
fundamental heart sounds. However, other abnormal peaks
and irregularities with low amplitudes also need to be inves-
tigated. In addition, existing segmentation algorithms mostly
depend on absolute measures like time or frequency dis-
tributions which exhibit large disparity within subjects and
hence result in poor segmentation accuracy. The limitations
in segmentation methods consequently impact the overall
accuracy of the PCG signals classification.

C. FEATURE EXTRACTION

Representations of the cardiac signals in different domains
reveal various physiological and pathological character-
istics and allow efficient feature extraction. To cap-
ture concurrent variations and structural components in
both time and frequency, time-frequency representation
of the transient signals has been reported as a pre-
ferred mean over the time-domain and frequency-domain
representations. Qualitative and quantitative measurements
of the signals were obtained using different transforms
for heart sounds analysis; for instance, time-frequency
representation using S-transform [47], Fourier transform,
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Short-Time Fourier Transform (STFT) [120], Wigner-Ville
Distribution (WVD) [121], [122], Choi-Williams Distribu-
tion (CWD) [66], [123], wavelet transform [124], [125],
and Short-Time Modified Hilbert Transform (STMHT) [57].
Though the Short-Time Fourier transform (STFT) was found
to be popular, obtaining a proper resolution for feature extrac-
tion using STFT is challenging because of the fixed win-
dow available for the analysis [56], [126], [127]. Wavelet
analysis emerged as an alternative by substituting the fre-
quency shifting operation of the STFT by a time or fre-
quency scaling operation [127]. Wavelet transform was
widely reported in literature because of its suitability for
representing signals where the length of the temporal win-
dow can be engineered for multi-resolution analysis with
wide frequency range across the length [128]. Discrete
Wavelet Transform (DWT) [91], Continuous Wavelet Trans-
form (CWT) [129]-[131], and Mel-Scaled Wavelet Trans-
form [107], [132]-[134], have all been used for heart sounds
analysis.

Feature extraction and selection play an important role in
pattern recognition and classification of heart sounds signals.
Reviewed articles extracted features based on the cardiovas-
cular disease being diagnosed and optimized them to reduce
the complexity and computational burden of the system. Fea-
tures with high-order statistics, non-linear fractal complexity,
entropy information and chaos theory helped in capturing rel-
evant information from non-stationary PCG signals, required
for proper classification. Other features included Shannon
energy envelope of the frequency spectrum, wavelet coeffi-
cients, perceptual features such as Mel-Frequency Cepstral
Coefficients (MFCCs), bispectrum, Variance Fractal Dimen-
sion (VFD), and fractal features such as largest Lyapunov
Exponents or Hurst Exponent.

Time-domain features are easy to extract and quantify.
These features mainly include timing characteristics such as
locations of S| and S, systolic and diastolic intervals, and
amplitude information (such as the mean absolute value of
the S1 and S and other peaks in the cardiac cycle). Some
physiological and pathological information that is missed in
the time-domain analysis can be visualized in the frequency
domain analysis. Frequency-domain based feature extraction
methods used mainly included band-pass filter banks and
zero-crossing analysis [11], [59], [72], [123], [135]-[137].
Other discriminant features included the mean power of dis-
tinct cardiac sounds segments (51, S», systole and diastolic)
in different frequency bands and MFCCs [107], [132]-[134].
Details of feature extraction methods and type of features
extracted are presented in Table 4.

D. CLASSIFICATION OF HEART SOUNDS

The final step of a heart sound analysis algorithm
is to take the extracted features and feed them to
an appropriate classifier to interpret them. Reported
approaches for classification include Support Vector Machine
(SVM) [56], [58], [701,[71],[73], [74], 1781, [79], [85], [105],
[107], [111], [114], [124], [138]-[148], Hidden Markov
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TABLE 3. Summary of heart sounds segmentation methods and their performance comparison.

” Records
= S . £ (# and Cardiac o 8 % Performance
8 b4 Segmentation . 2 N % g
o 2 Signal Type ) duration | Cycles (or | & £ [S1|S2|Ss |8 | E Comments
ol Methods a ; : z 2 E Accuracy
8 z in periods) 2 S| Se(%) | PPV (%) "
seconds) (%)
Envelope analysis
Shannon Only detection of sounds S|
envelope and | Normal (1) and to Ss was reported,
20B8\ 171 " echold | pathological (4)] > Srecords| - i A A A R RS - - validated with a limited
adjustment number of recordings.
Shannon entropy Databases from [32], [14], [34], Information was extracted
2017| [64] envelope and Normal and | [37], [33], [38] and HSs, Littmann | SNR olelo| o |o|N:9438|N:9725 | N:91.92, after splitting signals as
instantaneous pathological HSs, WHSMD and AUHSD 10 dB M:97.58| M:96.46 | M:94.21 low frequency and high
phase (Total 278 records) frequency signal contents
Normal 627 cycles
Shannon energy Innocent 257 376 cycles N:99.2, [ N:99.2, Recordings form children,
2017| [83] murmurs - - oo _| _ e ; ; - murmurs were segmented,
envelope - records PM: 89.3| PM: 96.4 R
Pathological assumption
209 cycles
murmurs
Normal, . [
Scaled murmurs and | Datasets A & B (176 & 507) PLSR for identifying most
2017| [79] | spectrogram and extrasystole records, database from [32] - -l=-]=-] -1 - - - relevant features, only
PLSR Y ? heart cycles were identified
sounds
152
11 (AF) periods
169
15 (AR) periods AF, AR, MR, PS, VSD and
. 231 normal sounds were
2015 [58] | CSCW envelope | Pathological 22 (MR) - periods - L3 B R - - - identified (Classification
20(N) 2§8 accuracy was reported)
periods
138
6 (PS) periods
VIM for heart sounds
Movin Normal and lf;r};;a;;hy 242 (N) envelope analysis, CA:
2014 [85] ind dgHT VSD HS VSD and 226 - - efe|_| _ |e| 988 - - 98.4, higher sensitivity
windowe s : (VSD) than threshold based
patients
methods
Normal 45 600 s S1: 98.53, Unsupervised, using
CHD 76 3390 s S>:98.31, | Hilbert transform and the
2014/ [57] STMHT RHD - 3940 s - - bl e i I - - Cycle: Viola integral waveform
Database [33] 23 1496.8 s 97.37 method
Shannon_ Normal (40) 80 % 95 (using Localization tolerance is
2013| [47] | envelope using | Pathological - records - - oo | - |- 97 SSE) - absent. unsupervised
S-transform (40) (6-12's) ’ P
CSCW (based on 9 records Results validated using a
- Normal and .
2010 [86] |variance on PCG athological - (£5s - - oo _| _ e - - 99.11 very small dataset, Viola
timing scales) P s each) integral method applied
Short time Normal (20)
spectral energy Total of Pediatric heart sounds
20091 [871 | 5, autoregression | Abnormal (40) 120 12005 |8230ycles| - oo -] - |- - - 93.6 segmentation,
characteristics
CSCW (also Normal and N: 100 and iicc?e/lca C}(I:I:r‘rflei:clg I:(e)r
2008 | [88] N - - |s500cycles| - |e|e|-|-]- - - AN: 88.2 uracy comp
reported in [6]) abnormal Shannon envelope and
(MODSG2) .
Hilbert envelope
Normalized Pathological 120 I;;tleer;trssagZ(rieb:;;V;Zr;rleZ-
2006 [68] |average Shannon and non- 40 8 seach | systolic - oo _| - |e - - - Y W >
energy pathological periods Segmentation results were
not found
. Pathological
Normalized R
1997| [89] | average Shannon| , (9 & - 37 315 - ele|- -] - - 9300 | NoindividualSiandS;
physiological records | periods identification reported
energy
(23
ECG pulse reference based methods
Probability Normal and ECG based segmentation
2017( [90] analysis for abnormal PhysioNet database [14] - oo || - -] 7696 - - using R-R interval
feature extraction estimation, CA: 84.11%
Normal 120
2011 [92] Joint ECG and - 120 records 1976 ole S1:97.00, Resul;segzzt;ief?{r;esd for
PCG signals | Pathological (Each 10| cycles - N - - $2:94.00 p )
(80) 5 segmentation
Normal (35) Each 10 ECG recorded
2011 [93]| UsingMMP | Pathological 70 "‘CS - - Je|el-|-]e| - - - simultaneously, CA: 92.5%
murmurs (35) (using MMP classifier)
2009 [94] Normal (50) 148 360 beats 100 92.0
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TABLE 3. (Continued.) Summary of heart sounds segmentation methods and their performance comparison.

164 .
Fractal features . Intra-beat segmentation
for segmentation Murmurs (98) recc;r(sis = - * * - (ECG records)
Feature selection | Valvular heart 15 s for 207 features extracted, CA:
20061 951 | \yi¢h ECG signal patient 36 S:s;ehc . 45cycles| - | - - - - 86 (For MI, AS and PM)
R- and T-waves Data from . .
. 40-45 s SNR > $1: 100, |ECG gating applied, STFT,
2005 [96] of ECG as known cardiac 300 each - 40dB|°* ¢ - - $2:97.00 sounds form children
reference defects
15 (cach ECG signals are also
2001 | [97] Matching pursuit| Normal and for N & _ _ _ . _ _ _ _ recorded at 500 Hz, C_A:
method abnormal AN BMV) 93.00%, no segmentation
results founds
Microcontroller . Gating device for medical
19921 [98] based HSs gating Pathological 19 - - - . - - - - imaging
5 healthy 94
1987 199 ECG and carotid | Normal and and 20 signals . Systolic and diastolic
pulse based pathological CVD (igO ) - - - - - - segmentation
patients S
60 (N), 40
Segmentation Pathological (FM), 32 sarlrig 7les
£ & (MI), 38 Hmp Zero-crossing positions are
1980| [72] | using spectral and non- - with 881 - . - - - - . . .
tracking pathological (AD, 9 cardiac used for identification
ASD) & 8
( (VS)D) cycle
Probabilistic models
Modified .
2017([102] Springer’s I\;ctf:lil ?::l PhysioNet database [14] - . Se('bgelsg - - Segmentation using CQA
method [80] | P &
Springer’s .
2017([103]| HSMM and Na‘t’;g‘lil ‘::i PhysioNet database [14] - e I - - Ma“”ailssefime:{:“‘m of
Viterbi decoding P & en
Duration- Pathological . .
2017|[104] dependent and non- PhysioNet database [14] - . - - - 73'30 (?ll Segrgenyatlon e;lg;)rlgt(l]lm by
HSMM pathological ataset) pringer ef al [80]
Logistic . HSMM performed better
2016 [80] | Regression- N?I:mlal ‘;.‘“dl 123 181321)5 “;lj ﬁ ég; - e - iggg 95.92+0.83| 92.5241.33 | than HMM, error rate 0.23
HSMM pathofogica ot > i with Shannon energy
14.000 Time-domain intensity
2014/ [77] HF for Normal and | 100 (N and 100 car’diac . S1:80.3 [S1:80.2 Sa: envelopes, results not
segmentation pathological AN) records cveles - T 82775 77.6 - suitable for clinical
Y applications
. 3 healthy . Localization tolerance is
2012|[527|  Dymamic Normaland | = )3 20 lsescycles| - | e i - $1:94.86, 1 1 cent, No split between
clustering abnormal . records $2:95.92 ..
patients training sets
. 15 records S .
2oz | Mibrttung | Nemlond | st om0 | o | ot S
S4 S4: 94.50 T
HMM based N and 80N) & HMM based segmentation,
2012[105] A 80 - - - e . - - -
segmentation abnormal (Abnormal) CA: 85.6%
Duration: Normal and re(l:in?ds HMM achieved 59.9% of
2010] [45] - - 73 - - . -1 988 98.6 - Se and 54.8% of PPV for
dependent HMM | pathological (each 8 .
s) the same algorithm
N:99.09, . .
HF and k-means | Tormaland 340 HSs SM: 8547 | Notsuitable for high
2007( [67] . murmurs 41 - - . . - - K intensity murmurs [29],
clustering segments & DM: .
sounds unsupervised
86.47
HE and self- Normal and 44PCG S51:98.6 | S51:96.9, Extracted features fm‘?‘
2005{[100] izine PM b l 17 records - - . "1 52983 | $»965 - events are segmented using
organizing abnorma (30-60 ) 2: 98. 2: 96. HMM
46 files Shannon energy features
2005|[101] HMM Clean and dirty 9 (~2286 - - . - - - 98 are extracted for
s) segmentation
Feature-based Methods
Identification of Normal and 460 each Acoustic features using
2017|[106]| Siand S using abnormal 28 - Si and Sz - . - - - - MEFCC, C4:91.12%,
DNN HSs 17M/11F were considered
Detection of Pathological 38 (PI) . . .
2015] [75] heart sound and non- - and 54 920032;210 - . . - - - Classnﬁcatl;);ll of murmurs
murmurs pathological (TDH Y Y
Energy fraction | Normal (40) 80 (N) .
Unsupervised, Sp: 98.55%
2015([107]| and entropy CVD patients 107 and 167 - - . ® | 9348 - - and CA: 97_"17%
based features (67) (SHM)
N (11) and HSS-EEMD/K achieved
2014| [49] kuriﬁggﬁires pathological ) rec‘fr | 2602 - e - - [83.05¢15.14|  prediction power of
(32) 94.5646.58%
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TABLE 3. (Continued.) Summary of heart sounds segmentation methods and their performance comparison.

Normal and Online available [34] Tested with limited
2014 [61] | HSAD method | pathological 701 Upto |e|e|e| e || 9943 93.56 93.95 database, no stated
(each less than 10 s) .
PCG 5dB segmentation tolerance
Frequency- .
2013 [25] | cnergy based D1ffe}rent valve 50 Total .Of _ _ o|lole| o |el| 9900 98.60 _ S3, Sa an(;l murmurs were
. disease 52 min also investigated
metric
Clinical features Normal Up to Robustness analysis and no
for locating 71 25dB 97.47 split between training sets,
2008 [29] FHSs and 9 different 7l records 357 eycles Up to bl Il e I - - (overall) systolic and diastolic
murmurs pathologies 10 dB murmurs
Complexity- Online No ECG gating used, not
2005|[108] based - - - - ele _| _|eo - - - suitable for continuous
. database [34]
segmentation murmurs.
Time-frequency/wavelet analysis based methods
Wavelet analysis L
and Shannon Normal sounds 230 230 Statistical r'esults for the
2018([118] and abnormal : - - -|le|-] - ]e® - - - segmentation were not
energy d subjects records found
calculation sounds ound.
Tunable-Q . .
2013|621 wavelet Pathological Databasc from [36] - Jelele| ool - - SRE9215 | g etone based on CSCW
signals (overall)
transform
. . Normal
Time-domain EAS Database from [34]
i atabase from i
2011 [59] analy51s.of LAS _ elelel . |e _ _ _ Unsup_crvlspd, TFD
pathological PS (6 records for each class) analysis using RME
PCG signals
MR
Normal and Welch Allyn Tycos
2011 ([109]| ASSA approach X 12 20 s each| 8 segments - -l=-]=-] -1 - - - stethoscope, only
pathological . L
correlation estimation
Data from
Wavelet 14 pathological two Each Statistical results for the
2008|[110]| transform for patholog patients, [record of| 140 cycles - oo | - |- - - - segmentation were not
. HS:s signals X
segmentation online and |20 cycles reported.
CD book
Szlenzfatta:;gn Normal and Statistical results for
2007| [55] . - pathological Database from [19] - oo | - |- - - - segmentation were not
extraction using
(AR) reported.
wavelets
Learning based methods
A system for 6 records S1: 94.63, Pathological and non-
4 Normal and Database . $2:97.25, pathological signals are
2014|[111]| heart sounds . for each | 72 Signals - LG R ) - - : -
classification pathological | from [119] class $5:96.63, | considered, No repongd
84:96.66 | methods for segmentation
. Normal (3) 0dB Best is . . .
2010/ 50] | 4% efﬁf;“"“ Pathological 26 . 0206r 4o [ 565 cyctes |and 5| oo | | o fof - | 94.0% for o | NS ’ed:c“l‘i’:dt“h“‘que
(23) dB dB SNR PP
Database from
F clustering | [34], Normal 20 -20 dB
2008 |[112]| FU#£Y clustering ’ - - 060 |- |-|-|-]e]| 730 - SM: 80.00 | Sp: 100.00% was reported
approach (5) and SM records dB
as
2002[113] Time-delay Normal z_ind 30 Each 20 _ o I R 98.4 978 _ ECG (lralr_nng) wlt}_l time
neural network | pathological s domain analysis

Abbreviation: PLSR: partial least squares regression, RHD: rheumatic heart disease, MMP: multivariate matching pursuit, CQA: cycle quality assessment, SR: segmentation rate,
HMM: Hidden Markov model, MFCC: mel-frequency cepstral coefficient, PM: probabilistic model, HE: homomorphic envelogram, HF: homomorphic filtering, DHMM: duration-
dependent hidden Markov model, WD: wavelet decomposition, CSCW: cardiac sound characteristic waveforms, STMHT: short-time modified Hilbert transform, SHM: systolic
heart murmurs, ASSA: adaptive singular spectral analysis, RME: Rényi marginal entropy, BMV: bioprosthetic mitral valves, CARDJHU: cardiac auscultatory recording database
of Johns Hopkins University, CA: classification accuracy, WHSMD: Washington heart sounds and murmurs database, VIM: Viola integral method, DNN: deep neural network.

Models (HMMs) [118], [132], [133], [149], [150], k-Nearest
Neighbors (k-NN) [94], [123], [151]-[153], Neural Net-
works [21], [47], [55], [67]-[69], [81]-[83], [91], [93], [95],
[102], [104], [106], [110], [154]-[172], rule-based classi-
fier or decision trees [173], [174], BayesNet classifier [175],
machine learning based approaches [90], [144], [160],
Gaussian-Bayes model [176], Naive Bayes [177], Gaussian
Mixture Model (GMM) [178], random forest [177], and
discriminant analysis [66].

1) SUPPORT VECTOR MACHINE (SVM)

Support vector machines are non-probabilistic binary lin-
ear data-based machine learning models suitable for clas-
sification of heart sounds using different kernel functions.

8328

Implementation of a support vector network for non-
separable training data was firstly reported by Cortes and
Vapnik [179]. This has been extended for supervised machine
learning problems including classification of heart sounds
signals.

In general, most of the studies reported were focused
towards improving the classification performance either by
modifying the existing approach of SVM based classifica-
tion or by adding new features to the classifier. Heart valve
diseases were mostly classified using an SVM classifier in
recent articles. Other than this, SVM classifiers were found
suitable in identifying innocent murmurs when compared to
artificial neural network [83]. SVM classifier are suitable for
high dimensionality classification problems even if sample
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TABLE 4. Feature extraction and selection approaches.
Year E Analysis/Transform Feature extraction methods Number of features Feature details/Characteristics Feature selection
2
2018([118] Wavelet transform_ and Short-term windowing technique 8 features Time-domain and frequency-domain Adaptive feature selection
spectral analysis features
2018]|[182] Wavelet analysis Curve fitting and MFCC 34 features Wavelet and entropy features -
2017| [56] TF analysis Tensor decomposition method on - Features from scaled spectrogram Tensor decomposition
scaled spectrograms
2017|[183]| FFT and wavelet analysis - 2 types of features Spectral amplitude and wavelet entropy -
2017 [79] TF analysis Feature extraction from scaled - Scaled spectrogram features PLSR
spectrogram
L Statistical properties of averaged Symmetry of line segments surrounding
2017{ [90] Frequen§y and statistical shapes for a different frequency 53 features (total 228 S1 and Sz, skewness, kurtosis and centers Probability assessment
properties of envelope features) R .
band of gravity, mean, SD and ratios
2017|[102] WPD and CWT Feature extraction using CQA 90-dimensional features 4 set of features from the t{mc, TF and Fisher’s dlsatlmmam
vector perceptual domain analysis
2017|[103]|  Wavelet analysis - 131 features Time, freque"‘:yf’e;”tfl‘r’:e‘ and statistical CFS algorithm
Time/frequency characteristics 220 (CWT), 400 (MFCC), MFCC and complexity measurement
2017([104] Wavelet analysis L q ,y inter-beat (20), 35 (spectral entropy, SD, skewness, and PCA (50 features selected)
using ‘Gaus4’ mother wavelet X .
(Complexity) kurtosis)
. . . 39 MFCCs (velocity and
2017([106] TED an_alyms using kemean alggmhm (Euclidean acceleration) features & 264 HSAD, MFCC and k-means -
acoustic features distance) .
acoustic features (Fbank)
2017|[138] Time, freguency apd Sparse coding for ungupervnsed 20 TD fgatures & sparse Sparse coefficients, N-points FFT _
sparse coding algorithm feature extraction coding features
2017([155] TF analysis - - MFSC No
20 features and some Duration of each cardiac state, mean
2016([144] Wavelet analysis WT additional wavelets based ) X . -
& amplitude and their ratios
eatures
2016[114] DWD Diffusion maps for unified feature - Autocorrelation features -
representation
2016( [80] DWT WD - HE, Hilbert, wavelet and PSD envelopes | Wavelet feature optimization
2016|[158]| T, F, TED analysis - 40 features LPC, entropy, MFCC, PSD and wavelet | - wpqg (18 features)
based features
2016([157] FD analysis Power spectrum analysis 16 features using PSA - -
2016([156] FFT Clustering method 3,500 features Spectral features 40 features selected using
filter method
2015] [58] Wavelet analysis STMHT based FFM 10-dimensional FFM FFM PCA
36 features from diastole and Dimensional features from segmented
2015 [75] Wavelet analysis Feature extraction algorithm systole of every cardiac . & -
cardiac cycles
cycle
EFSE evaluated from .
2015([107] WPD reconstructed selective frequency 5 features EFSE, Sampling frequency dependent -
features
components of HSs
SAMDF based feature set derived
2015([139] TQWT with TQWT - Wavelet-based features -
D/S, amplitude (S1/S2), Multifractal
2015 [73] Wavelet packets MF-DFA, MESE and EMD 5 features spectrum parameters, fpspmax, adaptive -
sub-band energy fraction
PSM, IF & amplitude, and power
2015 | [46] EMD for IMF in frequency banqs, samplc & 5029 features within nine Spectral features, signal complexity PCA
spectral entropy, simplicity and classes features
statistical moments
Moving windowed Hilbert . Envelope extraction, diagnostic features
2014] [85] Transform) Envelope of HSs using VIM 4 features in TD and FD -
2014| [49] EEMD and Kurtosis EMD - EEMD and Kurtosis features -
features
Ensemble Empirical Mode| EMD/EEMD and IMF correlation IMFs and correlation dlmensmnsi of the
2014( [74] o . . 13 IMF components IMF components were used as feature -
Decomposition (EEMD) dimensions sols
2014|[111] TF analysis Lm_ear Predictive Coding . 12 different classes Spectral analysis for features MCS algorithm
coefticients for feature extraction
2013] [47] S-transform SVD of S-matrix 70 features TFD features -
2013| [25] | TF and frequency analysis Short-time frequ_ency amplifier | 2 frequency and amplitude Frequency and amplitude based features -
technique features
2013| [70] | MLBS of wavelet features WPD 448 nodes fqr feature Frequency and TD features Exclusion cnter?a for feature
extraction reduction
2012|[105] TF analysis Murmur likelihood as temporal 39-dimensional features MFCC and HMM states likelihood _
features (best results) features
2012([175] Wavelet analysis Wavelet packet trgnsformanon 128 entropies Wavelet entropy-based features PCA (32 features)
using Daubiches8
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TABLE 4. (Continued.) Feature extraction and selection approaches.

2012|[184] Wavelet analysis Time-domain, wavelet features 32 features Linear and nonlinear time-domain, PCA, GDA and (_]A for
and entropy wavelet and entropy features feature selection
2012| [82] DFT DFT and Burg autoreg_resswe 300 DFT and 33 Burg-AR Frequency domain features PCA (8 DFT and 6 Burg-AR
spectrum analysis features features)
2012([162] DWT DWT for feature extraction 6 wavelet entropies TED features Shannon energy
2012|[149] DFT - - FD features PCA
. 83 features based on CWT, Shannon entropy and the Gini index
2012|[185] CWT SVD and QR decomposition SVD, QRD using WT SFFS
2011|[109]| TF analysis using FFT Adap tlveasI::lg;Iiz;r spectral - Correlation & kurtosis features -
2011( [91] DWT - 32 features TF based features PCA
2011( [93] Wavelet analysis MP and MMP b? sed feature - TF based features -
extraction
TF domain analysis using . 4 feature set of single and
2010( [45] STFT HE for features extraction multi-feature Frequency & HE features -
. . . Frequency domain features (fiax and fuidtn
2010] [78] Wavelet analysis - 2 diagnostic features for NAR-PSD) -
Feature extraction from | Linear decomposition and tiling Linear grid, Quadtree, PCA,
2010][152] TF representation partition of TF plane 851 features TF based features PLS, 2D-PCA
2010([124] TF analysis Wavelet-based features - Clinical fleatures (normal split sound -
duration, frequency content)
Spectrogram, WVD, .
2010{[151]| SPWVD, CWD, ETD, TF representation - MEFCC, energy, frequency, BW, Eigen -
. vectors, and spectral centroid
HTD and scalogram
. . . . Feature-space of cluster distances, Clustering for feature
2009] [66] TF analysis Hierarchical clustering 3500 features approx. correlation and Euclidean distance reduction
TF domain analysis usin 4 (SD and HR), 8 (81 and S each), 24
2009([146] wavele)t/ & WD 100 scalar features (systolic), 48 (diastolic) & 8 (energy) -
scalar features
T varying & TF, perceptual and fractal
2009/ 94] | STFT, Gabor Transform, - 149 features features (Eigenspace, MFCC, LLE, Hurst PCA
WVD, Wavelet transform X . X
Exponent, Correlation Dimension)
. Rectangular window and power 50-dimensional feature Power of the detailed coefficients in each . .
2009][186] Wavelet analysis content in the window vectors segment with and without filtering Divergence analysis
2009|[145] Wavelet analysis - 12 features 12 wavelet entropies -
2009|[163] Wavelet analysis dbd decomposmpn filter within - Diagnostic features -
five resolution levels
Clinical features (duration of split-
2008] [29] TD analysis B B sounds, systole, and diastole, frequency) B
2008|[153] Wavclctsiirr;l_}_ysm and STFT and WD 91 features Wavelet entropy -
2008([147] WPD - 2 features Wavelet packet energy (mean and SD) -
2008([110] Wavelet analysis Wavelet treﬁigzggrfm feature 50 features for each record Wavelet features Divergence analysis
2008([133] TD and STFT - 3 classes of features TD, STFT and MFCC features -
2007| [67] Wavelet analysis Daubechies-2 WaveAleAl coefficient 32 wavelet features Wavelet features HF and k-means clustering
decomposition
2007| [55] Wavelet analysis - 64 features Wavelet features -
2007|[150] Wavelet analysis and WD, STFT, wavelet entropy _ Daubechies-10 WD, STFT & wavelet _
STFT entropy
2007([148] Wavelets'ilrn]:)%ysm and WD, STFT and wavelet entropy 91 features - -
2006| [68] Spectral analysis SPWVD - FFT (spectrogram) -
Time, TFD, nonlinear and chos based
features and HOS, state space, fractal i
2006| [95] FFT, DWT, Wavelet RQA 207 features dimension, bispectrum, wavelet entropy, Pudil’s
analysis - . SFFS method
fractals, Gaussian mixture model,
Eigenvalues
2004 [21] | Wavelet decomposition - 256 elements feature vector TF features -
TFD adaptive feature extraction, | 256-Wavelet packet entropy
2003| [69] WPD and NN WPNN per DHSs signal Wavelet packet entropy -
2003| [81] TF a::,j‘z':ll:tzsmg WD and wavelet entropy 12 wavelet entropy values - Adaptive feature extraction
TF analysis usin; 336 feature vectors for the Divergence analysis (16
2003([169] Y e - training set and 336 feature Wavelet-based features & Y
wavelets features)
vectors for the test set
2002([170]| TF analysis using FFT FFT and the chmsgn—Durbm - Spectral estimation Auto-regression
auto-regression
2001 [97] TF analysis Matching pursuit 2 features Dominant frequency-based features -
1995([171] TF using wavelet - 2 features Average COI’I’E]E}UOHS and Euclidean -
distance
. . Energy curve, spectrum & distribution
1987] [99] TD and FD analysis Energy spectrum analysis 4 EDC wocfficients -
Frequency domain Analysis using linear-prediction Spectral level tracking by evaluating
1980] [72] - - . ) -
spectral tracking method spectral density function

8330

VOLUME 7, 2019



A. K. Dwivedi et al.: Algorithms for Automatic Analysis and Classification of Heart Sounds—A Systematic Review

IEEE Access

TABLE 4. (Continued.) Feature extraction and selection approaches.

Abbreviation: TF: time-frequency, TD: time-domain, FD: frequency domain, TFD: time-frequency domain, PLSR: partial least squares regression, CFS: correlation-based feature
selection, LPC: linear predictive coefficient, WFSS: wrapper feature selection scheme, SVD: singular value decomposition, EFSE: energy fraction and sample entropy, SAMDF:
sum of average magnitude difference function, MF-DFA: multifractal detrended fluctuation analysis, MESE: maximum entropy spectra estimation, DWD: discrete wavelet
decomposition, CWT: continuous wavelet transform, TQWT: tunable-Q wavelet transform, PSM: parametric spectral modelling, MCS: modified Cuckoo search, MLBS: multi-
level bias selection, QRD: QR-decomposition, SFFS: sequential forward floating selection, MP: matching pursuit, MMP: multi-variate matching pursuit, HE: homomorphic
envelogram, WVD: Wigner-Ville distribution, SPWVD: smoothed pseudo WVD, ETD: exponential 7-distribution, HTD: hyperbolic 7-distribution, RQA: recurrence quantification
analysis, WPD: wavelet packet decomposition, SD: standard deviation, HT: Hilbert transform, EDC: energy distribution coefficients, LLE: largest Lyapunov exponent, FFM:
frequency feature matrix, EEMD: ensemble Empirical mode decomposition, IMF: intrinsic mode functions, DHS: Doppler heart sounds, MFSC: mel-frequency spectral coefficients,
WD: wavelet decomposition, WPNN: wavelet packet neural network, NAR-PSD: normalized auto-regressive power spectral density, CWD: Choi—Williams distribution.

sizes are small [180], [181]. Also, the performance of the
SVM classifier does not correlate directly to the dimension-
ality of the input vectors [124]. Further, the SVM classifiers
provide flexibility to use an optimum kernel function from
the available kernel functions (linear, Gaussian, polynomial,
radial basis, exponential radial basis, sigmoid, spline, Fourier,
Gaussian radial basis, Morlet wavelet kernel, Mexican hat
wavelet and bspline) based on the cardiac abnormality under
investigation. The parameters of the kernel function can be
tuned further to improve the training efficiency and to achieve
the best performance. However, this demands an additional
optimizer in the system [111]. Other than this, SVMs are
cumbersome for multi-class problems as it requires an indi-
vidual model for different classes.

2) NEURAL NETWORKS

Neural networks are also widely used potential machine-
learning based methods with remarkable ability to detect
the trends based on the sample data. Due to their self-
organization properties, real-time operation, and adaptive
learning, neural networks find applications in cardiac abnor-
mities detection.

Though, neural networks achieved promising results in
terms of classification accuracy and are frequently used
as a computational tool for pattern classification of heart
sounds, large training datasets are required to train neu-
ral networks. Also, it requires more computational power
and time to accomplish the classification task compared to
an SVM classifier. Other than this, it has been found that
Back-Propagation Artificial Neural Networks (BP-ANN) are
unable to produce a global solution to a classification problem
as the initial weights are randomly selected [73].

3) HIDDEN MARKOV MODELS (HMM)

HMMs are probabilistic statistical, double-layered stochas-
tic finite state machine with hidden Markov process. From
the articles reviewed, it was found that HMM models were
mostly used for segmentation. However, only a limited num-
ber of studies employed them to classify normal and abnormal
heart sounds.

In general, HMM classifiers often have a large set of
parameters and the classification accuracy was found to
be directly dependent on the HMM parameters selected in
the model [118]. Additional drawbacks of HMM in heart
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sounds classification include slow interpretation, parameter
optimization, memory requirements and computational time.

4) K-NEAREST NEIGHBOR (K-NN)

Feature distances (Euclidean, Manhattan, Minkowski, Maha-
lanobis, etc.) were estimated to compute the nearest neigh-
bors when the most relevant patterns were close to each
other in the feature space [173], [176]. The k-nearest neigh-
bor algorithm was successfully applied to classify nor-
mal and abnormal heart sounds and for murmur detection
[94], [151], [187], [188]. Classification performance was
found to be dependent on the k parameter used in the algo-
rithm and various features were suggested to improve the
classification performance.

In general, a k-NN classifier offers advantages in terms
of training time, simplicity and ease of implementation com-
pared to others. However, it demands large memory space and
offers slow estimation [189]. Further, the k-NN classifier also
offers robustness to noisy training data [47].

Attempts to classify heart sounds with modified classifiers
or rule-based classifiers were also found. Decision trees based
on certain rules and decision nodes were considered as rule-
based classifiers [173]. Other efforts to classify heart sounds
using a combination of different classifiers were also reported
[83]. Works reported using all of these approaches are pre-
sented in Table 5.

V. SYNTHESIS OF RESULTS

Data synthesis to evaluate the accuracy of the algorithms was
performed on articles that reported an analysis of fundamen-
tal and other pathological heart sounds, including segmenta-
tion and classification. Performance of data acquisition meth-
ods was not assessed, as a proper index was not reported in the
articles studied. Similarly, feature extraction approaches were
reviewed thoroughly; however, were not included in the data
synthesis. The study was formulated to consider articles with
first heart sounds (S) detection (FHSD), second heart sounds
(82) detection (SHSD), pathological heart sounds detection
(PHSD) including S3 and S4, murmurs, classification between
S1 and other heart sounds (FHSC), classification between S,
and other heart sounds (SHSC) and classification of patho-
logical heart sounds (PHSC) including murmurs, S3 and Sy
and other abnormal heart sounds. Some articles with partic-
ular identification and classification of very specific type of
murmurs and heart sounds were also reviewed; however, were
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TABLE 5. Summary of heart sounds classifiers and their performance comparison.

3 Type of
5 2 Records Samplin; features/size Type of cardiac
8 2 Method Transform |  Subject type (# or duration ping Classifiers Performance (%) ype o1 { .
| & . rate of feature abnormality investigated
5] in seconds)
o~ vector
SVM based classifier
Datasets A & B from [32] 44.1 kHz Normalized precision: Normal. murmurs. extra
Scaled spectrogram Tensor SVM, SS- 76.0, 74.0 and 90.0 he’art sounds’
2017| [56] and tensor TFD D Cri4 4 KH decomposed | PLSR, SVM- | using SS-TD with extrasystole a;l d
decomposition ataset C [14] z features DM, SS-TD | Datasets A, B and C, Xlrasy
. artefacts
respectively
HSs classification Scaled . Normal, murmurs, extra
based on scaled Datasets A & B (176 & 507) 441 &4 spectrogram Sz 100 (best with heart sounds
2017 [79] TFD . y SVM artefacts), Sp: 64.0 >
spectrogram and records available from [32] kHz based TF (artefacts) extrasystole and
PLSR features artefacts
Sparse
Sparse coding coefficient Sp: 88.45, S: 90.07, .
2017|[138]| features with TD TE’ dFO ii‘a‘%n PhysioNet database [14] Varied matrix and SVM MAcc: 0.892 S:{ijsyfgﬁlcws’oiﬁ;d
features using SVM time-domain (modified results)
features, 20
features
Without
segmentation, . . Normal, murmurs, extra
classification using Datasets A & B (176 & 507) 44.1 &4 TF based SVM-DM, Se: 100.0, 5,2 64.0 heart sounds,
2016([114] X TFD . autocorrelation| SVM-A, and (using SVM-AD
autocorrelation records available from [32] kHz X extrasystole and
SN features SVM-AD | classifier for artefacts)
feature and diffusion artefacts
maps
Cardiac reserve and 88 (N) and 64 88 (N) and 64 Wavelet :(‘)i;sxgg ‘i?ifh Sp: 93.75, Se: 96.59, Chronic heart failure,
2015] [73] | HSs characteristics WT (CHF), 1 11025 Hz | features based P Acc: 95.39 (using LS- subjects without
) (CHF) . BP-ANN and
analysis minute each 5 features SVM) murmurs
HMM
14 (AF) 188 periods 5p 90.6, 51 976'9’ Ace
17 (AR) 181 periods 5p98.9, 958 28'5’ Ace
Dimensional - AF, AR, MR, PS, VSD
2015/ s8] | STMHT-based FEM | .y 25 (MR) 257 periods | 44.1 kHz FFM, 10 SVM $p98.5, Sc98.1, Ace |4’ hormal sounds were
for classification 98.4 .
features 5 100.5. 99.6. Ace classified
25 (N) 325 periods P 9; s
7(PS) 150 periods Sp 98.6, 5. 99.9, Acc
98.7
. Clean data: Sp: 100, Se: . .
Structural complexity o’ g Classification between
2015| [71]|  based feature 0 | 0 (N)and 60 - 8 kHz Sample SVM 9333, Acc: 96.67 & | 1 and abnormal
. (pathological) entropy 91.66 (with 10 dB
extraction heart sounds
SNR)
SVM with Normal,
. LKF, PKF, Sp: 98.55, Se: 93.48, aortic/pulmonary
2015|[107] En;;iy If:r;::(:':f; and WT 40Ch\igthzt?;1(1:7 80 (?IS)]_?;\I/% 167 2205 Hz EI:_EZ and GRKF and Acc: 97.17 (using stenosis and
P 14 p Py SKF, 5 GRKF) tricuspid/mitral
features insufficiency
Least-square support 163 HSs signals | - 4628 cycles STAMDF SYM with Sp: 99.29, Se: 98.80,
. (N, septal, (626 N and derived with different . . | Septal, valvular and
2015([139]| vector machine (LS- WT 44.1 kHz Acc: 98.92 (using Q = .
SVM) valvular and 4002 TQWT, 21 kernel 6 and MWKF) other mechanical defects
other defects) pathological) features functions
14 (45-93 y) PM,
GTSVM for murmur 16 (1-16 y) PM, 10s duration GTSVM Sp: 89.30, Se: 86.30, Innocent and
2015/[140] classification wT 26 (2-14 y) IM, each 44.1kHz TF features classifier CR: 88.10 pathological murmurs
30 (4-15 y) NM
Intelligent PCG 30 (N) and 26 Frequency . . Aortic stenosis severity
2015)[141] system TFD (IM) and 30 (AS) B B features SVM Sp: 89.3, 5::86.4 assessment
HOC of wavelet 16 (N), 19 (MR), | 59 records, 820 . .
2015|[142]| packet coefficients | WPD 14 (AS)& 10 | cycles, each 4kHy | Wavelet based SVM Acc: 99.39 (using | Normal, MR, AS, and
. . 46 features CT_LDB method) AR heart sounds
for HSs classification (AR) 15s
. Sp: 98.1, Se: 98.8, Acc:
Time and .
Features from VSD, normal frequency 98.4 using boundary
2014| [85] | envelope of HSs WT  |HSs, AR, AF, As| 242 MNand | )y domain SVM curves & Sp: 98.4, Si: | VSD, AR, AF, AS, MS
) 226 (VSD) 98.6, Acc: 98.5 using |and normal heart sounds
using VIM and MS features, 4 ;
features ellipse model (for
VSD detection)
405 HSs,
HSs classification 225 (N) and 180 | testing with 75 EEI}/II\?Fand Binary tree
. (60 (MS), 60 (N) and 20 . y Acc: 98.67 (normal) MS, VSD, AS and
2014| [74] and recognition WT 11025 Hz correlation SVM (BT-
(VSD) & 60 (MS), 20 . . and 91.67 (abnormal) | normal heart sounds
based on EEMD dimensions, 13 SVM)
(AS)) (VSD) & 20 f
(AS) eatures
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TABLE 5. (Continued.) Summary of heart sounds classifiers and their performance comparison.

Ejection click, split of S
. & S2, FHSs, S5, S4, pan-
2014|[111] HSs classification TFD M Polandfrl:rlr(ir[olpll’;(ine samples 12 features S\ﬁ/é;nd Acc: 95.43 (average | systolic, late systolic,
using SVM-MCS ’ - using LPCC - using SVM-MCS) | early systolic murmurs,
72 records algorithm .
opening snap and
diastolic rumble
Normal, presystolic
gallop, early diastolic,
Feature extraction 50 (healthy) and Each 5s Features using Sp: 94.00, Se: 85.29, enhanced S, aortic
2014{[143]1 o ed on OMS-WPD| W1 | 68 (pathological) |  duration | 229 HZ | oms-weD SVM | CR: 88.08 (using db8) | ~systolic cjection and
mid-systolic rattling
sounds
MLBS of wavelet 59 (Normal and 16 (N), 19 Wavelet based| SVM with Sp: 100.0, Se: 98.0 Normal, AS, MR and
P <Y, Oe. =Y, s >
2013 [70] features wT pathological) (Ml})o’ (liéf)\S), 4 kHz features MLBS Acc: 97.56 AR sounds
. . . MFCC and .
Clasmﬁcapon‘ using 80 (N) and 80 HMM states Acc: 80.6 (6—HMM )
murmur likelihood Normal and o SVM state and 3-Gaussian | Various murmurs and
2012|[105] TFD . (abnormal) 8 kHz likelihood, . X
and HMM state pathological . . - classifier mixtures) and normal heart sounds
P HSs signals dimensional, .
likelihood 85.6 (SVM classifier)
39 features
. Normal and five
2010{[124]| LMS based Ls-syM| TFp | 04 (Normaland | 64 recordings | g\ 1y Wavelet Ls-svm | Aco: 92889 (average | pirre ot pathological
pathological) (512 cycles) features of Sets 1-16) sounds
Jfmax and fuidin
. ’ Normal, AF, AS, MR,
NAR-PSD and multi- 6 healthy and 34 | 196 (N) and as features . S$p: 99.9, Se: 99.5, A
2010| [78] SVM wT pathological 293 (AN) 8KHz | gomNAR- | Multi-SVM 906 (best case) | MS> dortic insufficiency
PSD and split sounds
Bagging trees, | Validation Acc: 94,
. . . boosted trees, 93, 85 and 91, Heart sounds were
2010([144] b]g\\/;:ghil(:lq:nlggglt?fn WT d;:g;zN[elt 4] re:(;ifi(r)l S Varied Wza(;/ ?lztn?f::d logistic respectively classified as normal or
& classifier and Se: 79.58 and Sp: pathological sounds
SVM 74.59, overall: 77.08
13 (LBBB and
CWT and SVM paradoxical Total 42 Time- Detection of the
based detection of splitting), 18 (AS | samples used frequency Se: 94.44, Sp: 87.5, and . o
2010/[190] the paradoxical CwT and paradoxical from 250 - maps, total 5 SVM Acc: 90.97 paradoxwa; splitting of
splitting of $> splitting), and 11 records features 2
™)
215 samples Wavelet vat;f;‘ed Acc: 96 (N) and 94.52
Genetic-SVM 132 M/83 F (5s each) entropies X (AN) using GSVM .
2009)[143] (GSVM) DWT | (Age: 15-80y) | (Dopplerheart | 20XHZ | paced 12 d;f:f;g" Model-4 (ERBF) (best| cart valve discases
sounds signals) features . results)
functions
Identification of Healthy, AS, AR, | Ag %)’(:,}R) ?35:? (Gil/sl‘gan Sp: 94.74, Se: 87.50, | Normal, AS, AR, MS
2009([146]| valvular diseases WT MS and MR, ’ ’ - . . |Acc:91.43 (b/w N and| and MR heart sounds
ing SVM (age: 1822 y) 38 (AR), 38 features, total | radial basis AN) using GRBF ionall
using e Y (MS) 100 features function) using signals
Wavelet packet 30 (N) and 52 Wavelet Aortic and mitral
2008|[147]| energy features using WT (VHD) (for - 8 kHz packet energy SVM Sp: 96.67, Se: 100.0 valvular heart disorders
WPD and SVM testing) based features
Normal and 215 samples WD. STET Cardiac abnormalities
abnormal (DHSs | (54 (NAHV), > Sp: 94.0, Se: 95.9 (for related to aortic and
2007|[148] LS'S\%[\];“d BP- ‘g;‘%‘i signals) for 5 | 56 (ANAHV), | 20 kiiz a‘l‘)‘:::;r;’fy LSB'SXI‘I{];“ BP-ANN) & Sy: 90.0, | mitral valves (AR, AS,
seconds each, |66 (ANMHYV), foatures Se: 94.5 (for LS-SVM) MS and MR) and
132M/83F 39 (NMHV) normal heart sounds
Neural Network based classifier
. Gram
. Normal and pathological sounds . L. .
Gram polynomials . polynomial Sp: 91.0, Se: 93.0, Acc: | No clinical abnormality
2018([154] and PNN FFT from PhysioNet database [14], 2 kHz and FFT, 64 PNN 94.0 studied
3126 records
features
87 innocent Temporal and Identification of
2018 [83] ANN an_d SVM STFT |murmurs an_d 170 257 records 8 kHz spectral ANN and | Sp: 91.0-99.0, S.: 84.0- innocent murmurs in
classifier pathological features, 14 SVM 93.0 .
children
murmurs features
Sp: 87.14,87.21 &
. TD, TFD and 88.51 and Se: 75.44, . .
Feature extraction TD and Normal anq pathological sounds perceptual . FFNN’ 91.38, 88.83, for data Classification as normal
2017([102] . from PhysioNet database [14], 2 kHz dimensional and abnormal heart
using CQA TFD . features, 90 setl, set2 and set3,
1277 records (308 patients) features . . sounds
features respectively using
CQA
MFCC, inter- Two-hidden Normal, MVP, aortic
Drop-Connected Normal and abnormal HSs from beat anvfl layer NN Acc: 85.2 (on test disease, CAD’ MR, AS
2017|[104] TFD . - complexity . and other miscellaneous
neural network PhysioNet database [14] trained by data) .
features, 675 EBP pathological heart
features sounds
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TABLE 5. (Continued.) Summary of heart sounds classifiers and their performance comparison.

MFCC and | DNN (KNN, | Acc: 85.0 (using 39
2017|[106] Identification of Si TFD 28 subjects 460 each S1 and 48 kHz acoustic LR, SVM and | dimensions with K- | First and second heart
and S using DNN (17M/11F) S2 peaks in HSs features, 303 GMM for means) and 91.12 of sound identification
features comparison) accuracy overall
Sp: 87.66, Se: 80.63, Normal and abnormal
2017|[1557| MFSCbaseddeep | ppy | Normaland abnormal HSs from - MESC Deep CNN | Overall: 84.15 (CinC heart sounds
CNN classifier PhysioNet database [14] features . .
2016) classification
Time-
frequency . . Classification as normal
2016{[156] 2.—means FFT Database from 304 records - spectral ANN Se: 84.4, 5p: 86.9, and abnormal heart
clustering and ANN [14], [31] Acc: 86.5
features, 40 sounds
features
2016|[157] Power spectrum FFT Normal and abnormal HSs from 16 Frequency NN Sp: 78.80, Se: 74.70, Norr?lzgftnsoiizzrmal
analysis PhysioNet database [14] - features Acc: 76.7 . .
classification
2016[158] Ensemble of NN T,Fand | Normal and abnormal HSs from _ Ti);l:szi]ldlgl: FENN Sp: 94.23, Se: 88.76, ancolr?:fﬁzigm;g;
without segmentation| TFD PhysioNet database [14] Overall Acc: 91.5 ¥ and quality
features detection
2016][159] E:jg’g:ie ?ﬁfaflilaiz“e TDand | PhysioNet database [14],2575 | 1kHz flri“fl‘e‘:l‘f AdaBoostand | Sp: 77.81, Se: 94.24, Clz;zzf;‘(‘g;:f ;‘;’;:al
p learning FD (N) & 665 (pathological) records | (resampled) 4 y CNN Overall: 86.02
based classifier features sounds
Deep structured PhysioNet . . Normal and abnormal
2016|[160]|  features for WT | database [14], | 3153 records - “;%Wfl:;tz';‘::d CNN Sp'g;fé.sg'lgz“ 3 heart sounds
classification 764 subjects T classification
Spectral analysis Normal and SEC | 614 normal and analspeiCt;?ilth a TGNN, ffr (?I%]";I’)A; C :79674.10 L .
2014|[161]| with a time growing WT from 40 children abnormal 44.1 kHz 1aysIs Wi TDNN and ) > Oe: 109, Systol_lc ejection clicks
window (age 3-9 years) | cardiac cycles time growing MLP Acc: 85.1 (TDNN), Se: in children
window 85.7, Acc: 92.7
(MLP),
Time-
PCA and ANN for |TFD, DFT DFT/Burg . .
2012 [82] | diagnosis of heart | and Burg 40 (N), 40 (PS) - 8 kHz frequency AR-PCA- S 97'44’_ Se:90.48, Heart valve diseases
. and 40 (MS) based 14 Acc: 95.0
valve disease AR ANN
features
Wavelet
ANFIS for . Normal, pulmonary, and
. o 40 (N), 40 (PS) entropies Sp: 95.24, Se: 100.0, X .
2012|[162] 1dent1fy1t?g heart DWT and 40 (MS) - 8 kHz based 6 ANFIS (ANN) Acc: 98.33 mitral ster{osw heart
valve disease valve diseases
features
HSs analysis without Time- Normal, S3, S4, ejection
2011] [91] | segmentation using WT Various murmurs | 57 HSs signals 4 kHz frequency PCA and NN Acc: 92;0 (noise frec), | sound, Al]{f AS, MR’IA
DWT. PCA and NN based 32 90.0 (%10 dB SNR) |MS, PS, split Sz, systolic
’ features click and opening snap
MMP based on three- 70 patients (N Time- Acc: 92.5 & 77.5
20111 [93] layer FF-MLP TFD and pathological 70 records (35 44.1 kHz frequency FF-MLP using MMP and MP, VSD’ ASD, PS, MR,
normal) . and innocent murmurs
network murmurs) features respectively
VSD, MR, LSM, early
systolic, opening snap,
Data from two 14 records, Wavelet Acc: 95.0% (using diastolic rumble, AR,
2008[110] SOM network and WT atients. online each record 2 kH features, 50 NN ISOM) and 70% AS, MS, Ebsteins
ISOM analysis P and CD’ book with 20 cycles “ features for (using Kohonen anomaly, summation
of HS each network) gallop, venus hum,
normal FCG and aortic
insufficiency
102 (N), 96 . .
Aortic insufficiency.
WT and NN for (AI), 92 (AS) Wavelet ANN . ’
2009([163] classification DWT - & 82 (PS) 11.025 kHz foatures (MLP-BP) Acc: 94.42 AS, PS and normal
cyeles sounds
Arash-Band 90 children (36 N| 40 training & . ?f::c Congenital heart
2008([164]| frequency features WT and 54 50 test signals | 44.1 kHz quency ANN CA: 94.00 -ongemital f
ith ANN pathological) (cach 10s) bands based 5 diseases in children
W features
1 0,
2007| [67] Homomorphic WT Néllf/[(éz’/(;i@’ 41 records (340 8 kHz Wavelet based| GAL and Acc: 98.50 (using Normal, systolic and
segmented HSs DM (3;0/) cycles) 32 features | MLP-BP NN | GAL with dataset2) diastolic murmurs
0
Segmentation and . . Normal and aortic
2007| [55] | feature extraction WT Database from [19] 8012 Hz Wavelet based NN Sp: 85.00, Se: 54.00, regurgitation heart
. 64 features Acc: 70.0
using wavelets sounds
Wavelet analysis for 113 normal and Time- Normal and pathological
2007|[165] automated TFD 50 pathological Each 6 cycles - frequenc ANN Sp: 96.5, Se: 90.0 heart sound
auscultation P & 4 y classification
. Time-
Spectral analysis . MLP-NN and | S;: 86.40, Se: 85.10,
2006] [68] using SPWVD FFT 40 patients 8s each 8 kHz frfequency SPWVD Acc: 86.4 FHSs and murmurs
eatures
207 .
RQA feature and TD, TFD . 12 cycles each . Acc: 86 (MI, AS and | Systolic heart murmur
2006/ 93] ANN classifier and WT 36 patients of 15s 4.1 kHz cof:;}zit;z;ty NN PM) classification
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TABLE 5. (Continued.) Summary of heart sounds classifiers and their performance comparison.

A three-layered ANN Doppler ECG
for twelve types of | TD and | 49 patients with and PCG fqo VSD (AS, AR) and
2006([166] . . . - - NN Acc: 68% (overall) PDA not correctly
cardiac abnormalities FD murmurs signals for 8 .
detection sites diagnosed
. Normal and abnormal
Wavelet analysis and 8and 16 Sp: 70.5, Se: 64.7
2005([167] ANN wT Database from [35] KHz PCA ANN Ace: 702 hearF souqu
classification
Innocent and
Cardiac auscultation 88 (IM) and 153 Frequency, pathological murmur
2005([168] . o FFT pathological Each 10-15s 44.1 kHz | using Fisher’s ANN Sp: 90.00, Se: 83.00
in pediatrics 3 (such as VSD)
murmurs method . A
classification
. Normal and abnormal
WD and Normal, MVP, 4096 sample WD based 256 Ace: 100.0 (for signals sound from coarctation
2004 [21] | classification using WT coarctation of the se ment}; 8 kHz features NN with SNR above 31 of the aorta and split
NN based classifier aorta, VSD, PS g dB) P
sounds
AV (62N & 80 Wavelet
. . AN) & MV (38 entropies Acc: 84 (N) and 96 | Aortic and mitral valve
2003 [81] | MLP with FFNN TFD 123 subjects N & 66 AN), - based 12 FFNN (AN) discases
DHSs features
215 samples Wavelet
2003 [69] WPD and wavelet WT 95 (N) and 120 (Doppler heart | 20 kHz packet energy WPNN Acc: 94.0 (N) and 94.5| Normal and abnormal
packet entropy (AN) based 256 (AN) sounds, no murmurs
sounds)
features
. . 28 subjects, 28
Classification of o . GAL network
2003{[169] wavelet-based WT recprds with 12_ 4096 discrete 55125 Hz Wavelet based and LVQ Acc: 99.0 AS, MR, MS, PS, AR,
. periods of HSs in data 672 features SG and normal sounds
features using ANN cach network
Normal, NRMR, MVP,
FFT and BAV, AS, SCAS, AR,
36 recordings Levinson- MLP and Acc: 84.00 (MLP) & | aortic/mitral valve, MS,
2002|[170}} MLP and RBE-NN | FFT - ach~30s) | M2 | pibinauto | RBE-NN 88.00 (RBF) ASD, VSD, LVI, PMD,
regression DC, and aortic
incompetence
Average MS, split of S1 and Sz,
Backpropagation Database from [39], 48 records correlations & aortic/mitral
1995([171]| based NN classifier TD (18 (N) and 30 (AN)) from 3 & 6 2 kHz Euclidean NN Acc: 95.0 insufficiency, MS, and
(along with ECG) subjects, respectively distance mitral insufficiency with
features prolapse
Wavelet
. features
112 patients, 30 10 samples i
1994([172] Wavelet-based FWT selected (15 (N) from each 4 kHz (m,ca"’ Fuzzy-NN Acc: 88.8 (N) & 85.45 Coronary artery diseases
fuzzy-NN . variance, (AN)
and 15 (AN) patient
skewness,
kurtosis)
HMM-based classifier
TD and FD Normal sounds and
2018([118]| ANFIS and HMM WT I\;‘l’:ﬁ‘:f i‘:fl 1(5121\(11)\?;‘;‘3 dgso - based 8 AI\gI\IASI\Z“d Acc: 98.7 valve disorders (MS,
P g features MR and AR)
40{5?1‘&&};? 80 training sct Sp: 93.30, Se: 70.30, |Classification of normal,
2012|[149]| PCA-Discrete HMM |  DFT y 4TS S| g kHz TD,FD  |PCA-DHMM | Acc:72.2 (SPECTF | MS and PS cardiac
(55M/65F, Age |and 187 test set
data) sounds
4-65y)
Normal sounds, ejection
TD, STFT & clicks, opening snaps.
TD and |20 (N), 6 (CM), 4 . . Acc: 95.7 (CM), 96.25 e ?
2008|[133]| MFCC-based HMM STFT (DM), 11 (SM) 1381 signals 8 kHz MFCC HMM (SM), 90.0 (DM) split 5_’1, split Sz_, S, _SA,
features continuous, diastolic
and systolic murmurs
. Classification of normal
. 41 subjects 21 N -
Modified HMM TD, FD TD, STFT and . . sounds, continuous,
2007([132] (MHMM) and STFT andaildg\l\/fl,)SM 1398 records 8 kHz MFCC MHMM Sp: 95.30, Se: 95.20 diastolic and systolic
murmurs
215 samples
Continuous hidden (54 (NAHY), Waveletand | CHMM Sy 92.0, 5::97.26 | Classification of normal
56 (ANAHV), time- (FCM/k- o
Markov model WT and | 132M/83F, mean (FCM-£- and abnormal sounds
2007([150] 66 (ANMHV), | 20 kHz frequency means . . .
(CHMM) based STFT age 48 years 39 (NMH domai loorithms) & means/CHMM) & Sp: | from mitral and aortic
classifier ( V), omain algorithms) 94.0, Se: 95.89 (ANN) valves
Doppler features ANN B
ultrasounds
Nearest Neighbor Classifier
Nearest neighbor datilstt(ilifizrligting 4000 samples | 44 kHz and Wavelet and NN with Sp: 99.00, Se: 93.00, Clz;zzi?;?;:lfl[\l:;: o
2018|[182]| (NN) classifier with WT . filter bank, 34 | Euclidean Acc: 98, (for dataset . .
. . PhysioNet (20 s each) 2 kHz . sounds including
Euclidean distance features distance E)
database [14] murmurs
Feature extraction T, Fand Best results
2013| [47] | and Shannon energy TFD using| 40 (N) an.d 40 80 records 8 kHz with the TFD k—NN SF: 95.0, Sp: 97.0 Classification of S1 and
using S-transform S- (pathological) features, total classifier (using TFD features) S
transform 70 features
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TABLE 5. (Continued.) Summary of heart sounds classifiers and their performance comparison.

Dynamic features TD, FD, TFD
2010([151]| based on various STFT and | 22 adults (16 (N) | 22 PNCGS (cach 44.1 kHz based 53 k-NN Acc: 98.00 Murmurs detection
AP CWT and 6 (SM)) ~125s)
energy distributions features
. 45 adults (26 N .
2010|[152] Feature extraction TFD and 19 45 PNCGs (each 44.1 kHz TVAR, 851 £-NN Acc: 99.06+0.06 (best Murmur detection
from TFR : ~125s) features case)
pathological)
STFT, T varying &
2009| [94] k-NN with fractal Gabor 81_ (N) and 83 164 records 44.1 kHz TF, perceptual £-NN Acc: 97.17 (using Murmur detection
features Transform,| with murmurs and fractal, fractal features)
WVD, WT 149 features
AV: 110 (54N WD, STFT Classification of normal
Hybrid classifier with| WT and | 132M/83F (Age: | & 56 AN), and Wavelet | AIS and fuzzy . . and abnormal sounds
20081[153] AIS and &-NN STFT 15-80y) MV: 105 (66 N - entropy based k-NN 5p:96.00, 5::95.90 from mitral and aortic
& 39 AN) 91 features valves
. Morphological . . . .
CWD based TFD and 45 native and ‘23 and DWT Acc: between 61 to 96 Clasm‘ﬁcatlon of native
1998][123] . aortic Carpentier- - 2 kHz k-NN (based on the feature | and bioprosthetic heart
spectrum analysis DWT based 9 .
Edwards valve selection) valve sounds
features
Other classifiers/Hybrid classifiers
S1, 82, 83, S4, split
sounds, systolic
Empirical wavelet Databases ﬁ'pm [32], [14], [34]1 [37], [33], [38] Tlmlpg, area | Decision rule Se:97.9, PPV: 97.7. murmurs (earl}{, mlq,
2017] [64] transform (EWT) EWT and HSs, Littmann HSs, Washington HSs and | and interval based Ace: 95.7 (Noise frec) late, pan) and diastolic
murmurs (WHSM) (total 278 records) based features classifier R murmurs (early, mid,
late, pan) & continuous
murmurs
Statistical Extension to Classification of normal
Probability analysis Normal and abnormal HSs from properties of " Sp: 91.25, Se: 76.96, and abnormal heart
2017) [90] for feature extraction TED PhysioNet database [14] 2 kHz envelope, 53 Nii;,:s]igf?;es Acc: 84.11 sounds including
features murmurs
Time, Ensembles of ?ﬂl(f:erél’ t:;:t Zegt)é Classification of normal
Ensemble of Normal and abnormal HSs from 1 kHz frequency, X ? and abnormal heart
2017([103] . TFD . . 20 two-step | overall: 96.30/90.18 . .
classifiers PhysioNet database [14] (resampling)| wavelet and . . sounds including
L classifiers (standard/outlier
statistical . murmurs
. signals)
domain, 131
features
Wavelet entropy and Spectral and Acc: 76% (mean of S, Classification of normal
. 2408 (N) and 630 (AN) records DT based ) “|  and abnormal heart
2017|[183]| spectral amplitude WT . - wavelet . 98% and S, 54%) for . R
. from PhysioNet database [14] [31] classifier sounds including
based classifier features wavelet entropy
murmurs
Spectral
. . 231 (Non- features, signal - . . Identification of
2015/ [46] Acoustic featuljes for TFD 133 subjects for CAD) and 204 4 KHz complexity Multlvgrlate Sp: 65.20, Se: 72.0 (for coronary artery (CAD)
CAD detection 435 records classifier CAD detection) .
(CAD) features, total diseases
5029 features
Detection of heart 92 cardiac 36 clasI:ivt&ifeI\fjvith Acc: 98.84+4.49 Pmmoa?iir}t]r;:ilslf?dc o
2015( [75] CWT - cycles (38 (PI) 8 kHz dimensional (ELM) and 98.04+045 | . . P
murmurs (PI & TI) EKF insufficiency murmur
and 54 (TI)) features . (RWNN) 4
algorithm detection
. . Naive Bayes, . .
Coiflet wavelets' 150 (N), 75 Coiflet NN, C4.5 | Acc: 92.31% (highest Classification of normal,
2015([191]| based features and its WT (MVP), 50 - - wavelet and SVM with SVM) MVP, VSD, and PS
selection using BPSO (VSD), 50 (PS) features . heart sounds
classifier
DT, &-NN, 95.45 (DT), 95.78 (k-
Entropy of the 50 (N), 80 (MR), Wavelet BavesNet NN), 96.94 Classification of AR
2012|[175]| wavelet packets as a WT 100 (AS), 350 records 4 kHz entropy, 32 MiP and’ (BayesNet), 95.53 MR. AS and MS sounzis
classification feature 50(AR), 70 (MS) features (MLP) & 95.33 ?
SVM
(SVM)
Feature selection 120 cardiac ZI?& ;’z;{flet MLP, RBF | Acc: 99.47 (best with | Diagnosis of AS, MS
2012|[184]| using PCA, GA, GP WT - cycles of AS, | 44.1 kHz foatur SP%, and SVM | RBF using GA feature | and MR heart valve
and GDA MS, MR catures, classifier selection) diseases
features
15 IM, 28 CWT, SVD
Matrix organic and QRD Sp: 83.00, Se: 94.00, . .
2012)[185] decomposition CcwT - murmurs (380 - features, 83 CART Acc: 90.00 Murmur classification
segments) features
VSD, MR, LSM, early
systolic, opening snap,
Data from 2 140 HSs Acc: 99% & 9504, | diastolic rumble, AR,
. . . : . 50 wavelet AS, MS, Ebsteins
2009|[186]| Divergence analysis WT patients, online | periods of 14 2 kHz MLP (based on feature .
. features . anomaly, summation
and a CD book | different types extraction)
gallop, venus hum,
normal FCG and aortic
insufficiency
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TABLE 5. (Continued.) Summary of heart sounds classifiers and their performance comparison.

TD,FD | 12 subjects | L0 recordsof D, FD, TFD, Acc: 82+7% (k-NN)
Hierarchical and TFD 40s cach 20-250 Hz WVD and Only classification of S\
2009) [66] clustering approach usin; (band pass) CVD based | £-NN and DA sounds
& app STF% 11 subjects | 30-45 minutes p approx. 3500 Acc: 86£7% (DA)
features
classification of
Phono- . Phono- .
. 807 pediatric 88 (WM), 447 . . . innocent and
2007| [26] spectrogn}phlc STFT patients (IM), 272 (PM) 8-44.1 kHz |spectrographic - Sp: 91.00, Se: 90.00 pathological murmurs in
analysis features .
children
Time-
Time-frequency 84 (AS: 41 and frequency Acc: 90 (overall), 91.6 | Classification of FHSs,
2004)[174] based decision tree TFD - MR: 43) - based 100 DT (AS), 88.5 (MR) AS and MR sounds
features
49 healthy and 48 97 PCG . ST
2013[192]| Multifractal analysis | - children with | records (cach | 8kHz | Multifactals |Discrimination) o g6 o, Normal and MVP heart
features threshold sounds
PMV 8s)
Energy curve,
FFT (TD | S healthy, 20 spectrum & | No definite Systolic and diastolic
1987\ [99] | Energy spectrum and FD) patients 47 records 1024 Hz distribution classifier - murmur classification
coefficients

Abbreviation: AN: abnormal heart sounds, Acc: accuracy, TD: time-domain, FD: frequency-domain, TFD: time-frequency domain: TFD, SS-PLSR: scaled spectrogram and partial
least squares regression, SVM-DM: SVM-diffusion maps, SS-TD: scaled spectrogram and tensor decomposition, CHF: chronic heart failure, SHM: systolic heart murmurs, HOC:
higher-order cumulants, LPCC: linear predictive coding coefficients, VSD: ventricular septal defects, SVM-MCS: SVM-modified Cuckoo search, AHV: aortic heart valve, NAHV:
normal AHV, ANAHV: abnormal AHV, MHV: mitral heart valve, NMHV: normal MHV, ANMHV: abnormal MHV, EBP: error back-propagation, AIS: artificial immune system,
SM: systolic murmurs, DM: diastolic murmurs, CM: continuous murmurs, MLP-BP: multi-layer perceptron back-propagation, CART: classification and regression trees, BP-ANN:
back-propagation artificial neural network, IM: innocent murmurs, PI: pulmonary insufficiency, TI: tricuspid insufficiency, MHMM: modified HMM, RBF: radial basis function,
RBF-NN: radial basis function neural network, TVAR: time-varying auto-regression, CR: classification rate, PM: pathological murmurs, NM: no murmurs, IM: innocent murmurs,
VHD: valvular heart disease, DA: discriminant analysis, WPD: wavelet packet decomposition, TGNN: time-growing neural network, OMS-WPD: optimum multi-scale wavelet
packet decomposition, AWN: additive white noise, HSA: heart sounds analysis, NPV: negative predictive value, WM: without murmurs, CT_LDB: cumulant-based trapezoidal
local discriminant basis, FCM: fuzzy C-means, RWNN: radial wavelet neural network, EKF: extended Kalman filter, PNN: probabilistic neural network, ANFIS: adaptive-neuro
fuzzy inference system, FWT: fast wavelet transform, FFM: frequency feature matrix, GRKF: Gaussian radial basis kernel function, LKF: linear kernel function, PKF: polynomial
kernel function, SKF: sigmoid kernel function, GTSVM: growing time support vector machine, VIM: Viola integral method, EEMD: ensemble Empirical mode decomposition,
MLBS: multi-level bias selection, MFCC: mel-frequency cepstral coefficient, GSVM: genetic-SVM, CQA: cycle quality assessment, DNN: deep neural network, MFSC: mel-
frequency spectral coefficients, SEC: systolic ejection click, ISOM: incremental self-organizing map, WVD: Wigner-Ville distribution, SPWVD: smoothed pseudo WVD, RQA:
recurrence quantification analysis, WD: wavelet decomposition, FFNN: feed-forward neural network, WPNN: wavelet packet neural network, CAD: coronary artery disease, CWD:
Choi-Williams distribution, ELM: extreme learning machine, PMV: prolapsed mitral valve, BPSO: binary particle swarm optimization, SVD: singular value decomposition, DT:
decision trees, TRF: time-frequency representation, ERBF: exponential radial basis function, MWKEF: Morlet wavelet kernel function, SG: summation gallop, PDA: patent ductus
arteriosus, BAV: bicuspid aortic valve, LVI: left ventricular impairment, PMD: papillary muscle dysfunction, NRMR: non-rheumatic mitral regurgitation, SCAS: severe calciphic
aortic stenosis, LSM: late systolic murmur, DC: dilated cardiomyopothy, LBBB: left bundle branch block, CNN: convolutional neural network, DHSs: Doppler heart sounds.

not included in the data synthesis because of a limited number
of articles available.

The performance of algorithms focusing on the segmen-
tation and classification of heart sounds was synthesized
as the accuracy measures in Table 6. Segmentation of S
(FHSD) reported in [25], [29], [45], [47], [52], [57], [64],
[871-[89], [92], [94], [96], [100], [104], and [113], achieved
mean accuracy of 94.54 £ 5.15% in correct identification
of S at the event level, while mean classification accuracy
achieved was 89.77 4+ 4.53% in [66], [90], [97], [106], and
[111]. Similarly, identification of S, (SHSD) at the event
level, was reported in [25], [29], [45], [47], [52], [57], [64],
[87]1-[89], [92], [94], [96], [100], and [104], achieving a
mean accuracy of 93.96 £ 5.01%; while the mean clas-
sification accuracy reported in [90], [106], and [111] was
90.82 £ 6.58%. Pathological heart sounds detection (PHSD)
at the event level reported in [29], [64], [65], [67], and
[112], achieved mean accuracy of 88.50 £ 5.93%, while
pathological heart sounds classification (PHSC) reported in
[64], [69], [75], [78], [95], [105], [110], [140], [142], [145],
[146], [155], [157], [158], [162]-[164], [167], [170], [183],
[185], and [191], achieved mean classification accuracy of
90.28 £ 7.82%. The mean accuracy in the identification of
S1 at the event level was found to be the highest. However,
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pathological sounds’ detection at the event level achieved the
least accuracy.

VI. DISCUSSION

This systematic review provides an overview of the current
state-of-the-art in algorithms developed for computerized
heart sounds analysis and classification. Algorithms reviewed
here investigated advanced signal processing tools and learn-
ing based approaches to automate the process. These algo-
rithms were carefully evaluated to understand current chal-
lenges. Segmentation and classification of heart sounds were
found to be still challenging, mainly because of the noise
associated with the acquired signals that affected the quality
of analysis. Also, the complexity and non-uniformity associ-
ated with heart sounds signals were difficult to model.

Most of the segmentation approaches reviewed utilized
adaptive threshold values of peak amplitudes, assumptions
related to the systolic and diastolic intervals, and cardiac
cycle period, to localize the peaks in the heart sounds signals.
These assumptions are not valid for all kinds of subjects.
Also, most of the segmentation algorithms fail in case the
systole and diastole periods are of nearly equal duration.
Thus, the error at the segmentation level may propagate to the
next level of analysis. Only a few reviewed articles studied
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the noise tolerance while segmenting heart sounds signals
[29], [50], [61], [64], [96], [112]. Recently suggested prob-
abilistic models by Springer ef al [80] and Schmidt ef al [45]
achieved good segmentation accuracy even for noisy signals.

From the results synthesized, it was found that identifica-
tion of fundamental heart sounds S and S achieved higher
accuracy compared to the pathological sounds’ identification
during the segmentation process: (94.54 £ 5.15%) and (93.96
=+ 5.01%), respectively, versus (88.50 =+ 5.93%). While most
of the articles identified S; and S, heart sounds at the event
level, the identification of S sounds achieved higher accuracy
compared to the S, sounds.

Among the articles reviewed here, only a few articles
aimed to identify pathological heart sounds at the event
level. These articles include detection of S3 ([64], [65]), S4
([64], [65]) and murmurs [29], [64], [67], [112]). The Hilbert-
Huang Transform was suggested for identification of S5 and
S4 [65]. However, the selection of intrinsic mode functions
(IMFs) required in the model was challenging because of
the varying temporal-spectral characteristics of heart sounds.
More recently, the Empirical wavelet transform was also sug-
gested as a decomposition approach to segment heart sounds
and to detect S1, S2, S3 and murmurs [64]. Though these
results appear to indicate that pathological sounds can be
identified at the event level during the segmentation, most of
the studies performed classification to diagnose pathologies.
A few studies also suggested to segment cardiac signals
directly into cardiac cycles rather than identifying the peak
locations [56], [79], [91], [114], [158]. In these approaches,
initial localization of S and S> was skipped if prior knowl-
edge of cardiac cycles was available.

From the data summarized in Table 6, it can be found
that different characterization measurements are evaluated
based on the classification problems. Statistical features are
mostly extracted to identify the fundamental heart sounds and
systole and diastole intervals in a cardiac cycle. Additionally,
morphological, spectral, perceptual, fractal features, wavelet
features, higher-order statistics and other time-varying and
time-frequency domain discriminative features are recom-
mended to distinguish pathological sounds. These features
take into account the dynamics of heart sounds under patho-
logical conditions. Most of the features yielded promising
results for classification between normal and abnormal heart
sounds. Only a few reviewed articles reported features to
identify particular cardiac pathologies which are discussed in
the following paragraphs.

Reported characterization measurements are extracted
using various heart sounds signal transformations and
decompositions suggested. Among them, wavelet-based
decomposition and reconstruction methods to obtain sig-
nal characteristics in both, time and frequency domains,
for feature extraction were suggested in most of the
recent articles [91], [175], [193]. The coefficients of
mother wavelet transform are also evaluated as promis-
ing features. Some articles presented a comparative
study of mother wavelets and suggested continuous
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wavelet transform using a Morlet wavelet as a potential
transformation to extract features for detection of car-
diac abnormalities - such as S3, S4, aortic stenosis, mitral
regurgitation, midsystolic click, ventricular septal defect,
atrial septal defect, mitral stenosis and aortic regurgita-
tion [104], [130]. While others suggested the Daubechies
wavelet for heart sounds analysis [67], [79], [150], [194].

Mel-frequency spectral coefficients (MFSCs) and Mel-
Frequency Spectral Coefficients (MFSCs) have yielded
promising results, compared to time-domain and short-time
Fourier transform based features [132], [133], [155], in clas-
sification of fundamental heart sounds, S3, S4, ejection click,
opening snap and diastolic and systolic murmurs [133].
However, MFCCs are not efficient in murmur classification
with large energy lobes [118]. Hence, in addition to time-
frequency domain features (such as STFT, wavelet transform,
etc.), perceptual features (such as MFCCs), non-linear and
chaos based features (such as recurrence quantification anal-
ysis and higher order statistics) and fractal features (such
as correlation dimension, Largest Lyapunov Exponent and
Hurst exponent) are recommended for identification of valve
disorders [94], [102]. Other features included multi-fractal
spectrum [192], that achieved 96.91% accuracy in identifying
prolapsed mitral valve; and multi-level basis selection [70]
which yielded 97.56% accuracy in identification of aortic
stenosis, mitral insufficiency, and atrial insufficiency. Simi-
larly, along with time-domain based features, the center of
gravity and the width of the frequency distribution extracted
using a moving windowed Hilbert transform, reported up
to 98.40% accuracy for identification of ventricular septal
defects. Identification of systolic ejection click using spectral
analysis with a time growing window also reported promising
results (97.00% accuracy). Other than this, instantaneous
frequency and amplitude of decomposed signal were found
to be useful for the identification of splitting of fundamental
heart sounds [22].

Reviewed articles also suggested other features extrac-
tion methods - partial least squares regression method [79],
matching pursuit based methods [97], sparse coefficient
matrix [138] and multivariate matching pursuit [93] - for
which extracted features achieved promising results in
classifying normal and abnormal heart sounds. In gen-
eral, temporal, statistical, wavelet coefficients, spectral and
instantaneous amplitude, and frequency based features were
extracted for abnormality detection.

Most of the recent studies classified pathological heart
sounds using learning based approaches (Artificial Neu-
ral Network (ANN) or Support Vector Machine (SVM)).
Articles also suggested modified support vector machines
(such as Genetic SVM (G-SVM) [145], Least-Square Sup-
port Vector Machine (LS-SVM) [124], [195], Growing Time
Windows based Support Vector Machine (GTSVM) [140],
Support Vector Machine and Modified Cuckoo search
(SVM-MCS) [111]), and validated the classification perfor-
mance of SVM using different kernel functions in identi-
fication of normal and pathological sounds. It was found
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TABLE 6. Accuracy measure of heart sounds’ detection and classification approaches.

First heart Second heart Pathological heart | First heart sounds Second heart Pathological heart
sounds . . . . sounds sounds
detection sounds detection sounds detection classification classification classification
(FHSD) (%) | HSD) (%) (PHSD) (%) (FHSC) (%) (SHSC) (%) (PHSC) (%)
98.60 [25] 98.60 [25] 97.47 [29] 86.00 [66] 84.10 [90] 95.50 [64]
97.47 [29] 97.47 [29] 94.21 [64] 84.10 [90] 91.12 [106] 94.50 [69]
98.60 [45] 98.60 [45] 90.40 [65] 93.00 [97] 97.25[111] 98.84 [75]
95.00 [47] 95.00 [47] 85.50 [65] 91.12 [106] 99.60 [78]
94.86 [52] 95.92 [52] 85.47 [67] 94.63 [111] 86.00 [95]
98.53 [57] 98.31 [57] 86.47 [67] 85.60 [105]
91.92 [64] 91.92 [64] 80.00 [112] 95.00 [110]
93.60 [87] 93.60 [87] 91.50 [158]
88.20 [88] 88.20 [88] 76.70 [157]
93.00 [89] 93.00 [89] 84.15 [155]
97.00 [92] 94.00 [92] 92.31 [191]
92.00 [94] 92.00 [94] 79.00 [183]
100.00 [96] 97.00 [96] 98.33 [162]
96.90 [100] 96.50 [100] 90.00 [185]
79.30 [104] 79.30 [104] 94.74 [146]
97.80 [113] 94.52 [145]
94.42 [163]
88.00 [170]
84.00 [140]
70.20 [167]
94.00 [164]
99.39 [142]
Mean accuracy 94.54 93.96 88.50 89.77 90.82 90.28
Standard deviation 5.15 5.01 5.93 4.53 6.58 7.82

that the Gaussian Radial Basis Kernel Function (GRKF)
produced the best results in classifying normal, aortic steno-
sis, pulmonary stenosis, tricuspid insufficiency and mitral
insufficiency heart sounds compared to Linear Kernel Func-
tion (LKF), Polynomial Kernel Function (PKF) and Sig-
moid Kernel Function (SKF)) [107]. Also, the least-square
support vector machine (LS-SVM) classifiers were found
promising in identifying normal, valvular defects, septal
defects and other defects [139], with Morlet wavelet ker-
nel function. Least square SVM was also suggested for
identifying cases of chronic heart failure [73]. This achieved
similar results to the back-propagation artificial neural net-
work (BP-ANN) and hidden Markov models (HMM) and
required less training time compared to its counterpart [148].
Other classification approaches such as decision trees [174],
were also reported for the classification of fundamental
heart sounds, aortic stenosis and mitral regurgitation. How-
ever, these methods are not suitable for complex feature
classification [56].

Most of the studies reported methods to identify murmurs
as systolic or diastolic murmurs. However, the classification
of these murmurs into various sub-classes was not found in
general. In a recent study, it was found that wavelet-based
features and coefficients such as entropy, achieved promising
results using a decision-based classification algorithm in clas-
sifying murmurs into systolic murmurs (early, mid, late, pan)
and diastolic murmurs (early, mid, late, pan) and continuous
murmurs [64]. Murmurs of valvular defects, mainly because
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of the stenosis, regurgitation and insufficiency, were mostly
investigated. Wavelet transformation and wavelet coefficients
such as entropy, were found useful to classify normal, aortic
stenosis, aortic regurgitation, mitral stenosis and mitral regur-
gitation [64], [70], [147]. Another method based on murmur
likelihood computation and SVM classifier was found useful
in classifying normal, aortic stenosis, mitral regurgitation,
ventricular septal defect, aortic regurgitation, mitral steno-
sis, and mitral valve prolapse [105]. SVM classifier based
approaches were also extended to diagnose ventricular septal
defects and atrial fibrillation and achieved satisfactory results
in abnormalities classification [78], [85]. Other diagnostic
heart sounds such as gallop rhythm were also classified
using an SVM based classifier after pre-processing signals
using the optimum multi-scale wavelet packet decomposi-
tion [143].

Other than these sounds, splitting of fundamental heart
sounds has also been identified as a pathological event.
While a limited number of articles investigated the splitting
of second heart sounds (S5,) at the event level, no quantitative
measurement of splitting of the first heart sounds (S7) was
found. The split identification was found to be obscured
mainly because of the overlap of the components (M| and
T of S; and A, and P, of S3). In the articles reviewed here,
it was not possible to ascertain the accuracy level in detecting
the splitting of fundamental heart sounds due to the lack of
articles available and the lack of quantitative analysis. Apart
from these diagnostic sounds, a large amplitude of S3 or S4
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and the presence of extra peaks in the cardiac cycle may
reflect valvular malfunctioning or abnormalities, but these
have not been investigated.

Although existing approaches reported promising results,
algorithms were specifically developed for identification and
classification of certain types of pathological sounds. In some
cases, the accuracy of the algorithm was greatly dependent on
the disease being investigated. Thus, these results cannot be
interpolated to analyze other heart sounds that may be present
in a cardiac cycle. Other than this, in some of the studies,
the class of murmurs was not specified.

Data acquisition systems and databases used by the
reviewed studies were also examined, coming to the conclu-
sion that databases available for the validation of the algo-
rithms are limited. In addition, demographics of the subjects
and protocols followed when performing signal acquisition
were not always fully specified. Sensors locations were also
generally missing. Only a few studies validated the proposed
algorithm with a database containing normal and abnor-
mal heart sounds [111]. As most of the algorithms for the
heart sounds analysis were validated with limited duration
of recordings, the performance of these algorithms is not
statistically significant. Thus, the robustness of algorithms
still needs to be validated using large databases and with
signals obtained from different subjects populations, includ-
ing wider age ranges, and in real use scenarios. This is even
more important considering that heart sounds are very sensi-
tive to noise and interference, and different databases show
different levels of data corruption. Furthermore, libraries of
auscultatory recordings containing sounds signals from all
possible auscultation sites from different subjects have not
been reported. The analysis should be extended to test the
robustness of the algorithms against the placement of the
sensor (auscultation positions) while performing the signal
acquisition. In relation to this, acquisition systems and noise
reduction techniques should be developed in parallel, since
different acquisition systems respond differently to artifacts,
which consequently might affect the performance of specific
noise reduction algorithms.

Overall, existing algorithms show satisfactory results in
classifying heart sounds in controlled conditions. However,
it is not possible to extrapolate from this how they would
operate in long-term continuous monitoring of signals in real
life environments, mostly when subject-specific training is
not an option.

VII. STUDY LIMITATIONS

When evaluating the accuracy measurements, the differences
in the databases utilized for the verification and validation
of algorithms had to be neglected. Approaches for data col-
lection and feature extraction were not included in the data
synthesis due to the lack of standardized methods and proper
indexes for performance comparison. Lack of large databases
in the studies makes it difficult to assess the primary outcome
and to establish a proper comparison. Also, in some cases,
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it was hard to determine the accuracy level because of the
missing performance metrics.

VIIl. CONCLUSION

The key objective of this systematic review was the identifi-
cation of methodological approaches for computerized heart
sounds analysis and classification. This included the review
of databases used for testing of the different algorithms, meth-
ods for segmentation, feature extraction and classification of
heart sounds. A cost-effective system with precise automatic
analysis of heart sounds may assist in early diagnosis and to
improve the outcomes of cardiovascular diseases. However,
extraction and analysis of these signals is a challenging task
because of their complex non-stationary nature as well as
the noise and interference corruption due to the limitations
associated with the acquisition systems. Algorithms for auto-
mated analysis of the acoustic cardiac signals have been
reported but with limited capabilities. There is a large varia-
tion in data in terms of accuracy of some of the studied algo-
rithms. Evaluation with universally standardized databases
still needs to be carried out for a proper comparison, and if the
algorithms are intended to be used with wearable systems, the
design and validation needs to take into account the practical
challenges associated to the specific wearable.

APPENDIX

Preferred reporting items provide on the PRISMA 2009
Checklist [13] document with the page number indicating the
reported items in this systematic review.
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