Received November 7, 2018, accepted December 5, 2018, date of publication December 24, 2018, date of current version January 23, 2019. Digital Object Identifier 10.1109/ACCESS.2018.2889437 # **Algorithms for Automatic Analysis and Classification of Heart Sounds—A Systematic Review** AMIT KRISHNA DWIVEDI[©], (Graduate Student Member, IEEE), SYED ANAS IMTIAZ[®], (Member, IEEE), AND ESTHER RODRIGUEZ-VILLEGAS¹⁰, (Senior Member, IEEE) Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K. Corresponding authors: Amit Krishna Dwivedi (a.dwivedi 16@imperial.ac.uk) and Esther Rodriguez-Villegas (e.rodriguez@imperial.ac.uk) This work was supported by the European Research Council under Grant 724334. The work of A. K. Dwivedi was supported by Imperial College London, U.K., through the President's PhD Scholarship. **ABSTRACT** Cardiovascular diseases currently pose the highest threat to human health around the world. Proper investigation of the abnormalities in heart sounds is known to provide vital clinical information that can assist in the diagnosis and management of cardiac conditions. However, despite significant advances in the development of algorithms for automated classification and analysis of heart sounds, the validity of different approaches has not been systematically reviewed. This paper provides an in-depth systematic review and critical analysis of all the existing approaches for automatic identification and classification of the heart sounds. All statements on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2009 Checklist were followed and addressed thoroughly to maintain the quality of the accounted systematic review. Out of 1347 research articles available in the academic databases from 1963 to 2018, 117 peerreviewed articles were found to fall under the search and selection criteria of this paper. Amongst them: 53 articles are focused on segmentation, 72 of the studies are related to the feature extraction approaches and 88 to classification, and 56 reported on the databases and heart sounds acquisition. From this review, it is clear that, although a lot of research has been done in the field of automated analysis, there is still some work to be done to develop robust methods for identification and classification of various events in the cardiac cycle so that this could be effectively used to improve the diagnosis and management of cardiovascular diseases in combination with the wearable mobile technologies. **INDEX TERMS** Segmentation, feature extraction, classification, heart sounds databases, wearable cardiac monitoring, heart sounds analysis. # I. INTRODUCTION Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide resulting in over 17.7 million deaths each year [1]. This number is predicted to increase to approximately 23 million per year by 2030 [2]. Apart from the personal consequences, the high prevalence and cost of cardiovascular diseases constitute a serious social and financial burden. As an illustration, 85 million Americans suffer from cardiovascular diseases resulting in an approximate healthcare cost of \$320 billion annually, with a projected increase to nearly \$1 trillion by 2030 [3]. While the estimated number of cardiac patients and health care costs are too high, an important thing to consider is that most cardiovascular diseases are preventable and curable. However, this requires early-stage diagnosis and proper disease management [4]. Consequently, there is an urgent need to improve technologies to intensively monitor and analyze physiological parameters related to cardiac function in a timely and cost-effective manner. With recent evolution of mobile technologies, there is a growing, justified, interest on finding ways to continuously track the cardiovascular system for long periods of time, as a potentially more effective way to both diagnose and manage cardiac conditions. In literature, both invasive and non-invasive approaches for monitoring the cardiovascular system using different sensing schemes have been investigated. However, some of these approaches are not suitable for long-term continuous real time monitoring of cardiac signals in unsupervised environments, which would, however, be the optimum way of monitoring/managing some cardiac conditions. An example is atrial fibrillation, in which events do happen scattered in time and hence might not be caught in short monitoring sessions [5]. Recent advancements in computing together with the evershrinking size of electronic devices have enabled the design of wearable devices loaded with sensors that can perform the task of long-term continuous monitoring and have the potential of facilitating timely medical interventions for treatment and care. Wearables have the advantage of usability. Thus, wearables can allow self-health monitoring and save the time required for clinical appointments. This is why wearables have attracted a lot of attention from scientists in this field. Though, potentially, available cardiac wearables can assist in real time monitoring, it is challenging to obtain a high degree of accuracy, especially under varying environmental conditions. Furthermore, in some cases, algorithms for signal interpretation have been validated with a limited database and hence their clinical reliability and diagnostic accuracy cannot be extrapolated for real clinical applications. The sensing modality, and hence the measured physiological signal, used by different kind of wearables varies and which one to choose depends on a number of tradeoffs that need to be made considering the particular clinical application, usability aspects and accuracy, amongst others. In the case of wearables for cardiac applications, one of the physiological signals that can potentially provide a lot of information is the sounds generated by the heart. Heart sounds auscultation is a simple, convenient, cheap and non-invasive approach that has been used for over a century by physicians. More recently human-only stethoscope based interpretation is being complemented by computer-aided heart sounds. This has a potential advantage that the interpretation of heart sounds is not as subjectively dependent on factors such as ear sensitivity, skills, and the experience of the individual physicians [6], [7]. Furthermore, a wearable automated system capable of processing cardiac sounds could potentially be used for the early cost-effective screening of cardiovascular diseases, as well as to manage the progression of the condition. However, in order for this to practically happen, algorithms are required that can shift the signal interpretation load from the clinician to the technology, since otherwise the amount of information generated would be unmanageable in practice. This is a reason why automated analysis and interpretation of heart sounds is a prolific area of research, with an also rapidly increasing interest. Though computerized analysis of heart sounds has been the focus of increasing number of studies recently, a consistent approach to analyze various heart sounds signals has not been established and a comprehensive critical review of available approaches together with performance comparison has not been carried out. Previous reviews [8]-[12] present a well-organized discussion of the origins of heart sounds, sensing systems, and recent developments in heart sounds analysis. However, the validity of the different approaches and performance FIGURE 1. PRISMA 2009 flow diagram for this systematic review. comparison of algorithms for segmentation, feature extraction and classification of heart sounds in different applications have never been systematically reviewed. This paper goes beyond previously published reviews by: - Evaluating different methods reported for automated heart sounds analysis, specifically for detection and classification of cardiac abnormalities, and analyzing the different performance metrics reported. - Synthesizing the heart sounds' detection and classification approaches accuracy evidence from existing research works. - Comprehensively reviewing all features relevant to pathological sounds detection as well as heart sounds databases. The rest of the paper is organized as follows: Section II describes the methods used in this systematic review. A description of the pathophysiology of normal and abnormal heart sounds is presented in Section III. Approaches for segmentation, feature extraction and classification are reviewed in Section IV. The evidence collected from different research works is synthesized in Section V and findings are discussed in Section VI. Finally, the study limitations and concluding remarks are covered in Sections VII and VIII, respectively. # **II. MATERIALS AND METHODS** This systematic review adopts the guidelines published by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) consortium reported in the PRISMA 2009 Checklist [13]. All preferred reporting items on the PRISMA statement were addressed thoroughly and has been provided as an evidence in Appendix file. Furthermore, Fig. 1 establishes the PRISMA flow diagram for this systematic review. The main objective of this study is to present a detailed discussion of the state-of-the-art algorithms for heart sounds analysis and classification, and to highlight existing limitations. ## A. LITERATURE SEARCH Based on the primary search strategy, a systematic search of the literature was carried out in the following databases: IEEE Xplore, Scopus, PubMed, Web of Sciences (Web of Knowledge), ScienceDirect, Google Scholar, EMBASE, and ACM Digital Library. Publications were extracted from these databases using key search terms and their possible combination using logical operators 'and/or'. Key search terms included 'heart sounds' or 'heart sounds analysis algorithms' or 'heart sounds classification' or 'identification of heart sounds' or
'phonocardiography' or 'continuous monitoring of cardiovascular diseases' and/or 'wearable cardiac monitoring devices'. A non-automatic search of references listed in the relevant publications was also performed to discover additional studies. Articles with algorithms for heart sounds detection, classification, and analysis were the focus. Articles with uncertainty regarding the eligibility were fully evaluated before taking a decision for their inclusion in the study. # B. EXCLUSION CRITERIA FOR THE SYSTEMATIC REVIEW Specific eligibility criteria were followed to shortlist the research articles to be included in this systematic review. Studies found within the searched databases were screened after the initial search. Initial removal of duplicates and suitability check of articles were performed after examining the title and abstract first, and then through the full text. Only articles in which the methodology for data acquisition, analysis, and processing of heart sounds were reported with a clear demonstration of the approaches, met the eligibility criteria. All papers found were included in the review apart from the following: (1) papers which did not include quantification of results; (2) papers others than peer-reviewed articles; and (3) articles published in languages other than English. # C. STUDY DESIGN The review is organized as follows: Various databases used for the validation of algorithms for heart sounds analysis are reviewed and discussed. This is followed by a review of approaches for heart sounds segmentation, feature extraction, and classification. Articles on segmentation and classification of heart sounds are the main focus of this systematic review. Apart from this, pathophysiology of normal and abnormal heart sounds is summarized in the context of automated continuous monitoring systems. # D. STUDY SELECTION The initial search output contained 33,189 research articles published from 1947 to 2018. Out of these, 1347 articles were included after initial screening and removal of duplicates. Further, 979 articles were omitted based on abstract and title screening. 368 articles were finally shortlisted for review and out of these 117 articles met the inclusion criteria. A total of 56 reports on databases and heart sounds acquisition, were also included. Additional articles were used in this study to inform the background of data acquisition systems, feature extraction approaches and other relevant information related to this systematic review. #### E. STUDY LIMITATIONS Performance parameters of existing algorithms cannot be directly compared mainly because of the diversity of the test datasets used for evaluation. In addition, no standard validation methods were used in the articles, consequently leading to non-uniform performance assessments. Further, in some cases, statistical validation was not reported, or partial results were provided, limiting the usefulness of the assessment metrics. ## F. DATA EXTRACTION AND SYNTHESIS OF RESULTS Data from eligible articles were extracted and summarized in the tables for discussion. Methods and approaches were classified into different categories to present a significant comparison among the class. The data extracted was related to the type of approach and level of analysis for heart sounds segmentation, feature extraction, and classification. For accuracy measurement under different conditions, performance parameters such as segmentation rate (SR), accuracy (Acc), sensitivity (S_e) , specificity (S_p) , positive predictive value (PPV), number of features, and classification accuracy (CA) were extracted. Additional information included the demographics of the study group in the relevant database (such as the age and type of subjects); the signal investigated; the number of heart sounds recorded; the duration; the sampling frequency; and the type of device used for recording signals. Overall accuracy measures were also obtained from selected studies that reported significant information for evaluation. Finally, the synthesis of results is reported. # III. PATHOPHYSIOLOGY OF NORMAL AND ABNORMAL HEART SOUNDS The electrical activity of the cardiovascular system causes atrial and ventricular contractions that assist in blood circulation between the chambers of the heart and around the body. Mechanical interactions between the blood flow and the different valves that operate to regulate the circulation of blood, contribute to rhythmic heart sounds and murmurs. Heart sounds are audible on the chest wall and can be captured using acoustic sensors from different auscultation areas associated with the valve locations [14], [15]. Heart sounds can also be graphically represented as a phonocardiogram, in which pathological signs are used as diagnostic features. However, the correct interpretation of phonocardiograms is challenging because of the overlapping of normal and abnormal heart sounds in the cardiac cycle. This section briefly summarizes different types of heart sounds that may be observed in a cardiac cycle. Characteristics of adventitious heart sounds are also tabulated in Table 1. TABLE 1. Pathophysiology of normal and abnormal heart sounds. | | Heart Sounds | Frequency Range | Qualitative sounds characteristics | Duration/location in the cardiac cycle | Cause | Description | |---------|--|--|---|---|--|---| | | neart sound (S_1) or lub sound | 10-200 Hz (lower pitch than S_2) | Dull and prolonged | 0.12-0.15 seconds (longer than S_2) | Closure of the atrioventricular valves | Composed of M_1 and T_1 components | | | d heart Sound (S_2) or dub sound | 20-250 Hz (higher pitch than S_1) | Sharp and short | 0.08 - 0.12 seconds (shorter than S_1) | Closure of the semilunar valves (at the end of systole) | Composed of A_2 and P_2 components | | Thir | d heart sound (S_3) | 25-70 Hz (very low frequency, lower pitch than S_1 and S_2) | Soft and thudding quality | ≈0.04 s, early-diastole (140-220 ms after S_2) | Early diastolic filling of the ventricle by blood rushing in from the atria | Due to the excess blood volume in
the ventricle (left ventricle failure),
benign in children and in pregnancy | | Fourt | h heart sound (S_4) | 15-70 Hz (lower than S_{3} , low pitch) | Weak and rumbling, less loud than S_1 or S_2 | Late-diastolic/presystolic, slightly before S_1 | Diastolic dysfunction because of the stiff ventricle | Due to atrial contraction, manifests coronary heart disease | | do | Ventricular (S ₃ gallop rhythm) | 15-50 Hz
(very low frequency, low | Galloping rhythm, lilt,
trot or canter quality | $\approx 0.15 \text{ s after } S_2, \text{ early-diastole}$ | During S_3 due to rapid deceleration of blood flow into the ventricle | Gallop rhythms indicate serious myocardial dysfunction | | Gallop | Atrial (S_4 gallop rhythm) | pitch, short and faint) | trot of camer quanty | $\approx 0.08 - 0.20 \text{ s just}$ before S_1 | During S_4 , due to decreased ventricular distensibility | S_4 - S_1 may be confused with a split S_1 | | | Summing (both S_3 and S_4 gallops) | | Quadruple rhythm, loud sound | During diastole period | Both S_3 and S_4 are superimposed | Occurs with the improvement of heart failure | | | IM | 120-250 Hz
(mid-range frequency, high
pitch) | Whooshing, roaring, turbulent fluid noise | Mostly in early-systole,
short duration | Due to the turbulent flow of the
blood which may occur inside
or outside the heart | Frequently heard in children and during exercise, position dependent | | Murmurs | SM | Up to 600 Hz
(frequency range usually
lower than DM, high pitch) | Rasping and blowing,
usually crescendo-
decrescendo | Early-, mid-, late- or
holo-systolic | Mechanical systolic and ventricular ejection | Includes PS, AS, ASD, HOCM, MI,
TI, MVP, PDA and VSD | | | DM | Up to 600 Hz
(high or low pitch) | Puffing and rumbling quality, usually decrescendo | Early-, mid- or late-
diastolic | Ventricular relaxation and filling | Difficult to hear, Includes PI, AI, MS, TS | | | pening snaps | | Snapping sound | During diastole period | Inspissating of valve leaflets | The sudden opening of the stiff mitral valve | | | Rubs | 100-800 Hz
(high pitch) | Scratching, harsh, creaking sound | Loudest in systole and
can be heard in the
beginning and end of
diastole | Friction between layers, abrasion of pericardial surfaces | Depends on the body position and breathing | | | Clicks | | Short and loud | Very early systole, mid-
systolic click, may be
immediately after S_1 | Due to the opening of a rigid
and calcifies aortic or
pulmonary valve | Includes AEC, SEC, mechanical valve click, or prosthetic valve click | ^{*}Information regarding frequency range and timings from [14], [19], [24]–[27] Abbreviation: IM: innocent murmurs, SM: systolic murmurs, DM: diastolic murmurs, PS: pulmonary stenosis, AS: aortic stenosis, ASD: atrial septal defect, HOCM: hypertrophic obstructive cardiomyopathy, MI: mitral insufficiency, TI: tricuspid insufficiency, MVP: mitral valve prolapse, PDA: patent ductus arteriosus, VSD: ventricular septal defect, PI: pulmonary insufficiency, AI: aortic insufficiency; TS: tricuspid stenosis, MS: mitral stenosis; AEC: aortic ejection click, SEC: systolic ejection click. # A. FUNDAMENTAL HEART SOUNDS -S₁ AND S₂ Mechanical actions of heart valves produce heart sounds including fundamental heart sounds (FHSs), S_1 followed by S_2 [16]–[18]. The
first heart sound (S_1) is heard at the onset of the systolic phase. This sound results from the sequential closure of the atrioventricular (AV) mitral and tricuspid valves [19]. S_1 has a frequency range between 10 and 200 Hz. Its amplitude has a great correlation with cardiac output [20]. Normally, S_1 is heard as a single sound with internal components M_1 and T_1 , separated by a very small gap of nearly 20-30 milliseconds (ms) [21]. However, during some cardiac abnormalities (such as right bundle branch block) splitting of S_1 can be observed. The second heart sound (S_2) occurs at the beginning of the diastolic phase, and is caused by the closure of the aortic and pulmonic valves. S_2 is a higher-pitch sound than S_1 , with a frequency range between 20 and 250 Hz, and is also shorter in duration. S_2 is heard as a single sound with internal components A_2 and P_2 . However, during cardiac abnormalities, S_2 may be observed as two split beats of A_2 and P_2 , because of a noticeable time gap existing between the closure of A_2 and P_2 . This gap may vary between 30 to 80 ms during inhalation and may reduce to 15 ms during exhalation [22], [23]. # **B. ABNORMAL HEART SOUNDS** During normal cardiac operation, a clear S_1 - S_2 pattern with a systolic period (S_1 to S_2) and diastolic period (S_2 to S_1) is observed. However, in the case of abnormalities being present, apart from S_1 and S_2 , other sounds, such as a third heart sound (S_3), fourth heart sound (S_4), gallops, clicks, opening snaps (OS), and murmurs might occur. Early diastolic filling of the ventricle, caused by blood rushing in from the atria, produces S_3 shortly after S_2 . This is due to vibrations caused by blood going backwards and forwards between the walls of the ventricles. S_3 is noted as a benign sound in the case of young people, athletes, and during pregnancy. In other cases, however, it is considered an important indicator of reduced systolic function. Diastolic dysfunction because of a stiff ventricle gives rise to an audible S_4 happening shortly before S_1 that contributes to the late diastolic filling. The occurrence of S_4 is considered as a significant indicator of cardiac abnormalities. Clicks and snaps are also important evidence of abnormalities related to the operation of the valves. Systolic clicks are brief and high-pitch sounds, usually noticed during the opening of the semilunar valves. These occur shortly after S_1 . Opening snaps may be observed shortly after S_2 , with the FIGURE 2. Different steps involved in the automated heart sounds analysis and classification. opening of the mitral and tricuspid valves. These abnormal sounds are indicators of mitral valve prolapse (MVP), mitral regurgitation (MR), and other pathological conditions. Gallops are sounds that resemble galloping rhythms. These signpost serious myocardial dysfunction because of noncompliance of one or both ventricles. Gallop sounds may be observed during S_3 or S_4 or both [19], [28]. Turbulence due to accelerations and de-accelerations of blood in chambers of the heart, stiffening/narrowing or incompetence of the heart valves because of regurgitation, produce mechanical vibrations that propagate to the surface and give rise to audible whooshing sounds called murmurs. Most murmurs are intra-cardiac events observed in the frequency range between 20-600 Hz. The frequency spectrum of murmurs, artifacts, fundamental heart sounds and other heart sounds present in the cardiac cycle, overlap significantly. However, murmurs are more chaotic in nature. Murmurs can be broadly classified based on their characteristics: timings (systolic murmurs, diastolic murmurs, or maybe both); shape (crescendo, decrescendo or crescendo-decrescendo) and location in the cardiac cycle (early, mid or late or continuous) [29]. They may be also classified as stenosis (such as aortic stenosis (AS)) or regurgitation (such as mitral regurgitation (MR)) murmurs. Murmurs may be innocent or else may indicate clinical signs of cardiac diseases. # IV. REVIEW OF ALGORITHMS FOR HEART SOUNDS ANALYSIS Many algorithms have been reported for automated classification of heart sounds with approaches that range from traditional thresholding methods to recent statistical machine learning and neural network based ones. The main aim of automatic heart sounds analysis is to achieve a precise classification of the pathological events present in the cardiac cycle. The different steps involved (as shown in Fig. 2) in the automated heart sounds analysis are reviewed in the following sections. # A. DATABASES FOR HEART SOUNDS ANALYSIS Non-availability of standardized, good-quality, thoroughly validated, and documented datasets hinder the development of algorithms for heart sounds analysis. Currently, the most extensive database of heart sounds recordings is PhysioNet [10], [14], [30], [31]. Other databases used for the validation of algorithms in the reviewed papers included the PASCAL database [32], the Open Michigan Heart Sound & Murmur Library (OMHSML) [33], the Cardiac Auscultation of Heart Murmurs database (eGeneralMedical) [34], the heart sounds library by Thinklabs [35], the heart sounds Podcast Series by Robert J. Hall Heart Sounds Laboratory, Texas Heart Institute, Texas [36], Bioscience normal and abnormal heart sounds database (BHSD) [37], and the Cardiac Auscultatory Recording Database (CARD) [38]. In addition, a book by D. Mason comprises a CD with a limited number of heart sounds and murmurs [19]. Similarly, heart sounds signals from an audio-visual presentation by Tavel *et al* was also used as a database in some of the reviewed papers [39]. Other than these available databases, researchers have also collected their own data. Most of these recordings were obtained during clinical trials in hospitals by auscultation using a digital stethoscope/microphone. A list of existing databases and their characteristics is provided in Table 2. Most of the existing databases are restricted by the number of recordings, duration and sampling frequency. Also, other potentially important information such as gender, age and auscultation positions are not always specified, despite these being important for proper algorithm validation. In addition, in many cases, the signals had been pre-processed leading to the loss of both, pathological characteristics, as well as realworld artifacts which are nonetheless important to take into account when designing the algorithms/acquisition systems. Also, the length of the individual recordings available is not sufficient to validate algorithms intended for continuous heart sounds analysis, and are not in agreement with the Task Force recommendations [40] that suggest short-term 5-min recordings to evaluate parameters such as heart rate variability (HRV). #### **B. HEART SOUNDS SEGMENTATION** The purpose of heart sounds signals segmentation is to localize sounds peaks including the fundamental heart sounds $(S_1 \text{ and } S_2)$. The peaks of S_1 and S_2 are required for determining the systolic and diastolic phases and to help in the subsequent estimation of cardiac cycles. This facilitates identification and extraction of acoustic signals of interest in each cardiac cycle. Broadly, reported segmentation methods can be classified into: envelope based methods [47], [57], [58], [68], [79], [84]–[89], ECG and/or carotid **TABLE 2.** Databases used for validation of algorithms for heart sounds analysis. | Reference | Source | Type of sound/
Subjects |
recordings | Age
(Mean
±SD)
years | Gender
(M/F) | Sensor | Sensor
position | Format | Total
participant
s | Sampling
rate | Frequency | Duration
(Seconds | Comments | |------------------------|--|--|---|---|-----------------|--|---|--------------------------|---|---|--------------------|--------------------------------|--| | (a) P | ublic heart soun | ds databases | | | | | | | | | | | | | [14],
[30],
[31] | PhysioNet
database
(Computing in
Cardiology
Challenge
2016) ♥ | Normal and pathological sounds | 4,430
records
(including
training and
test sets) | Variable | Variable | Variable | Different
positions | Variable | 1297
(1072
included
for training
and test
dataset) | Variabl
e | Variabl
e | 5-120 s
each | Open access
database,
comprises nine
databases,
performance of
dataset reported
in [10], [41] | | [42],
[43] | MITHSDB (collectively from [42], ♥ | Normal (38) IM (34) MVP (37) AD (5) MPC (7) | 117 records
118 records
134 records
17 records
23 records | ı | ı | Welch Allyn
Meditron
stethoscope
(Skaneateles,
USA) | 9 different
positions
and
orientations | ı | 121 | 44.1 Hz | 20 -20 k
Hz | 9-37 s
each
(33±5 s) | Simultaneously
recorded with
ECG, MITHS
database
included in [14] | | [25],
[44] | TUTHSDB (collectively from [25], [44]) ♥ | Normal (28)
and
pathological
(16) | 174 records | 1 | - | * | Aortic,
pulmonic,
apex and
tricuspid
positions | - | 44 | 4 kHz | - | 15 s each position | TUTHS database included in [14] | | [45],
[46] | AADHSDB (collectively from [45], [46]) ♥ | Normal (121) CAD (30) |
544 records
151 records | - | 93M/58F | *
* | 4 th ICS at
the left
sternal
border on
the chest | - | 151 | 4 kHz | 20 -
1000
Hz | 8 s each | AADHS
database
included in [14] | | [47],
[48] | UHAHSDB
(database in
PhysioNet
[30]) ♥ | Normal (25) Pathological sounds (30) | 39 records 40 records | 18 to 40
years
44 to 90
years | -
20M/10F | Prototype
electronic
stethoscopes | - | WAV
format | 55 | 8 kHz | - | 6-49 s
each | UHAHS
database
included in [14] | | | AUTHHSDB | Normal (11) | 11 records | 29.3±10.7 | 4M/7F | | Auscultatio | | | | | | | | [49] | (database in | MR (17) | 17 records | 75.3±10.2 | 6M/10F | Custom-made
electronic | n for valve | WAV | 45 | 44.1 Hz | 4 kHz | 10-122 s
each (50 | AUTHHS
database | | [.] | PhysioNet [30]) ♥ | AS (17) | 17 records | 76.1±7.2 | 6M/10F | stethoscope | murmurs & apex area | format | ,,, | | 1 11112 | ± 26 s) | included in [14] | | [50] | DUTHSDB
(database in | Normal (174) | 338 records | 4 to 35
years (25
± 3 years) | 172M/2F | Microphone
sensor
(MLT201) or
piezoelectric | Various
sites | WAV | 509 | 8 kHz –
22050
Hz | Variabl | 209 ± 78
s each | DUTHS | | [53] | PhysioNet [30]) ♥ | CAD (335) | 335 records | 10 to 88
years (60
± 12
years) | 108M/227
F | * | Mitral site at the chest | format | 309 | 8 kHz | е | 17 ± 12 s
each | database
included in [14] | | [54] | SUAHSDB
(database in
PhysioNet
[30]) ♥ | Normal (79)
and
pathological
(33) | 114 records | 16 to 88
years (56
± 16
years) | 43M/69F | An electronic stethoscope | Apex | - | 112 | 8 kHz,
44.1
kHz
and 384
kHz | 20-1000
Hz | 30-60 s
(33 ± 5 s)
each | SUAHS database
included in [14] | | [14] | SSHHSDB
(database in
PhysioNet
[30]) ♥ | Normal (12)
and
pathological
(23) | 35 records | - | - | - | 2 nd intercostal | - | 35 | 8 kHz | - | 15-69 s
(36 ± 12
s) each | SSHHS database included in [14] | | [14] | SUFHSDB
(database in
PhysioNet
[30]) ♥ | Fetal (116) Maternal (109) | 119 records 92 records | -
29 ± 6
years | -
109F | An electronic
stethoscope (GS
Technology Co.
Ltd, South
Korea) | - | 8 kHz
and 44.1
kHz | 225 | 8 kHz
and
44.1
kHz | 20-1000
Hz | Average
90 s each | SUFHS database included in [14] | | [19] | Daniel
Manson 2000
♥ | Normal and pathological sounds | Over 180
records | - | - | - | - | WMA
format | - | - | - | Variable | Book with CD recordings, reported in [55] | | [32] | The PASCAL database (CHSC 2011) | Dataset A: Normal, murmur, EHS & artefact Dataset B: Normal, murmur and extrasystole | 176 records | - | - | † | - | WAV/
aif
format | - | 44.1
kHz | _ | 1-30 s
each | Segmented data
with S ₁ and S ₂
location,
reported in [56],
low-pass
filtering at 195
Hz | | [33] | OMHSML
(The
University of
Michigan
database) ♦ | Normal and pathological sounds | 23 records | - | - | Stethoscope | Apex, aortic
and
pulmonic
area | MP3 | - | 44.1
kHz | - | Total of 1496.8 s | Reported in [57],
[58] | TABLE 2. (Continued.) Databases used for validation of algorithms for heart sounds analysis. | [34] | CAHMDB
(eGeneral
Medical Inc.
database) ◆ | Pathological
and non-
pathological | 64 records | - | - | - | - | WAV
format | - | 11/8
kHz | - | Total of
338 s (1-
10 s
each) | Requires permission, reported in [14], [59]–[61] | |------|--|--|---|---|--|---|---|---------------|---|-------------------------------|-----------------|--|--| | [35] | Heart sound library by Thinklabs ◆ | Normal and pathological | 41 records | - | - | Thinklabs
stethoscope | - | - | - | - | - | Variable | Available online,
reported in [58] | | [36] | Texas Heart
Institute
database ◆ | Pathological (50) (information from [62]) | 50 records | - | - | Stethoscope | - | MP3 | - | 44.1
kHz | - | Variable | Database
reported in [62],
more
information in
[63] | | [37] | BHSD ♦ | Normal and pathological | 25 records | - | - | - | _ | WAV
format | - | _ | _ | Total of
49.94 s | Online available,
reported in [64] | | [38] | CARD
database ♦ | Normal and pathological | Variable | - | - | Hewlett Packard
21050A
microphone | - | MP3
format | - | - | - | 20 s each | Login required
to access
database, ECG
records
available,
reported in [64],
[65] | | (b) | Heart sounds re | corded by resear | chers for vali | dation of alg | gorithms | T | 1 | 1 | ı | 1 | 1 | | | | [25] | Naseri and
Homaeinezha
d 2013 ♦ | Pathological
(AS, AR, MS,
MR) (50) | 50 records | 48 years
(average) | 25M/25F | ‡ | Aortic,
pulmonic,
apex and
tricuspid
positions | - | 50 | 4 kHz | 700 Hz | Total of
52
minutes | TUTHS database included in [14] | | [29] | Ari <i>et al</i> 2008
♦ | Normal and
nine different
pathological
sounds | 71 records | No age
group
associated | - | ‡ and ‡ | - | WAV
format | 71 | 8, 11,
22 &
44.1
kHz | Below
150 Hz | - | ECG signals for validation | | [42] | Syed 2003 ♥ | Normal (30)
and MVP (21) | 102 records | - | - | - | Apex and
left lower
sternal
border | - | 51 | 44.0 Hz | - | - | Simultaneously
recorded EKG
signals, included
in [14] | | [43] | Sayed <i>et al</i>
2007 ♥ | Normal
murmurs (15),
MR (11) and
normal (13) | 39 records | - | - | * | Left apex
and left
parasternal | - | 39 | 44.1 Hz | 4096
Hz | 30-40 s
each | Simultaneously
recorded ECG
signals, included
in [14] | | [44] | Naseri <i>et al</i>
2013 ♥ | Normal and
pathological
(AS, AR, MS,
MR) | 63 normal
and 63
pathologica
l | - | - | ‡ | Aortic,
pulmonic,
apex and
tricuspid
positions | _ | - | 4 kHz | - | 2
minutes
each | TUTHS database included in [14] | | [45] | Schmidt <i>et al</i> 2010 ♥ | Normal (13)
and
pathological
(100) | 73 records | - | ı | ‡ (handheld stethoscope) | 4 th ICS at
the left
sternal
border on
the chest | - | 40
(training
data) and
73 (test
data) | 4 kHz | - | 8 s each | Without ECG
signals, database
included in [14] | | [46] | Schmidt <i>et al</i> 2015 ♥ | Non-CAD (70)
and CAD (63) | 231 (Non-
CAD) and
204 (CAD) | 60.1±9.9
(Non-
CAD) &
66.1±10.7
(CAD) | 35M/35F
(Non-
CAD) &
47M/16F
(CAD) | ‡ | 4 th ICS at
the left
sternal
border on
the chest | - | 133 | 4 kHz | 20-1000
Hz | 8 s each | Unsupervised,
database
included in [14] | | [47] | Moukadem <i>et</i> al 2013 ♦ | Normal pathological sounds | 40 records 40 records | 18-40
years
44 to 90 | - | Prototype
electronic
stethoscopes | - | WAV
format | - | 8 kHz | - | 6-12 s
each | UHAHS
database
included in [14] | | | | Normal (14) | 11 (698 | years
29.3±10.7 | 4M/7F | | A 1: :* | | | | | | | | [49] | Papadaniil and
Hadjileontiadi
s 2014 ♦ | MR (19) | cycles) 16 (827 cycles) 16 (1077 | 75.3±10.2 | 6M/10F | Electronic stethoscope | Auscultatio
n for valve
murmurs &
apex area | WAV
format | 52 | 44.1 Hz | 4 kHz | 10-122 s
each | AUTHS
database
included in [14] | | [52] | Tang <i>et al</i> 2012 ♥ | AS (14) Normal (3) and pathological (23) | cycles) 26 records | 76.1±7.2 | 6M/10F
- | Vibration
(piezoelectric)
sensor | Mitral site | - | 26 | 2 kHz | Below
600 Hz | - | Simultaneously
recorded with
ECG, DUTHS
database
included in [14] | | [53] | Li <i>et al</i> 2011
♦ | Normal and pathological | 27 cardiac
cycle | - | - | - | Mitral site | _ | - | 2 kHz | - | ≈ 9 s
each | DUTHS
database
included in [14] | | | | Normal (45)
ASD (14) | 3390 s of | | | | | | | | | 600 s
620 s | | TABLE 2. (Continued.) Databases used for validation of algorithms for heart sounds analysis. | | Sun et al 2014 | F4 (7) | CHD, 3940
s of RHD | | | _ | Tricuspid | | | 44.1 | 20 – | 270 s | Michigan HSs
database [33] | |------|---------------------------------------|---|--|------------------------------------|--------------------|--|---|---------------------------|-----|-------------|-----------------|----------------------------|---| | [57] | ♥ | PDA (10)
VSD (33)
Mixed CHD
(12) | and 600 s
of normal
HSs | - | - | ‡ | site | - | 121 | kHz | 20k Hz | 550 s
1290 s
660 s | also considered
for validation | | | Varghees and
Ramachandra | RHD Normal heart | | | | | | | | | | 3940 s | Databases from other sources | | [64] | n 2017
(AUHSD) ♦ | sounds | 25 records | - | - | Microphone | - | - | - | 2 kHz | 800 Hz | Ī | also used for
validation | | [66] | Amit et al | HSs with alternating breath resistance | 10 records | 29±12 y | 8M | | | | 12 | _ | 20-250 | 40 s each | Single-lead ECG | | [00] | 2009 ♥ | Pharmacologica
l stress data | - | 60±14 y | 11M | - | - | - | 11 | _ | Hz | 30-45
minutes
each | Dobutamine
stress
echocardiograph
y | | [67] | Gupta <i>et al</i>
2007 ♦ | Normal and murmurs | 340
HSs
segments | - | - | - | - | - | 41 | 8 kHz | 4 kHz | - | No ECG information used | | [68] | Javed <i>et al</i>
2006 ♥ | Pathological
sounds | 40 records | 16 to 79
years | - | ‡ | - | .e4k and
WAV
format | 40 | 8 kHz | - | 8 s each | Supervised recordings | | [69] | Turkoglu <i>et al</i> 2003 ♦ | Normal (95)
and
pathological
(120) | 215 records | 15 to 80 y
(average
48.77 y) | 132M/83F | Acuson Sequoia
512 Model
Doppler
Ultrasound
system | Chest | - | 215 | 20 kHz | 0.5-10
kHz | 5 s each | Doppler HSs
signals | | [70] | Safara <i>et al</i>
2013 ♥ | Normal (16)
and
pathological
(43) | 59 records,
804 heart
cycles | - | - | Welch Allyn
Meditron and
ECG analyzer,
Meditron | - | - | - | 4 kHz | - | 15 s each | ECG is recorded simultaneously | | [71] | Banerjee and
Mondal 2015 | Pathological
(60)
Non-
pathological
(60) | - | - | 45M/16F
15M/10F | * | - | WAV
format | 86 | 8 kHz | 2 kHz | 1 | Recordings in sitting and relaxed conditions | | [72] | Iwata <i>et al</i>
1980 ♥ | N (60), FM
(40), MI (32),
AI (38), ASD
(9), & VSD (8) | 187
samples,
881 cardiac
cycle | - | - | 4-channel PCG
(Fukuda Densi
EMR60SD) | Cardiac
apex area | Magneti
c tape | 69 | 2 kHz | 880 Hz | - | ECG and PCG
are recorded
simultaneously | | [73] | Zheng et al | Normal (88) | 88 records | 18-60 y
(mean
35.64±7.5 | 44M/40F | Self-developed cardiac reserve | Apex | - | 152 | 11025 | _ | One
minute | Color Doppler
Ultrasound
medical machine | | [,0] | 2015 ♥ | CHD patients (64) | 64 records | 38-70 y
(mean
61.56±9.7 | 36M/28F | monitor | | | | Hz | | each | (Vivid-7, GE
company, USA)
also used | | [74] | Zhang <i>et al</i> 2014 ♦ | N (225) and
abnormal (180)
(MS (60), VSD
(60) & AS (60)) | 405 (225
(N) and
180 (AN)) | - | - | Phonocardiogra
m sensor | Precordium | - | 405 | 11025
Hz | 2205
Hz | - | Pathologies
confirmed by
experts | | [75] | Guillermo <i>et al</i> 2015 ♦ | Pathological
and non-
pathological | 92 cardiac
cycles (38
(PI) and 54
(TI)) | - | - | Microphone | - | - | - | 8 kHz | 30-600
Hz | 15 s each | Self-developed
cardiac
monitoring
platform | | [76] | Elgendi <i>et al</i>
2014 ♦ | Pathological
and normal | - | 3 months
to 19
years | 12M/15F | ‡ | Cardiac
apex and 2 nd
LICS | WAV
format | 27 | 4 kHz | - | Over 20
seconds
each | Sounds from
subjects
undergoing
cardiac
catheterization | | [77] | Hassani <i>et al</i>
2014 ♦ | N (5), VSD
(36), ASD (12)
& ASD and
VSD (6), TOF
(10), PS (10) &
21 others | 100 records
(14,000
cardiac
cycles) | 1-26 y | - | - | - | - | 100 | 44.1
kHz | Below
800 Hz | - | Heart sounds
from children | | [78] | Choi and
Jiang 2010 ◆ | N (6) and
pathological
(34) (AF, AI,
AS, MR, MS
and Split) | 196 (N)
and 293
(AN)
records | 30±14 y
(N),
47±19 y
(AN) | - | Electronic stethoscope | Four
auscultation
sites | ı | 40 | 8 kHz | 700 Hz | 12 s each | Self-developed
stethoscope to
record signals | | | Zhang <i>et al</i>
2017 | N (45), M (48),
EHS (27) and
artefact (56) | 176 records | | | † | | 337.437 | | 44.1
kHz | | | Database form | |------|--|--|---|---------------------------------|----------|--|--|-----------------------|--|-------------|--------------|---------------------|--| | [79] | (The Pascal
CHSC 2011) | N (336), M
(105),
extrasystole
(66) | 507 records | ı | ı | * | ı | WAV
format | - | 4 kHz | 2 kHz | 1 | Database from [32] | | [80] | Springer <i>et al</i> 2016 ♥ | Normal (38),
MVP (37), IM
(36), AD (5),
MPC (7) | S ₁ : 12181
and S ₂ :
11627 | ı | ı | ** | Parasternal,
apical,
aortic, and
pulmonic | ı | 123 | 44.1
kHz | 1 kHz | Total of
10172 s | Verified using
ECG | | [81] | Turkoglu <i>et al</i>
2003 ♦ | Normal and pathological (AV and MV) | 215 records | 15-80 y
(average
48.77 y) | 132M/83F | Acuson Sequoia
512 Model
Doppler
Ultrasound
system | 1 | - | 92 for
training
and 123
for testing | 20 kHz | 500 Hz | 5 s each | Doppler HSs
signals | | [82] | Uğuz 2012 ♦ | Normal (40),
PS (40) and MS
(40) | - | 4-65 y | 55M/65F | ‡ | ı | e4k/
WAV
format | 120 | 8 kHz | ı | İ | ı | | [83] | Kang <i>et al</i>
2017 ♦ | Innocent
murmurs (87)
and
pathological
murmurs (170) | 257 records
(1212
cycles) | - | - | * | RUSB,
LUSB,
LMSB,
LLSB and
apex | - | - | 8 kHz | 40-500
Hz | 3-8 s
each | Heart sounds
from pediatric
patients | TABLE 2. (Continued.) Databases used for validation of algorithms for heart sounds analysis. Note: Data collected in controlled conditions is indicated with symbols ' \P ', while ' Φ ' symbol is used where no information related to recording conditions is available. iStethoscope is indicated with symbol ' \uparrow ', electronic stethoscope 3M Littmann is indicated with symbol ' \updownarrow ' and Meditron (NY, USA) stethoscope with symbol ' \clubsuit '. Abbreviation: N: normal heart sounds, M: murmurs, EHS: extra heart sounds, CAD: coronary artery disease, CHD: congenital heart disease, EAS: early aortic stenosis, LAS: late aortic stenosis, FM: functional murmurs, MI: mitral insufficiency, AI: aortic insufficiency, ASD: atrial septal defect, VSD: ventricular septal defect, PCHSC: Pascal classifying heart sound challenge, IM: innocent murmurs, MPC: miscellaneous pathological condition, AD: aortic disease, LICS: left intercostal space, ICS: intercostal space, MVP: mitral valve prolapse, AS: aortic stenosis, AR: aortic regurgitation, MR: mitral regurgitation, MS: mitral stenosis, RUSB: right upper sternal border, LUSB: left upper sternal border, LUSB: left lower sternal border, AUHSD: Amrita university heart sounds database, TOF: tetralogy of Fallot, AF: atrial fibrillation, MITHSDB: the Massachusetts Institute of Technology heart sounds database, AADHSDB: the Aalborg University heart sound database, AUTHHSDB: the Aristotle University of Thessaloniki heart sounds database, UHAHSDB: the University of Haute Alsace heart sounds database, TUTHSDB: The K N Toosi University of Technology heart sounds database, DUTHSDB: the Dalian University of Technology heart sounds database, SUHHSDB: the Skejby Sygehus Hospital heart sounds database, SUFHSDB: the Shiraz University fetal heart sounds database. pulse reference based methods [72], [90]–[99], probabilistic models [45], [52], [65], [67], [77], [80], [100]–[105], feature based methods [25], [29], [49], [61], [75], [106]–[108], time-frequency analysis based methods [55], [59], [62], [109], [110], and learning based methods [50], [111]–[113]. # 1) ENVELOPE-BASED METHODS The envelope of heart sounds is used to identify S_1 and S_2 in the cardiac cycle using different approaches. Typical methods used for the envelope extraction are: normalized average Shannon energy, homomorphic filtering, Hilbert transform, moving window Hilbert transform, and short-time modified Hilbert transform. Most of the envelope based segmentation algorithms perform heart sounds segmentation with an assumption that the systolic period is shorter than the diastolic period. However, this may not be true in the case of infants and other cardiac patients having abnormal heart sounds [114]. In addition, envelope-based methods generally fail when additional peaks (such as those caused by artifacts) appear superimposed to the fundamental heart sounds [91], [115]. Furthermore, medium amplitude peaks including murmurs are attenuated in the envelope analysis while large and low peaks may appear as a single envelope [108]. Thus, these methods fail to locate peaks of very low amplitude present in the cardiac cycle [61]. Also, in some cases, manual selection of threshold to localize fundamental heart sounds may result in loss of some of the peaks of interest. # 2) ECG AND/OR CAROTID PULSE REFERENCE BASED METHODS A number of the reported segmentation approaches require an auxiliary signal (ECG signal and/or carotid pulse) as a reference to identify the locations of fundamental heart sounds in the cardiac cycle [72], [90]–[99], [116]. The general disadvantage of these methods is that a secondary signal is required, which is more complex both, from the point of view of a sensing and also synchronization. Also, these methods are affected by the mismatch in timing between the electrical and mechanical (E-M) activities of the cardiovascular system, which in turn depends on the pathological conditions of patients [115]. Also, methods that require the identification of *R*-peaks and *T*-peaks are more computationally hungry and demanding in processing power. In addition, accuracy also varies with low amplitude and abrupt changes in the *QRS* morphologies, which can make the identification of the *R*-peaks and *T*-peaks complex on its own. # 3) PROBABILISTIC MODELS FOR SEGMENTATION As envelope-based methods have shown a modest success, many probabilistic models for segmentation were reported in recent studies to try to overcome their shortcomings. The aim of probabilistic models is to characterize the fundamental heart sounds based on some discriminative features, such as temporal correlation, waveform function, time-frequency energy, and other information. Among all available probabilistic models, HMMs were mostly used for the segmentation of heart sounds in recent articles. Though probabilistic
models were efficient in improving the performance of the segmentation methods, the overall performance of these methods still needs to be validated using a larger datasets. This is because, amongst other things, the characteristics of the fundamental heart sounds which were used to develop the various models, varies largely from infants to old people and from healthy to cardiac patients. ## 4) FEATURE-BASED METHODS Feature-based methods are based on extracting certain features such as energy fraction, sample entropy, total variation filtering, Shannon entropy, instantaneous phase boundary, boundary location identification, likelihood computation, etc., to identify peaks present in the cardiac cycles. The main drawback of these methods is that the extracted features may vary with the signals they are tested on and hence they need to be verified using standardized databases. In recent approaches, researchers segmented cardiac signals directly into cardiac cycles and skipped the steps used to identify individual locations of S_1 and S_2 peaks [56], [79], but this requires prior knowledge of the cardiac cycles. These methods have similar drawbacks to the envelope analysis. The works reported using the different segmentation methods have been classified in the following and summarized in Table 3. In general, accurate segmentation is one of the most challenging tasks in heart sounds analysis, especially, when the signals are corrupted by real-world artifacts. Also, most of the available algorithms are designed to segment fundamental heart sounds. However, other abnormal peaks and irregularities with low amplitudes also need to be investigated. In addition, existing segmentation algorithms mostly depend on absolute measures like time or frequency distributions which exhibit large disparity within subjects and hence result in poor segmentation accuracy. The limitations in segmentation methods consequently impact the overall accuracy of the PCG signals classification. # C. FEATURE EXTRACTION Representations of the cardiac signals in different domains reveal various physiological and pathological characteristics and allow efficient feature extraction. To capture concurrent variations and structural components in both time and frequency, time-frequency representation of the transient signals has been reported as a preferred mean over the time-domain and frequency-domain representations. Qualitative and quantitative measurements of the signals were obtained using different transforms for heart sounds analysis; for instance, time-frequency representation using S-transform [47], Fourier transform, Short-Time Fourier Transform (STFT) [120], Wigner-Ville Distribution (WVD) [121], [122], Choi-Williams Distribution (CWD) [66], [123], wavelet transform [124], [125], and Short-Time Modified Hilbert Transform (STMHT) [57]. Though the Short-Time Fourier transform (STFT) was found to be popular, obtaining a proper resolution for feature extraction using STFT is challenging because of the fixed window available for the analysis [56], [126], [127]. Wavelet analysis emerged as an alternative by substituting the frequency shifting operation of the STFT by a time or frequency scaling operation [127]. Wavelet transform was widely reported in literature because of its suitability for representing signals where the length of the temporal window can be engineered for multi-resolution analysis with wide frequency range across the length [128]. Discrete Wavelet Transform (DWT) [91], Continuous Wavelet Transform (CWT) [129]-[131], and Mel-Scaled Wavelet Transform [107], [132]–[134], have all been used for heart sounds analysis. Feature extraction and selection play an important role in pattern recognition and classification of heart sounds signals. Reviewed articles extracted features based on the cardiovascular disease being diagnosed and optimized them to reduce the complexity and computational burden of the system. Features with high-order statistics, non-linear fractal complexity, entropy information and chaos theory helped in capturing relevant information from non-stationary PCG signals, required for proper classification. Other features included Shannon energy envelope of the frequency spectrum, wavelet coefficients, perceptual features such as Mel-Frequency Cepstral Coefficients (MFCCs), bispectrum, Variance Fractal Dimension (VFD), and fractal features such as largest Lyapunov Exponents or Hurst Exponent. Time-domain features are easy to extract and quantify. These features mainly include timing characteristics such as locations of S_1 and S_2 , systolic and diastolic intervals, and amplitude information (such as the mean absolute value of the S_1 and S_2 and other peaks in the cardiac cycle). Some physiological and pathological information that is missed in the time-domain analysis can be visualized in the frequency domain analysis. Frequency-domain based feature extraction methods used mainly included band-pass filter banks and zero-crossing analysis [11], [59], [72], [123], [135]–[137]. Other discriminant features included the mean power of distinct cardiac sounds segments (S_1 , S_2 , systole and diastolic) in different frequency bands and MFCCs [107], [132]–[134]. Details of feature extraction methods and type of features extracted are presented in Table 4. # D. CLASSIFICATION OF HEART SOUNDS The final step of a heart sound analysis algorithm is to take the extracted features and feed them to an appropriate classifier to interpret them. Reported approaches for classification include Support Vector Machine (SVM) [56], [58], [70], [71], [73], [74], [78], [79], [85], [105], [107], [111], [114], [124], [138]–[148], Hidden Markov $\begin{tabular}{ll} \textbf{TABLE 3.} & \textbf{Summary of heart sounds segmentation methods and their performance comparison.} \\ \end{tabular}$ | | | 1 | 1 | | | | | 1 | | | | 1 | | | | | |------|------------|--|--|---|---------------------------------------|---|--------------------|----------|-------|-------|-------|---------|-----------------------|-----------------------|---|---| | | ses | | | cts | Records
(# and | Cardiac | ູ 3 | | | | | IIS | | Performan | ce | | | Year | References | Segmentation
Methods | Signal Type | # Subjects | duration
in
seconds) | Cycles (or periods) | Noise
tolerance | S_1 | S_2 | S_3 | S_4 | Murmurs | Se (%) | PPV (%) | Accuracy (%) | Comments | | Enve | ope a | nalysis | • | | | | | | | | | | | | | | | 2018 | [117] | Shannon
envelope and
threshold
adjustment | Normal (1) and pathological (4) | 5 | 5 records | - | - | • | • | • | • | - | 98.1 | - | - | Only detection of sounds S_1 to S_4 was reported, validated with a limited number of recordings. | | 2017 | [64] | Shannon entropy
envelope and
instantaneous
phase | Normal and pathological | | | s, Littmann
AUHSD
rds) | SNR
10 dB | • | • | • | • | • | N: 94.38,
M: 97.58 | N: 97.25,
M: 96.46 | N: 91.92,
M: 94.21 | Information was extracted
after splitting signals as
low frequency and high
frequency signal contents | | 2017 | [83] | Shannon energy
envelope | Normal Innocent murmurs Pathological murmurs | - | 257
records | 376 cycles
209 cycles | - | • | • | _ | ı | • | N: 99.2,
PM: 89.3 | N: 99.2,
PM: 96.4 | - | Recordings form children,
murmurs were segmented,
assumption | | 2017 | [79] | Scaled
spectrogram and
PLSR | Normal,
murmurs and
extrasystole
sounds | | A & B (17e | | _ | - | - | - | ı | • | - | - | - | PLSR for identifying most
relevant features, only
heart cycles were identified | | 2015 | [58] | CSCW envelope | Pathological | 11 (AF)
15 (AR)
22 (MR)
20 (N)
6 (PS) | - | 152
periods
169
periods
231
periods
268
periods
138 | - | • | • | _ | - | _ | - | - | - | AF, AR, MR, PS, VSD and
normal sounds were
identified (Classification
accuracy was reported) | | 2014 | [85] | Moving
windowed HT | Normal and
VSD HSs | 16 healthy
and 37
VSD
patients | 242 (N)
and 226
(VSD) | periods
- | _ | • | • | _ | 1 | • | 98.8 | - | - | VIM for heart sounds
envelope analysis, <i>CA</i> :
98.4, higher sensitivity
than threshold based
methods | | 2014 | [57] | STMHT | Normal
CHD
RHD
Database [33] | 45
76
-
23 | 600 s
3390 s
3940 s
1496.8 s | - | - | • | • | _ | - 1 | - | - | ı | S ₁ : 98.53,
S ₂ : 98.31,
Cycle:
97.37 | Unsupervised, using Hilbert transform and the Viola integral waveform method | | 2013 | [47] | Shannon
envelope using
S-transform | Normal (40) Pathological (40) | - | 80
records
(6-12 s) | ı | = | • | • | - | - | - | 96
97 | 95 (using
SSE) | - | Localization tolerance is absent, unsupervised | | 2010 | [86] | CSCW (based on
variance on PCG
timing scales) | Normal and pathological | - | 9 records
(≤ 5 s
each) | - | - | • | • | - | ı | • | - | - | 99.11 | Results validated using a
very small dataset, Viola
integral method applied | | 2009 | [87] | Short time
spectral energy
& autoregression
characteristics | Normal (20)
Abnormal (40) | 120 | Total of
1200 s | 823 cycles | - | • | • | - | ı | - | - | - | 93.6 | Pediatric heart sounds segmentation, | | 2008 | [88] | CSCW (also reported in [6]) | Normal and abnormal | - | - | 500 cycles | _ | • | • | - | 1 | ı | - | - | N: 100 and
AN: 88.2
(MODSG2) | CSCW achieved higher
accuracy compared to
Shannon envelope and
Hilbert envelope | | 2006 | [68] |
Normalized
average Shannon
energy | Pathological
and non-
pathological | 40 | 8 s each | 120
systolic
periods | - | • | • | _ | ı | • | - | - | - | Patients aged between 16-
79 years were considered,
Segmentation results were
not found | | 1997 | [89] | Normalized
average Shannon
energy | Pathological
(14) &
physiological
(23) | - | 37
records | 515
periods | - | • | • | _ | 1 | - | - | - | 93.00 | No individual S ₁ and S ₂ identification reported | | ECG | pulse | reference based n | | - | | - | | | | | | | • | | | - | | 2017 | [90] | Probability
analysis for
feature extraction | Normal and abnormal | PhysioN | Vet databas | e [14] | - | • | • | - | - | _ | 76.96 | - | - | ECG based segmentation using R-R interval estimation, CA: 84.11% | | 2011 | [92] | Joint ECG and PCG signals | Normal Pathological (80) | 120 | 120
records
(Each 10
s) | 1976
cycles | - | • | • | _ | ı | - | - | - | S ₁ : 97.00,
S ₂ : 94.00 | Results are reported for paediatric HSs segmentation | | 2011 | [93] | Using MMP | Normal (35)
Pathological
murmurs (35) | 70 | Each 10 | - | = | • | • | - | ı | • | - | - | - | ECG recorded simultaneously, <i>CA</i> : 92.5% (using MMP classifier) | | 2009 | [94] | | Normal (50) | 148 | | 360 beats | | <u> </u> | | | | | 100 | 92.0 | | | TABLE 3. (Continued.) Summary of heart sounds segmentation methods and their performance comparison. | | | Fractal features for segmentation | Murmurs (98) | | 164
records ≤ | | = | • | • | _ | - | • | | | - | Intra-beat segmentation
(ECG records) | |-------|----------|---|--|---|------------------------------------|---|----------------|---|---|---|---|---|--|---|---|--| | 2006 | [95] | Feature selection with ECG signal | Valvular heart patient | 36 | 8 s
15 s for
each
subject | 445 cycles | - | - | - | - | - | • | _ | - | - | 207 features extracted, <i>CA</i> : 86 (For MI, AS and PM) | | 2005 | [96] | R- and T-waves
of ECG as
reference | Data from
known cardiac
defects | 300 | 40-45 s
each | - | SNR >
40 dB | • | • | - | - | • | - | - | S ₁ : 100,
S ₂ : 97.00 | ECG gating applied, STFT, sounds form children | | 2001 | [97] | Matching pursuit method | | 15 (each
for N &
AN BMV) | - | - | - | • | 1 | - | - | - | _ | - | - | ECG signals are also recorded at 500 Hz, CA: 93.00%, no segmentation results founds | | 1992 | [98] | Microcontroller
based HSs gating | Pathological | 19 | - | - | - | • | • | - | - | - | - | - | - | Gating device for medical imaging | | 1987 | [99] | ECG and carotid pulse based | Normal and pathological | 5 healthy
and 20
CVD
patients | 94
signals
(10 s) | - | - | • | • | - | - | - | - | - | - | Systolic and diastolic segmentation | | 1980 | [72] | Segmentation
using spectral
tracking | Pathological
and non-
pathological | 60 (N), 40
(FM), 32
(MI), 38
(AI), 9
(ASD) & 8
(VSD) | - | 187
samples
with 881
cardiac
cycle | - | • | • | _ | _ | - | - | - | - | Zero-crossing positions are used for identification | | Prob | abilisti | ic models | | | | | | | | | | | | | | | | 2017 | [102] | Modified
Springer's
method [80] | Normal and pathological | Physiol | Net databa | se [14] | - | • | • | - | - | - | S _e : 91.38
(best) | - | i | Segmentation using CQA | | 2017 | [103] | Springer's
HSMM and
Viterbi decoding | Normal and pathological | Physiol | Net databa | se [14] | - | • | • | ı | - | - | - | ı | İ | Manual segmentation of HS signals | | 2017 | [104] | Duration-
dependent
HSMM | Pathological
and non-
pathological | Physiol | Net databa | se [14] | - | • | • | ı | | - | - | - | 79.30 (all dataset) | Segmentation algorithm by
Springer et al [80] | | 2016 | [80] | Logistic
Regression-
HSMM | Normal and pathological | 123 | 10172 s
(total) | S ₁ : 12181
S ₂ : 11627 | _ | • | • | - | _ | - | 95.34
±0.88 | 95.92±0.83 | 92.52±1.33 | HSMM performed better
than HMM, error rate 0.23
with Shannon energy | | 2014 | [77] | HF for segmentation | Normal and pathological | 100 (N and
AN) | 100
records | 14,000
cardiac
cycles | = | • | • | • | - | - | S ₁ : 80.3
S ₂ : 77.5 | S ₁ : 80.2 S ₂ : 77.6 | ı | Time-domain intensity
envelopes, results not
suitable for clinical
applications | | 2012 | [52] | Dynamic
clustering | Normal and abnormal | 3 healthy
and 23
patients | 26
records | 565 cycles | - | • | • | - | - | - | - | - | S ₁ : 94.86,
S ₂ : 95.92 | Localization tolerance is absent, No split between training sets | | 2012 | [65] | Hilbert-Huang
Transform | Normal and pathological | 800 record
CARDJH | | 15 records
with S ₃ and
S ₄ | - | - | - | • | • | - | S ₃ :
90.40,
S ₄ : 94.50 | S ₃ : 90.4,
S ₄ : 85.5 | - | S ₁ and S ₂ were not identified | | 2012 | [105] | HMM based segmentation | N and
abnormal | 80 (N) &
80
(Abnormal) | - | _ | - | • | • | - | - | • | - | _ | - | HMM based segmentation, <i>CA</i> : 85.6% | | 2010 | [45] | Duration-
dependent HMM | Normal and pathological | 73 | records
(each 8
s) | - | _ | • | • | _ | - | - | 98.8 | 98.6 | - | HMM achieved 59.9% of
Se and 54.8% of PPV for
the same algorithm | | 2007 | [67] | HF and k-means clustering | Normal and
murmurs
sounds | 41 | - | 340 HSs
segments | _ | • | • | - | - | • | - | - | N: 99.09,
SM: 85.47
& DM:
86.47 | Not suitable for high intensity murmurs [29], unsupervised | | 2005 | [100] | HE and self-
organizing PM | Normal and abnormal | 17 | 44 PCG
records
(30-60 s) | _ | - | • | • | _ | - | - | S ₁ : 98.6
S ₂ : 98.3 | S ₁ : 96.9,
S ₂ : 96.5 | - | Extracted features from events are segmented using HMM | | 2005 | [101] | НММ | Clean and dirty | 9 | 46 files
(~2286
s) | - | - | • | • | - | - | - | - | - | 98 | Shannon energy features
are extracted for
segmentation | | Featu | re-ba | sed Methods | | | | | | | | | | | | | | | | 2017 | [106] | Identification of
S ₁ and S ₂ using
DNN | Normal and abnormal | 28 | - | 460 each
S ₁ and S ₂
HSs | - | • | • | - | - | - | - | - | - | Acoustic features using MFCC, <i>CA</i> : 91.12%, 17M/11F were considered | | 2015 | [75] | Detection of
heart sound
murmurs | Pathological
and non-
pathological | - | 38 (PI)
and 54
(TI) | 92 cardiac
cycles | _ | • | • | - | - | • | _ | - | - | Classification of murmurs only | | 2015 | [107] | Energy fraction
and entropy
based features | Normal (40)
CVD patients
(67) | 107 | 80 (N)
and 167
(SHM) | - | _ | • | • | _ | _ | • | 93.48 | - | - | Unsupervised, S _p : 98.55% and CA: 97.17% | | 2014 | [49] | EEMD & kurtosis features | N (11) and
pathological
(32) | 43 | 43
records | 2602 | - | • | • | _ | _ | - | - | - | 83.05±15.14 | HSS-EEMD/K achieved
prediction power of
94.56±6.58% | | 2014 | [61] | HSAD method | Normal and pathological PCG | Online avail
(each less th | | 701 | Up to 5 dB | • | • | • | • | • | 99.43 | 93.56 | 93.95 | Tested with limited database, no stated segmentation tolerance | |------|--------|---|---|--|--------------------------------|------------|----------------------------------|---|---|---|-----|---|-------|-------|---|--| | 2013 | [25] | Frequency-
energy based
metric | Different valve
disease | 50 | Total of
52 min | - | <u>-</u> | • | • | • | • | • | 99.00 | 98.60 | - | S ₃ , S ₄ and murmurs were also investigated | | 2008 | [29] | Clinical features
for locating
FHSs and
murmurs | Normal 9 different pathologies | 71 | 71
records | 357 cycles | Up to
25 dB
Up to
10 dB | • | • | - | 1 | • | - | - | 97.47
(overall) | Robustness analysis and no
split between training sets,
systolic and diastolic
murmurs | | 2005 | [108] | Complexity-
based
segmentation | Online
database [34] | - | - | - | - | • | • | - | ı | • | - | - | - | No ECG gating used, not suitable for continuous murmurs. | | Time | -frequ | ency/wavelet anal | lysis based meth | ods | | | | | | | | | | | | | | 2018 | [118] | Wavelet analysis
and Shannon
energy
calculation | Normal sounds
and abnormal
sounds | 230
subjects | 230
records | - | - | - | • | 1 | - | • | - | - | - | Statistical results for the segmentation were not found. | | 2013 | [62] | Tunable- <i>Q</i>
wavelet
transform | Pathological
signals | Data | base from | [36] | - | • | • | • | • | • | - | - | SR: 92.15
(overall) | Envelope based on CSCW | | 2011 | [59] | Time-domain
analysis of
pathological
PCG signals | Normal
EAS
LAS
PS
MR | | base from
ds for each | | - | • | • | • | ı | • | _ | - | - | Unsupervised, TFD analysis using RME | | 2011 | [109] | ASSA approach | Normal and pathological | 12 | 20 s each | 8 segments | 1 | - | - | - | - | • | - | - | _ | Welch Allyn Tycos
stethoscope, only
correlation estimation | | 2008 | [110] | Wavelet
transform for
segmentation | 14 pathological
HSs signals | Data from
two
patients,
online and
CD book | Each
record of
20 cycles | 140 cycles | - | • | • | 1 | ı | _ | -
 - | - | Statistical results for the segmentation were not reported. | | 2007 | [55] | Segmentation
and feature
extraction using
wavelets | Normal and pathological (AR) | Data | base from | [19] | ı | • | • | 1 | 1 | • | - | i | - | Statistical results for segmentation were not reported. | | Lear | ning b | ased methods | | | | | | | | | | | | | | | | 2014 | [111] | A system for
heart sounds
classification | Normal and pathological | Database
from [119] | 6 records
for each
class | 72 Signals | - | • | • | • | • | • | - | - | S ₁ : 94.63,
S ₂ : 97.25,
S ₃ : 96.63,
S ₄ : 96.66 | Pathological and non-
pathological signals are
considered, No reported
methods for segmentation | | 2010 | [50] | Fuzzy detection method | Normal (3)
Pathological
(23) | 26 | 26
records | 565 cycles | 0 dB
and -5
dB | • | • | - | • | • | - | Ī | Best is
94.0% for 0
dB SNR | Noise reduction technique applied | | 2008 | [112] | Fuzzy clustering approach | Database from
[34], Normal
(5) and SM
(15) | - | 20
records | - | -20 dB
to 60
dB | 1 | ı | 1 | - 1 | • | 73.0 | ı | SM: 80.00 | S _p : 100.00% was reported | | 2002 | [113] | Time-delay
neural network | Normal and pathological | 30 | Each 20
s | 1 | - | • | _ | _ | - | - | 98.4 | 97.8 | - | ECG (training) with time domain analysis | Abbreviation: PLSR: partial least squares regression, RHD: rheumatic heart disease, MMP: multivariate matching pursuit, CQA: cycle quality assessment, SR: segmentation rate, HMM: Hidden Markov model, MFCC: mel-frequency cepstral coefficient, PM: probabilistic model, HE: homomorphic envelogram, HF: homomorphic filtering, DHMM: duration-dependent hidden Markov model, WD: wavelet decomposition, CSCW: cardiac sound characteristic waveforms, STMHT: short-time modified Hilbert transform, SHM: systolic heart murmurs, ASSA: adaptive singular spectral analysis, RME: Rényi marginal entropy, BMV: bioprosthetic mitral valves, CARDJHU: cardiac auscultatory recording database of Johns Hopkins University, CA: classification accuracy, WHSMD: Washington heart sounds and murmurs database, VIM: Viola integral method, DNN: deep neural network. Models (HMMs) [118], [132], [133], [149], [150], k-Nearest Neighbors (k-NN) [94], [123], [151]–[153], Neural Networks [21], [47], [55], [67]–[69], [81]–[83], [91], [93], [95], [102], [104], [106], [110], [154]–[172], rule-based classifier or decision trees [173], [174], BayesNet classifier [175], machine learning based approaches [90], [144], [160], Gaussian-Bayes model [176], Naïve Bayes [177], Gaussian Mixture Model (GMM) [178], random forest [177], and discriminant analysis [66]. # 1) SUPPORT VECTOR MACHINE (SVM) Support vector machines are non-probabilistic binary linear data-based machine learning models suitable for classification of heart sounds using different kernel functions. Implementation of a support vector network for nonseparable training data was firstly reported by Cortes and Vapnik [179]. This has been extended for supervised machine learning problems including classification of heart sounds signals. In general, most of the studies reported were focused towards improving the classification performance either by modifying the existing approach of SVM based classification or by adding new features to the classifier. Heart valve diseases were mostly classified using an SVM classifier in recent articles. Other than this, SVM classifiers were found suitable in identifying innocent murmurs when compared to artificial neural network [83]. SVM classifier are suitable for high dimensionality classification problems even if sample **TABLE 4.** Feature extraction and selection approaches. | | | | | | 1 | | |------|------------|--|---|---|--|--| | Year | References | Analysis/Transform | Feature extraction methods | Number of features | Feature details/Characteristics | Feature selection | | 2018 | [118] | Wavelet transform and
spectral analysis | Short-term windowing technique | 8 features | Time-domain and frequency-domain features | Adaptive feature selection | | 2018 | [182] | Wavelet analysis | Curve fitting and MFCC | 34 features | Wavelet and entropy features | - | | 2017 | [56] | TF analysis | Tensor decomposition method on scaled spectrograms | - | Features from scaled spectrogram | Tensor decomposition | | 2017 | [183] | FFT and wavelet analysis | - | 2 types of features | Spectral amplitude and wavelet entropy | - | | 2017 | [79] | TF analysis | Feature extraction from scaled spectrogram | - | Scaled spectrogram features | PLSR | | 2017 | [90] | Frequency and statistical properties of envelope | Statistical properties of averaged shapes for a different frequency band | 53 features (total 228 features) | Symmetry of line segments surrounding S_1 and S_2 , skewness, kurtosis and centers of gravity, mean, SD and ratios | Probability assessment | | 2017 | [102] | WPD and CWT | Feature extraction using CQA | 90-dimensional features vector | 4 set of features from the time, TF and perceptual domain | Fisher's discriminant
analysis | | 2017 | [103] | Wavelet analysis | - | 131 features | Time, frequency, wavelet and statistical features | CFS algorithm | | 2017 | [104] | Wavelet analysis | Time/frequency characteristics using 'Gaus4' mother wavelet | 220 (CWT), 400 (MFCC),
inter-beat (20), 35
(Complexity) | MFCC and complexity measurement (spectral entropy, SD, skewness, and kurtosis) | PCA (50 features selected) | | 2017 | [106] | TFD analysis using acoustic features | k-mean algorithm (Euclidean distance) | 39 MFCCs (velocity and acceleration) features & 264 acoustic features (Fbank) | HSAD, MFCC and k-means | - | | 2017 | [138] | Time, frequency and sparse coding algorithm | Sparse coding for unsupervised feature extraction | 20 TD features & sparse coding features | Sparse coefficients, N-points FFT | - | | 2017 | [155] | TF analysis | - | - | MFSC | No | | 2016 | [144] | Wavelet analysis | WT | 20 features and some
additional wavelets based
features | Duration of each cardiac state, mean amplitude and their ratios | - | | 2016 | [114] | DWD | Diffusion maps for unified feature representation | - | Autocorrelation features | - | | 2016 | [80] | DWT | WD | - | HE, Hilbert, wavelet and PSD envelopes | Wavelet feature optimization | | 2016 | [158] | T, F, TFD analysis | - | 40 features | LPC, entropy, MFCC, PSD and wavelet based features | WFSS (18 features) | | 2016 | [157] | FD analysis | Power spectrum analysis | 16 features using PSA | - | - | | 2016 | [156] | FFT | Clustering method | 3,500 features | Spectral features | 40 features selected using filter method | | 2015 | [58] | Wavelet analysis | STMHT based FFM | 10-dimensional FFM | FFM | PCA | | 2015 | [75] | Wavelet analysis | Feature extraction algorithm | 36 features from diastole and
systole of every cardiac
cycle | Dimensional features from segmented cardiac cycles | - | | 2015 | [107] | WPD | EFSE evaluated from reconstructed selective frequency components of HSs | 5 features | EFSE, Sampling frequency dependent features | - | | 2015 | [139] | TQWT | SAMDF based feature set derived
with TQWT | - | Wavelet-based features | - | | 2015 | [73] | Wavelet packets | MF-DFA, MESE and EMD | 5 features | D/S, amplitude (S1/S2), Multifractal spectrum parameters, frspmax, adaptive sub-band energy fraction | - | | 2015 | [46] | EMD for IMF | PSM, IF & amplitude, and power
in frequency bands, sample &
spectral entropy, simplicity and
statistical moments | 5029 features within nine classes | Spectral features, signal complexity features | PCA | | 2014 | [85] | Moving windowed Hilbert
Transform) | Envelope of HSs using VIM | 4 features | Envelope extraction, diagnostic features in TD and FD | - | | 2014 | [49] | EEMD and Kurtosis features | EMD | - | EEMD and Kurtosis features | - | | 2014 | [74] | Ensemble Empirical Mode
Decomposition (EEMD) | EMD/EEMD and IMF correlation dimensions | 13 IMF components | IMFs and correlation dimensions of the IMF components were used as feature sets | - | | 2014 | [111] | TF analysis | Linear Predictive Coding coefficients for feature extraction | 12 different classes | Spectral analysis for features | MCS algorithm | | 2013 | [47] | S-transform | SVD of S-matrix | 70 features | TFD features | - | | 2013 | [25] | TF and frequency analysis | Short-time frequency amplifier technique | 2 frequency and amplitude features | Frequency and amplitude based features | | | 2013 | [70] | MLBS of wavelet features | WPD | 448 nodes for feature extraction | Frequency and TD features | Exclusion criteria for feature reduction | | 2012 | [105] | TF analysis | Murmur likelihood as temporal features | 39-dimensional features
(best results) | MFCC and HMM states likelihood features | - | | 2012 | [175] | Wavelet analysis | Wavelet packet transformation using Daubiches8 | 128 entropies | Wavelet entropy-based features | PCA (32 features) | **TABLE 4.** (Continued.) Feature extraction and selection approaches. | 2012 | Г1841 | Wavelet analysis | Time-domain, wavelet features | 32 features | Linear and nonlinear time-domain, | PCA, GDA and GA for | |------|-------|--|--|---
--|---| | 2012 | [82] | DFT | and entropy DFT and Burg autoregressive | 300 DFT and 33 Burg-AR | wavelet and entropy features Frequency domain features | feature selection
PCA (8 DFT and 6 Burg-AR | | 2012 | [162] | DWT | spectrum analysis DWT for feature extraction | features 6 wavelet entropies | TFD features | features) Shannon energy | | 2012 | [149] | DFT | - | - | FD features | PCA | | 2012 | [185] | CWT | SVD and QR decomposition | 83 features based on CWT,
SVD, QRD | Shannon entropy and the Gini index using WT | SFFS | | 2011 | [109] | TF analysis using FFT | Adaptive singular spectral
analysis | = | Correlation & kurtosis features | - | | 2011 | [91] | DWT | = | 32 features | TF based features | PCA | | 2011 | [93] | Wavelet analysis | MP and MMP based feature extraction | - | TF based features | - | | 2010 | [45] | TF domain analysis using STFT | HE for features extraction | 4 feature set of single and multi-feature | Frequency & HE features | - | | 2010 | [78] | Wavelet analysis | - | 2 diagnostic features | Frequency domain features (f_{max} and f_{width} for NAR-PSD) | - | | 2010 | [152] | Feature extraction from TF representation | Linear decomposition and tiling partition of TF plane | 851 features | TF based features | Linear grid, Quadtree, PCA,
PLS, 2D-PCA | | 2010 | [124] | TF analysis | Wavelet-based features | 1 | Clinical features (normal split sound duration, frequency content) | - | | 2010 | [151] | Spectrogram, WVD,
SPWVD, CWD, ETD,
HTD and scalogram | TF representation | - | MFCC, energy, frequency, BW, Eigen vectors, and spectral centroid | - | | 2009 | [66] | TF analysis | Hierarchical clustering | 3500 features approx. | Feature-space of cluster distances,
correlation and Euclidean distance | Clustering for feature reduction | | 2009 | [146] | TF domain analysis using wavelet | WD | 100 scalar features | 4 (SD and HR), 8 (S ₁ and S ₂ each), 24 (systolic), 48 (diastolic) & 8 (energy) scalar features | - | | 2009 | [94] | STFT, Gabor Transform,
WVD, Wavelet transform | - | 149 features | T varying & TF, perceptual and fractal
features (Eigenspace, MFCC, LLE, Hurst
Exponent, Correlation Dimension) | PCA | | 2009 | [186] | Wavelet analysis | Rectangular window and power content in the window | 50-dimensional feature vectors | Power of the detailed coefficients in each segment with and without filtering | Divergence analysis | | 2009 | [145] | Wavelet analysis | = | 12 features | 12 wavelet entropies | = | | 2009 | [163] | Wavelet analysis | db4 decomposition filter within five resolution levels | 1 | Diagnostic features | - | | 2008 | [29] | TD analysis | - | - | Clinical features (duration of split-
sounds, systole, and diastole, frequency) | - | | 2008 | [153] | Wavelet analysis and STFT | STFT and WD | 91 features | Wavelet entropy | - | | 2008 | [147] | WPD | = | 2 features | Wavelet packet energy (mean and SD) | - | | 2008 | [110] | Wavelet analysis | Wavelet transform for feature extraction | 50 features for each record | Wavelet features | Divergence analysis | | 2008 | [133] | TD and STFT | - | 3 classes of features | TD, STFT and MFCC features | = | | 2007 | [67] | Wavelet analysis | Daubechies-2 wavelet coefficient decomposition | 32 wavelet features | Wavelet features | HF and k-means clustering | | 2007 | [55] | Wavelet analysis | - | 64 features | Wavelet features | _ | | 2007 | [150] | Wavelet analysis and STFT | WD, STFT, wavelet entropy | - | Daubechies-10 WD, STFT & wavelet entropy | _ | | 2007 | [148] | Wavelet analysis and
STFT | WD, STFT and wavelet entropy | 91 features | - | - | | 2006 | [68] | Spectral analysis | SPWVD | Ī | FFT (spectrogram) | - | | 2006 | [95] | FFT, DWT, Wavelet analysis | RQA | 207 features | Time, TFD, nonlinear and chos based
features and HOS, state space, fractal
dimension, bispectrum, wavelet entropy,
fractals, Gaussian mixture model,
Eigenvalues | Pudil's
SFFS method | | 2004 | [21] | Wavelet decomposition | - | 256 elements feature vector | TF features | - | | 2003 | [69] | WPD and NN | TFD adaptive feature extraction, WPNN | 256-Wavelet packet entropy
per DHSs signal | Wavelet packet entropy | - | | 2003 | [81] | TF analysis using
wavelets | WD and wavelet entropy | 12 wavelet entropy values | - | Adaptive feature extraction | | 2003 | [169] | TF analysis using
wavelets | - | 336 feature vectors for the
training set and 336 feature
vectors for the test set | Wavelet-based features | Divergence analysis (16 features) | | 2002 | [170] | TF analysis using FFT | FFT and the Levinson-Durbin auto-regression | - | Spectral estimation | Auto-regression | | 2001 | [97] | TF analysis | Matching pursuit | 2 features | Dominant frequency-based features | - | | 1995 | [171] | TF using wavelet | - | 2 features | Average correlations and Euclidean distance | - | | 1987 | [99] | TD and FD analysis | Energy spectrum analysis | 4 EDC | Energy curve, spectrum & distribution coefficients | - | | 1980 | [72] | Frequency domain spectral tracking | Analysis using linear-prediction method | - | Spectral level tracking by evaluating spectral density function | - | #### TABLE 4. (Continued.) Feature extraction and selection approaches. Abbreviation: TF: time-frequency, TD: time-domain, FD: frequency domain, TFD: time-frequency domain, PLSR: partial least squares regression, CFS: correlation-based feature selection, LPC: linear predictive coefficient, WFSS: wrapper feature selection scheme, SVD: singular value decomposition, EFSE: energy fraction and sample entropy, SAMDF: sum of average magnitude difference function, MF-DFA: multifractal detrended fluctuation analysis, MESE: maximum entropy spectra estimation, DWD: discrete wavelet decomposition, CWT: continuous wavelet transform, TQWT: tunable-Q wavelet transform, PSM: parametric spectral modelling, MCS: modified Cuckoo search, MLBS: multi-level bias selection, QRD: QR-decomposition, SFFS: sequential forward floating selection, MP: matching pursuit, MMP: multi-variate matching pursuit, HE: homomorphic envelogram, WVD: Wigner-Ville distribution, SPWVD: smoothed pseudo WVD, ETD: exponential T-distribution, HTD: hyperbolic T-distribution, RQA: recurrence quantification analysis, WPD: wavelet packet decomposition, SD: standard deviation, HT: Hilbert transform, EDC: energy distribution coefficients, LLE: largest Lyapunov exponent, FFM: frequency feature matrix, EEMD: ensemble Empirical mode decomposition, IMF: intrinsic mode functions, DHS: Doppler heart sounds, MFSC: mel-frequency spectral coefficients, WD: wavelet decomposition, WPNN: wavelet packet neural network, NAR-PSD: normalized auto-regressive power spectral density, CWD: Choi-Williams distribution. sizes are small [180], [181]. Also, the performance of the SVM classifier does not correlate directly to the dimensionality of the input vectors [124]. Further, the SVM classifiers provide flexibility to use an optimum kernel function from the available kernel functions (linear, Gaussian, polynomial, radial basis, exponential radial basis, sigmoid, spline, Fourier, Gaussian radial basis, Morlet wavelet kernel, Mexican hat wavelet and bspline) based on the cardiac abnormality under investigation. The parameters of the kernel function can be tuned further to improve the training efficiency and to achieve the best performance. However, this demands an additional optimizer in the system [111]. Other than this, SVMs are cumbersome for multi-class problems as it requires an individual model for different classes. ### 2) NEURAL NETWORKS Neural networks are also widely used potential machinelearning based methods with remarkable ability to detect the trends based on the sample data. Due to their selforganization properties, real-time operation, and adaptive learning, neural networks find applications in cardiac abnormities detection. Though, neural networks achieved promising results in terms of classification accuracy and are frequently used as a computational tool for pattern classification of heart sounds, large training datasets are required to train neural networks. Also, it requires more computational power and time to accomplish the classification task compared to an SVM classifier. Other than this, it has been found that Back-Propagation Artificial Neural Networks (BP-ANN) are unable to produce a global solution to a classification problem as the initial weights are randomly selected [73]. # 3) HIDDEN MARKOV MODELS (HMM) HMMs are probabilistic statistical, double-layered stochastic finite state machine with hidden Markov process. From the articles reviewed, it was found that HMM models were mostly used for segmentation. However, only a limited number of studies employed them to classify normal and abnormal heart sounds. In general, HMM classifiers often have a large set of parameters and the classification accuracy was found to be directly dependent on the HMM parameters selected in the model [118]. Additional drawbacks of HMM in heart sounds classification include slow interpretation, parameter optimization, memory requirements and computational time. ## 4) K-NEAREST NEIGHBOR (K-NN) Feature distances (Euclidean, Manhattan, Minkowski, Mahalanobis, etc.) were estimated to compute the nearest neighbors when the most relevant patterns were close to each other in the feature space [173], [176]. The k-nearest neighbor algorithm was successfully applied to classify normal and abnormal heart sounds and for murmur detection [94], [151], [187], [188]. Classification performance was found to be dependent on the k parameter used in the algorithm and various features were suggested to improve the classification performance. In general, a *k*-NN
classifier offers advantages in terms of training time, simplicity and ease of implementation compared to others. However, it demands large memory space and offers slow estimation [189]. Further, the *k*-NN classifier also offers robustness to noisy training data [47]. Attempts to classify heart sounds with modified classifiers or rule-based classifiers were also found. Decision trees based on certain rules and decision nodes were considered as rule-based classifiers [173]. Other efforts to classify heart sounds using a combination of different classifiers were also reported [83]. Works reported using all of these approaches are presented in Table 5. #### **V. SYNTHESIS OF RESULTS** Data synthesis to evaluate the accuracy of the algorithms was performed on articles that reported an analysis of fundamental and other pathological heart sounds, including segmentation and classification. Performance of data acquisition methods was not assessed, as a proper index was not reported in the articles studied. Similarly, feature extraction approaches were reviewed thoroughly; however, were not included in the data synthesis. The study was formulated to consider articles with first heart sounds (S_1) detection (FHSD), second heart sounds (S_2) detection (SHSD), pathological heart sounds detection (PHSD) including S_3 and S_4 , murmurs, classification between S_1 and other heart sounds (FHSC), classification between S_2 and other heart sounds (SHSC) and classification of pathological heart sounds (PHSC) including murmurs, S₃ and S₄ and other abnormal heart sounds. Some articles with particular identification and classification of very specific type of murmurs and heart sounds were also reviewed; however, were $\begin{tabular}{ll} \textbf{TABLE 5.} & \textbf{Summary of heart sounds classifiers and their performance comparison.} \end{tabular}$ | | | | ı | | 1 | | 1 | T | Ī | , | |------|------------|--|-----------------------|--|---|------------------|--|---|---|--| | Year | References | Method | Transform | Subject type | Records
(# or duration
in seconds) | Sampling
rate | Type of
features/size
of feature
vector | Classifiers | Performance (%) | Type of cardiac abnormality investigated | | SVM | based | l classifier | | | | | | | | | | | | | | Datasets A & | B from [32] | 44.1 kHz | | 27.71.00 | Normalized precision: | Normal, murmurs, extra | | 2017 | [56] | Scaled spectrogram
and tensor
decomposition | TFD | Dataset | C [14] | 4 kHz | Tensor
decomposed
features | SVM, SS-
PLSR, SVM-
DM, SS-TD | 76.0, 74.0 and 90.0
using SS-TD with
Datasets A, B and C,
respectively | heart sounds,
extrasystole and
artefacts | | 2017 | [79] | HSs classification
based on scaled
spectrogram and
PLSR | TFD | Datasets A & E records availab | | 44.1 & 4
kHz | Scaled
spectrogram
based TF
features | SVM | S_e : 100 (best with artefacts), S_p : 64.0 (artefacts) | Normal, murmurs, extra
heart sounds,
extrasystole and
artefacts | | 2017 | [138] | Sparse coding
features with TD
features using SVM | T, F and
TF domain | PhysioNet da | itabase [14] | Varied | Sparse
coefficient
matrix and
time-domain
features, 20
features | SVM | S _p : 88.45, S _e : 90.07,
MAcc: 0.892
(modified results) | S_1 , systolic, S_2 and diastolic sounds | | 2016 | [114] | Without
segmentation,
classification using
autocorrelation
feature and diffusion
maps | TFD | Datasets A & E
records availab | | 44.1 & 4
kHz | TF based
autocorrelation
features | SVM-DM,
SVM-A, and
SVM-AD | S _e : 100.0, S _p : 64.0
(using SVM-AD
classifier for artefacts) | Normal, murmurs, extra
heart sounds,
extrasystole and
artefacts | | 2015 | [73] | Cardiac reserve and
HSs characteristics
analysis | WT | 88 (N) and 64
(CHF) | 88 (N) and 64
(CHF), 1
minute each | 11025 Hz | Wavelet
features based
5 features | LS-SVM and
compared with
BP-ANN and
HMM | S _p : 93.75, S _e : 96.59,
Acc: 95.39 (using LS-
SVM) | Chronic heart failure,
subjects without
murmurs | | | | | | 14 (AF) | 188 periods | | | | S _p 90.6, S _e 96.9, Acc
91.7 | | | | | | | 17 (AR) | 181 periods | | | | S _p 98.9, S _c 98.5, Acc | | | 2015 | [58] | STMHT-based FFM | WT | 25 (MR) | 257 periods | 44.1 kHz | Dimensional
FFM, 10 | SVM | 98.8
S _p 98.5, S _e 98.1, Acc | AF, AR, MR, PS, VSD and normal sounds were | | 2013 | [26] | for classification | W 1 | ` ′ | • | 44.1 KHZ | features | SVW | 98.4
S _p 100, S _e 99.6, Acc | classified | | | | | | 25 (N) | 325 periods | | | | 99.8
S _p 98.6, S _e 99.9, Acc | | | | | | | 7 (PS) | 150 periods | | | | 98.7 | | | 2015 | [71] | Structural complexity
based feature
extraction | TFD | 60 (N) and 60 (pathological) | - | 8 kHz | Sample
entropy | SVM | Clean data: S _p : 100, S _c : 93.33, Acc: 96.67 & 91.66 (with 10 dB SNR) | Classification between normal and abnormal heart sounds | | 2015 | [107] | Energy fraction and sample entropy | WT | 40 healthy and 67
CVD patients | 80 (N) and 167
(SHM) | 2205 Hz | Energy and entropy | SVM with
LKF, PKF,
GRKF and
SKF, 5
features | S _p : 98.55, S _c : 93.48,
Acc: 97.17 (using
GRKF) | Normal,
aortic/pulmonary
stenosis and
tricuspid/mitral
insufficiency | | 2015 | [139] | Least-square support
vector machine (LS-
SVM) | WT | 163 HSs signals
(N, septal,
valvular and
other defects) | 4628 cycles
(626 N and
4002
pathological) | 44.1 kHz | SAMDF
derived with
TQWT, 21
features | SVM with
different
kernel
functions | S _p : 99.29, S _e : 98.80,
Acc: 98.92 (using Q = 6 and MWKF) | Septal, valvular and other mechanical defects | | 2015 | [140] | GTSVM for murmur classification | WT | 14 (45-93 y) PM,
16 (1-16 y) PM,
26 (2-14 y) IM,
30 (4-15 y) NM | 10s duration
each | 44.1 kHz | TF features | GTSVM
classifier | S _p : 89.30, S _e : 86.30,
CR: 88.10 | Innocent and pathological murmurs | | 2015 | [141] | Intelligent PCG
system | TFD | 30 (N) and 26 (IM) and 30 (AS) | - | - | Frequency
features | SVM | S _p : 89.3, S _e : 86.4 | Aortic stenosis severity assessment | | 2015 | [142] | HOC of wavelet | WPD | 16 (N), 19 (MR),
14 (AS) & 10
(AR) | 59 records, 820
cycles, each
15s | 4 kHz | Wavelet based
46 features | SVM | Acc: 99.39 (using CT_LDB method) | Normal, MR, AS, and AR heart sounds | | 2014 | [85] | Features from
envelope of HSs
using VIM | WT | VSD, normal
HSs, AR, AF, AS
and MS | 242 (N) and
226 (VSD) | 44.1 kHz | Time and
frequency
domain
features, 4
features | SVM | S _p : 98.1, S _e : 98.8, Acc: 98.4 using boundary curves & S _p : 98.4, S _e : 98.6, Acc: 98.5 using ellipse model (for VSD detection) | VSD, AR, AF, AS, MS and normal heart sounds | | 2014 | [74] | HSs classification
and recognition
based on EEMD | WT | 225 (N) and 180
(60 (MS), 60
(VSD) & 60
(AS)) | 405 HSs,
testing with 75
(N) and 20
(MS), 20
(VSD) & 20
(AS) | 11025 Hz | EEMD and
IMF
correlation
dimensions, 13
features | Binary tree
SVM (BT-
SVM) | Acc: 98.67 (normal) and 91.67 (abnormal) | MS, VSD, AS and normal heart sounds | TABLE 5. (Continued.) Summary of heart sounds classifiers and their performance comparison. | 2014 | [111] | HSs classification using SVM-MCS | TFD | 3M Poland micro
from [
72 rec | 119], | 1 | 12 features
using LPCC | SVM and
MCS
algorithm | Acc: 95.43 (average using SVM-MCS) | Ejection click, split of S ₁ & S ₂ , FHSs, S ₃ , S ₄ , pansystolic, late systolic, early systolic murmurs, opening snap and diastolic rumble | |------|--------|--|----------------|---|---|----------|--|---|---|--| | 2014 | [143] | Feature extraction based on OMS-WPD | WT | 50 (healthy) and 68 (pathological) | Each 5s duration | 22050 Hz | Features using
OMS-WPD | SVM | S _p : 94.00, S _e : 85.29,
CR: 88.98 (using db8) | Normal, presystolic gallop, early diastolic, enhanced S2, aortic systolic ejection and mid-systolic rattling sounds | | 2013 | [70] | MLBS of wavelet features | WT | 59 (Normal and pathological) | 16 (N), 19
(MR), 14 (AS),
10 (AR) | 4 kHz | Wavelet based features | SVM with
MLBS | S _p : 100.0, S _e : 98.0,
Acc: 97.56 | Normal, AS, MR and
AR sounds | | 2012 | [105] | Classification using
murmur likelihood
and HMM state
likelihood | TFD | Normal and pathological | 80 (N) and 80
(abnormal)
HSs signals | 8 kHz | MFCC and
HMM states
likelihood,
dimensional,
39 features |
SVM
classifier | Acc: 80.6 (6-HMM
state and 3-Gaussian
mixtures) and
85.6 (SVM classifier) | Various murmurs and normal heart sounds | | 2010 | [124] | LMS based LS-SVM | TFD | 64 (Normal and pathological) | 64 recordings
(512 cycles) | 8 kHz | Wavelet
features | LS-SVM | Acc: 92.889 (average of Sets 1-16) | Normal and five
different pathological
sounds | | 2010 | [78] | NAR-PSD and multi-
SVM | WT | 6 healthy and 34 pathological | 196 (N) and
293 (AN) | 8 kHz | f _{max} and f _{width} as features from NAR- PSD | Multi-SVM | S _p : 99.9, S _e : 99.5,
Acc: 99.6 (best case) | Normal, AF, AS, MR,
MS, aortic insufficiency
and split sounds | | 2010 | [144] | Machine learning based identification | WT | PhysioNet
database [14] | 4,430 recordings | Varied | Wavelet based
20 features | Bagging trees,
boosted trees,
logistic
classifier and
SVM | Validation Acc: 94,
93, 85 and 91,
respectively
S _e : 79.58 and S _p :
74.59, overall: 77.08 | Heart sounds were classified as normal or pathological sounds | | 2010 | [190] | CWT and SVM based detection of the paradoxical splitting of S ₂ | CWT | 13 (LBBB and
paradoxical
splitting), 18 (AS
and paradoxical
splitting), and 11
(N) | Total 42
samples used
from 250
records | - | Time-
frequency
maps, total 5
features | SVM | S _e : 94.44, S _P : 87.5, and Acc: 90.97 | Detection of the paradoxical splitting of S_2 | | 2009 | [145] | Genetic-SVM
(GSVM) | DWT | 132 M/83 F
(Age: 15-80 y) | 215 samples
(5s each)
(Doppler heart
sounds signals) | 20 kHz | Wavelet
entropies
based 12
features | SVM tested
with 8
different
kernel
functions | Acc: 96 (N) and 94.52
(AN) using GSVM
Model-4 (ERBF) (best
results) | Heart valve diseases | | 2009 | [146] | Identification of valvular diseases using SVM | WT | Healthy, AS, AR,
MS and MR,
(age: 18-22 y) | 38 (N), 41
(AS), 43 (MR),
38 (AR), 38
(MS) | - | TFD and
wavelet
features, total
100 features | SVM
(Gaussian
radial basis
function) | S _p : 94.74, S _c : 87.50,
Acc: 91.43 (b/w N and
AN) using GRBF | Normal, AS, AR, MS
and MR heart sounds
signals | | 2008 | [147] | Wavelet packet
energy features using
WPD and SVM | WT | 30 (N) and 52
(VHD) (for
testing) | - | 8 kHz | Wavelet
packet energy
based features | SVM | S _p : 96.67, S _e : 100.0 | Aortic and mitral valvular heart disorders | | 2007 | [148] | LS-SVM and BP-
ANN | WT and
STFT | Normal and
abnormal (DHSs
signals) for 5
seconds each,
132M/83F | 215 samples
(54 (NAHV),
56 (ANAHV),
66 (ANMHV),
39 (NMHV) | 20 kHz | WD, STFT
and entropy
based 91
features | LS-SVM and
BP-ANN | S _p : 94.0, S _c : 95.9 (for BP-ANN) & S _p : 90.0, S _c : 94.5 (for LS-SVM) | Cardiac abnormalities
related to aortic and
mitral valves (AR, AS,
MS and MR) and
normal heart sounds | | Neur | al Net | work based classifier | | | | | | | | | | 2018 | [154] | Gram polynomials
and PNN | FFT | Normal and pathological sounds
from PhysioNet database [14],
3126 records | | 2 kHz | Gram
polynomial
and FFT, 64
features | PNN | S _p : 91.0, S _e : 93.0, Acc: 94.0 | No clinical abnormality studied | | 2018 | [83] | ANN and SVM classifier | STFT | 87 innocent
murmurs and 170
pathological
murmurs | 257 records | 8 kHz | Temporal and
spectral
features, 14
features | ANN and
SVM | S _p : 91.0-99.0, S _e : 84.0-
93.0 | Identification of innocent murmurs in children | | 2017 | [102] | Feature extraction using CQA | TD and
TFD | Normal and pathological sounds
from PhysioNet database [14],
1277 records (308 patients) | | 2 kHz | TD, TFD and
perceptual
features, 90
features | FFNN,
dimensional
features | S _p : 87.14, 87.21 &
88.51 and S _c : 75.44,
91.38, 88.83, for data
set1, set2 and set3,
respectively using
CQA | Classification as normal
and abnormal heart
sounds | | 2017 | [104] | Drop-Connected neural network | TFD | Normal and abno
PhysioNet da | | - | MFCC, interbeat and complexity features, 675 features | Two-hidden
layer NN
trained by
EBP | Acc: 85.2 (on test data) | Normal, MVP, aortic
disease, CAD, MR, AS
and other miscellaneous
pathological heart
sounds | TABLE 5. (Continued.) Summary of heart sounds classifiers and their performance comparison. | 2017 | [106] | Identification of S_1 and S_2 using DNN | TFD | 28 subjects
(17M/11F) | 460 each S_1 and S_2 peaks in HSs | 48 kHz | MFCC and
acoustic
features, 303
features | DNN (KNN,
LR, SVM and
GMM for
comparison) | Acc: 85.0 (using 39 dimensions with K-means) and 91.12 of accuracy overall | First and second heart sound identification | |------|-------|---|----------------------------|---|---|----------------------|--|--|---|---| | 2017 | [155] | MFSC based deep
CNN classifier | TFD | | Normal and abnormal HSs from
PhysioNet database [14] | | MFSC
features | Deep CNN | S _p : 87.66, S _e : 80.63,
Overall: 84.15 (CinC
2016) | Normal and abnormal
heart sounds
classification | | 2016 | [156] | 2-means clustering and ANN | FFT | Database from [14], [31] | 304 records | - | Time-
frequency
spectral
features, 40
features | ANN | S _e : 84.4, S _p : 86.9,
Acc: 86.5 | Classification as normal and abnormal heart sounds | | 2016 | [157] | Power spectrum analysis | FFT | Normal and abno
PhysioNet da | | - | 16 Frequency
features | NN | S _p : 78.80, S _e : 74.70,
Acc: 76.7 | Normal and abnormal heart sounds classification | | 2016 | [158] | Ensemble of NN without segmentation | T, F and
TFD | Normal and abno
PhysioNet da | | i | T, F and TF
based 18
features | FFNN | S _p : 94.23, S _e : 88.76,
Overall Acc: 91.5 | Classification for
anomaly and quality
detection | | 2016 | [159] | Ensemble of feature
and deep learning
based classifier | TD and
FD | PhysioNet databate (N) & 665 (patho | | 1 kHz
(resampled) | 124 time-
frequency
features | AdaBoost and
CNN | S _p : 77.81, S _e : 94.24,
Overall: 86.02 | Classification as normal and abnormal heart sounds | | 2016 | [160] | Deep structured
features for
classification | WT | PhysioNet
database [14],
764 subjects | 3153 records | - | Wavelet based
20 features | CNN | S _p : 77.6, S _e : 84.8,
Score: 81.2 | Normal and abnormal heart sounds classification | | 2014 | [161] | Spectral analysis
with a time growing
window | WT | Normal and SEC
from 40 children
(age 3-9 years) | 614 normal and
abnormal
cardiac cycles | 44.1 kHz | Spectral
analysis with a
time growing
window | TGNN,
TDNN and
MLP | S _c : 98.1, Acc: 97.0
(TGNN), S _c : 76.4,
Acc: 85.1 (TDNN), S _c :
85.7, Acc: 92.7
(MLP), | Systolic ejection clicks
in children | | 2012 | [82] | PCA and ANN for
diagnosis of heart
valve disease | TFD, DFT
and Burg
AR | 40 (N), 40 (PS)
and 40 (MS) | 1 | 8 kHz | Time-
frequency
based 14
features | DFT/Burg
AR-PCA-
ANN | S _p : 97.44, S _e : 90.48,
Acc: 95.0 | Heart valve diseases | | 2012 | [162] | ANFIS for identifying heart valve disease | DWT | 40 (N), 40 (PS)
and 40 (MS) | - | 8 kHz | Wavelet
entropies
based 6
features | ANFIS (ANN) | S _p : 95.24, S _e : 100.0,
Acc: 98.33 | Normal, pulmonary, and
mitral stenosis heart
valve diseases | | 2011 | [91] | HSs analysis without
segmentation using
DWT, PCA and NN | WT | Various murmurs | 57 HSs signals | 4 kHz | Time-
frequency
based 32
features | PCA and NN | Acc: 92.0 (noise free),
90.0 (≈10 dB SNR) | Normal, S_3 , S_4 , ejection
sound, AR, AS, MR,
MS, PS, split S_2 , systolic
click and opening snap | | 2011 | [93] | MMP based on three-
layer FF-MLP
network | TFD | 70 patients (N
and pathological
murmurs) | 70 records (35 normal) | 44.1 kHz | Time-
frequency
features | FF-MLP | Acc: 92.5 & 77.5
using MMP and MP,
respectively | VSD, ASD, PS, MR, and innocent murmurs | | 2008 | [110] | SOM network and
ISOM analysis | WT | Data from two
patients, online
and CD book | 14 records,
each record
with 20 cycles
of HS | 2 kHz | Wavelet
features, 50
features for
each | NN | Acc: 95.0% (using
ISOM) and 70%
(using Kohonen
network) | VSD, MR, LSM, early
systolic, opening snap,
diastolic rumble, AR,
AS, MS, Ebsteins
anomaly, summation
gallop, venus hum,
normal FCG and aortic
insufficiency | | 2009 | [163] | WT and NN for classification | DWT | - | 102 (N), 96
(AI), 92 (AS)
& 82 (PS)
cycles | 11.025 kHz | Wavelet
features | ANN
(MLP-BP) | Acc: 94.42 | Aortic insufficiency,
AS, PS and normal
sounds | | 2008 | [164] | Arash-Band
frequency features
with ANN | WT | 90 children (36 N
and 54
pathological) | 40 training &
50 test signals
(each 10s) | 44.1 kHz | Arash
frequency
bands based 5
features | ANN | CA: 94.00 | Congenital heart
diseases in children | | 2007 | [67] | Homomorphic segmented HSs | WT | Mix of N (32%),
SM (36%) and
DM (32%) | 41 records (340 cycles) | 8 kHz | Wavelet based
32 features | GAL and
MLP-BP NN | Acc: 98.50 (using GAL with dataset2) | Normal, systolic and
diastolic murmurs | | 2007 | [55] | Segmentation and feature extraction using wavelets | WT | Database f | Database from [19] | | Wavelet based
64 features | NN | S _p : 85.00, S _e : 54.00,
Acc: 70.0 | Normal and aortic regurgitation heart sounds | | 2007 | [165] | Wavelet analysis for
automated
auscultation | TFD | 113 normal and
50 pathological | Each 6 cycles | - | Time-
frequency | ANN | S _p : 96.5, S _c : 90.0 | Normal and pathological heart sound classification | | 2006 | [68] | Spectral analysis using SPWVD | FFT | 40 patients | 8s each | 8 kHz | Time-
frequency
features | MLP-NN and
SPWVD | S _p : 86.40, S _e : 85.10,
Acc: 86.4 | FHSs and murmurs | | 2006 | [95] | RQA feature and
ANN classifier | TD, TFD
and WT | 36 patients | 12 cycles each
of 15s | 44.1 kHz | 207
complexity
features | NN | Acc: 86 (MI, AS and PM) | Systolic heart murmur classification | TABLE 5. (Continued.) Summary of heart sounds classifiers and their performance comparison. | 2006 | [166] | A three-layered ANN
for twelve types of
cardiac abnormalities
detection | TD and
FD | 49 patients with murmurs | Doppler ECG
and PCG
signals for 8
sites | - | - | NN | Acc: 68% (overall) | VSD (AS, AR) and
PDA not correctly
diagnosed | |------|--------|--|--|---|--|---------------------|--|--|---|---| | 2005 | [167] | Wavelet analysis and
ANN | WT | Database f | | 8 and 16
kHz | PCA | ANN | S _p : 70.5, S _c : 64.7
Acc: 70.2 | Normal and abnormal heart sounds classification | | 2005 | [168] | Cardiac auscultation in pediatrics | FFT | 88 (IM) and 153
pathological
murmurs | Each 10-15s | 44.1 kHz | Frequency,
using Fisher's
method | ANN | S _p : 90.00, S _e : 83.00 | Innocent and pathological murmur (such as VSD) classification | | 2004 | [21] | WD and
classification using
NN based classifier | WT | Normal, MVP,
coarctation of the
aorta, VSD, PS | 4096 sample segments | 8 kHz | WD based 256
features | NN | Acc: 100.0 (for signals
with SNR above 31
dB) | Normal and abnormal
sound from coarctation
of the aorta and split
sounds | | 2003 | [81] | MLP with FFNN | TFD | 123 subjects | AV (62 N & 80
AN) & MV (38
N & 66 AN),
DHSs | 1 | Wavelet
entropies
based 12
features | FFNN | Acc: 84 (N) and 96 (AN) | Aortic and mitral valve diseases | | 2003 | [69] | WPD and wavelet packet entropy | WT | 95 (N) and 120
(AN) | 215 samples
(Doppler heart
sounds) | 20 kHz | Wavelet
packet energy
based 256
features | WPNN | Acc: 94.0 (N) and 94.5 (AN) | Normal and abnormal sounds, no murmurs | | 2003 | [169] | Classification of
wavelet-based
features using ANN | WT | 28 subjects, 28
records with 12
periods of HSs in
each | 4096 discrete
data | 5512.5 Hz | Wavelet based
672 features | GAL network
and LVQ
network | Acc: 99.0 | AS, MR, MS, PS, AR,
SG and normal sounds | | 2002 | [170] | MLP and RBF-NN | FFT | - | 36 recordings
(each ~ 30 s) | 44 kHz | FFT and
Levinson-
Durbin auto
regression | MLP and
RBF-NN | Acc: 84.00 (MLP) & 88.00 (RBF) | Normal, NRMR, MVP,
BAV, AS, SCAS, AR,
aortic/mitral valve, MS,
ASD, VSD, LVI, PMD,
DC, and aortic
incompetence | | 1995 | [171] | Backpropagation
based NN classifier
(along with ECG) | TD | Database from [3
(18 (N) and 30 (A
subjects, res | N)) from 3 & 6 | 2 kHz | Average
correlations &
Euclidean
distance
features | NN | Acc: 95.0 | MS, split of S ₁ and S ₂ ,
aortic/mitral
insufficiency, MS, and
mitral insufficiency with
prolapse | | 1994 | [172] | Wavelet-based
fuzzy-NN | FWT | 112 patients, 30
selected (15 (N)
and 15 (AN) | 10 samples
from each
patient | 4 kHz | Wavelet
features
(mean,
variance,
skewness,
kurtosis) | Fuzzy-NN | Acc: 88.8 (N) & 85.45 (AN) | Coronary artery diseases | | HMN | 1-base | ed classifier | | | | | , | | | | | 2018 | [118] | ANFIS and HMM | WT | Normal and pathological | 150 (N) and 80 (AN) records | - | TD and FD
based 8
features | ANFIS and
HMM | Acc: 98.7 | Normal sounds and
valve disorders (MS,
MR and AR) | | 2012 | [149] | PCA-Discrete HMM | DFT | 40 (N), 40 (PS)
and 40 (MS)
(55M/65F, Age
4-65 y) | 80 training set
and 187 test set | 8 kHz | TD, FD | PCA-DHMM | S _p : 93.30, S _e : 70.30,
Acc: 72.2 (SPECTF data) | Classification of normal,
MS and PS cardiac
sounds | | 2008 | [133] | MFCC-based HMM | TD and
STFT | 20 (N), 6 (CM), 4 (DM), 11 (SM) | 1381 signals | 8 kHz | TD, STFT & MFCC features | НММ | Ace: 95.7 (CM), 96.25
(SM), 90.0 (DM) | Normal sounds, ejection clicks, opening snaps, split S_1 , split S_2 , S_3 , S_4 , continuous, diastolic and systolic murmurs | | 2007 | [132] | Modified HMM
(MHMM) | TD, FD
and STFT | 41 subjects (21 N
and 21 CM, SM
and DM) | 1398 records | 8 kHz | TD, STFT and
MFCC | МНММ | S _p : 95.30, S _e : 95.20 | Classification of normal
sounds, continuous,
diastolic and systolic
murmurs | | 2007 | [150] | Continuous hidden
Markov model
(CHMM) based
classifier | WT and
STFT | 132M/83F, mean
age 48 years | 215 samples
(54 (NAHV),
56 (ANAHV),
66 (ANMHV),
39 (NMHV),
Doppler
ultrasounds | 20 kHz | Wavelet and
time-
frequency
domain
features | CHMM
(FCM/k-
means
algorithms) &
ANN | S _p : 92.0, S _c : 97.26
(FCM-k-means/CHMM) & S _p : 94.0, S _c : 95.89 (ANN) | Classification of normal
and abnormal sounds
from mitral and aortic
valves | | Near | est Ne | ighbor Classifier | | | | | | | | | | 2018 | [182] | Nearest neighbor
(NN) classifier with
Euclidean distance | WT | Six different
datasets including
PhysioNet
database [14] | 4000 samples
(20 s each) | 44 kHz and
2 kHz | Wavelet and filter bank, 34 features | NN with
Euclidean
distance | S _p : 99.00, S _e : 93.00,
Acc: 98, (for dataset
E) | Classification of normal
and abnormal heart
sounds including
murmurs | | 2013 | [47] | Feature extraction
and Shannon energy
using S-transform | T, F and
TFD using
S-
transform | 40 (N) and 40 (pathological) | 80 records | 8 kHz | Best results
with the TFD
features, total
70 features | k-NN
classifier | S _c : 95.0, S _p : 97.0 (using TFD features) | Classification of S_1 and S_2 | TABLE 5. (Continued.) Summary of heart sounds classifiers and their performance comparison. | 2010 | [151] | Dynamic features
based on various
energy distributions | STFT and
CWT | 22 adults (16 (N)
and 6 (SM)) | 22 PCGs (each ≈ 12 s) | 44.1 kHz | TD, FD, TFD
based 53
features | k-NN | Acc: 98.00 | Murmurs detection | |------|---------|--|---|---|---|-----------------------|--|---|---|---| | 2010 | [152] | Feature extraction from TFR | TFD | 45 adults (26 N
and 19
pathological) | 45 PCGs (each ≈ 12 s) | 44.1 kHz | TVAR, 851
features | k-NN | Acc: 99.06±0.06 (best case) | Murmur detection | | 2009 | [94] | k-NN with fractal features | STFT,
Gabor
Transform,
WVD, WT | 81 (N) and 83
with murmurs | 164 records | 44.1 kHz | T varying &
TF, perceptual
and fractal,
149 features | k-NN | Acc: 97.17 (using fractal features) | Murmur detection | | 2008 | [153] | Hybrid classifier with AIS and <i>k</i> -NN | WT and
STFT | 132M/83F (Age:
15-80 y) | AV: 110 (54 N
& 56 AN),
MV: 105 (66 N
& 39 AN) | - | WD, STFT
and Wavelet
entropy based
91 features | AIS and fuzzy k-NN | S _p : 96.00, S _e : 95.90 | Classification of normal
and abnormal sounds
from mitral and aortic
valves | | 1998 | [123] | CWD based spectrum analysis | TFD and
DWT | 45 native and 23
aortic Carpentier-
Edwards valve | - | 2 kHz | Morphological
and DWT
based 9
features | k-NN | Acc: between 61 to 96 (based on the feature selection) | Classification of native and bioprosthetic heart valve sounds | | Othe | r class | ifiers/Hybrid classific | rs | | | | | | | | | 2017 | [64] | Empirical wavelet
transform (EWT) | EWT | Databases from [3
and HSs, Littman
murmurs (W | | ton HSs and | Timing, area
and interval
based features | Decision rule
based
classifier | S _e : 97.9, PPV: 97.7,
Acc: 95.7 (Noise free) | S ₁ , S ₂ , S ₃ , S ₄ , split
sounds, systolic
murmurs (early, mid,
late, pan) and diastolic
murmurs (early, mid,
late, pan) & continuous
murmurs | | 2017 | [90] | Probability analysis for feature extraction | TFD | Normal and abnormal HSs from
PhysioNet database [14] | | 2 kHz | Statistical
properties of
envelope,
53
features | Extension to
Naïve Bayes
classifier | S _p : 91.25, S _e : 76.96,
Acc: 84.11 | Classification of normal
and abnormal heart
sounds including
murmurs | | 2017 | [103] | Ensemble of classifiers | TFD | Normal and abnormal HSs from
PhysioNet database [14] | | 1 kHz
(resampling) | Time,
frequency,
wavelet and
statistical
domain, 131
features | Ensembles of 20 two-step classifiers | S _p : 80.6, S _e : 79.6
(hidden test set),
overall: 96.30/90.18
(standard/outlier
signals) | Classification of normal
and abnormal heart
sounds including
murmurs | | 2017 | [183] | Wavelet entropy and
spectral amplitude
based classifier | WT | 2408 (N) and 630 (AN) records from PhysioNet database [14] [31] | | - | Spectral and wavelet features | DT based classifier | Acc: 76% (mean of S _e 98% and S _p 54%) for wavelet entropy | Classification of normal
and abnormal heart
sounds including
murmurs | | 2015 | [46] | Acoustic features for CAD detection | TFD | 133 subjects for
435 records | 231 (Non-
CAD) and 204
(CAD) | 4 kHz | Spectral
features, signal
complexity
features, total
5029 features | Multivariate
classifier | S _p : 65.20, S _e : 72.0 (for CAD detection) | Identification of coronary artery (CAD) diseases | | 2015 | [75] | Detection of heart
murmurs (PI & TI) | CWT | - | 92 cardiac
cycles (38 (PI)
and 54 (TI)) | 8 kHz | 36
dimensional
features | RWNN
classifier with
EKF
algorithm | Acc: 98.84±4.49
(ELM) and 98.04±045
(RWNN) | Pulmonary insufficiency
and tricuspid
insufficiency murmur
detection | | 2015 | [191] | Coiflet wavelets
based features and its
selection using BPSO | WT | 150 (N), 75
(MVP), 50
(VSD), 50 (PS) | - | - | Coiflet
wavelet
features | Naïve Bayes,
k-NN, C4.5
and SVM
classifier | Acc: 92.31% (highest with SVM) | Classification of normal,
MVP, VSD, and PS
heart sounds | | 2012 | [175] | Entropy of the wavelet packets as a classification feature | WT | 50 (N), 80 (MR),
100 (AS),
50(AR), 70 (MS) | 350 records | 4 kHz | Wavelet
entropy, 32
features | DT, k-NN,
BayesNet,
MLP and
SVM | 95.45 (DT), 95.78 (k-NN), 96.94
(BayesNet), 95.53
(MLP) & 95.33
(SVM) | Classification of AR,
MR, AS and MS sounds | | 2012 | [184] | Feature selection
using PCA, GA, GP
and GDA | WT | - | 120 cardiac
cycles of AS,
MS, MR | 44.1 kHz | TD, wavelet
and entropy
features, 32
features | MLP, RBF
and SVM
classifier | Acc: 99.47 (best with
RBF using GA feature
selection) | Diagnosis of AS, MS
and MR heart valve
diseases | | 2012 | [185] | Matrix
decomposition | CWT | - | 15 IM, 28
organic
murmurs (380
segments) | - | CWT, SVD
and QRD
features, 83
features | CART | S _p : 83.00, S _e : 94.00,
Acc: 90.00 | Murmur classification | | 2009 | [186] | Divergence analysis | WT | Data from 2
patients, online
and a CD book | 140 HSs
periods of 14
different types | 2 kHz | 50 wavelet features | MLP | Acc: 99% & 95%
(based on feature
extraction) | VSD, MR, LSM, early
systolic, opening snap,
diastolic rumble, AR,
AS, MS, Ebsteins
anomaly, summation
gallop, venus hum,
normal FCG and aortic
insufficiency | TABLE 5. (Continued.) Summary of heart sounds classifiers and their performance comparison. | | [66] | Hierarchical clustering approach | TD, FD
and TFD
using
STFT | 12 subjects | 10 records of
40s each | 20-250 Hz
(band pass) | TD, FD, TFD,
WVD and | | Acc: 82±7% (k-NN) | Only classification of S_1 sounds | |------|-------|--------------------------------------|------------------------------------|-------------------------------------|--------------------------------|--------------------------|---|-----------------------------|--|--| | 2009 | | | | 11 subjects | 30-45 minutes | | CVD based
approx. 3500
features | k-NN and DA | Acc: 86±7% (DA) | | | 2007 | [26] | Phono-
spectrographic
analysis | STFT | 807 pediatric patients | 88 (WM), 447
(IM), 272 (PM) | 8-44.1 kHz | Phono-
spectrographic
features | - | S _p : 91.00, S _e : 90.00 | classification of
innocent and
pathological murmurs in
children | | 2004 | [174] | Time-frequency based decision tree | TFD | - | 84 (AS: 41 and
MR: 43) | i | Time-
frequency
based 100
features | DT | Acc: 90 (overall), 91.6
(AS), 88.5 (MR) | Classification of FHSs,
AS and MR sounds | | 2013 | [192] | Multifractal analysis | I | 49 healthy and 48 children with PMV | 97 PCG
records (each
8s) | 8 kHz | Multifractals
features | Discrimination
threshold | Acc: 96.91 | Normal and MVP heart sounds | | 1987 | [99] | Energy spectrum | FFT (TD
and FD) | 5 healthy, 20 patients | 47 records | 1024 Hz | Energy curve,
spectrum &
distribution
coefficients | No definite
classifier | - | Systolic and diastolic murmur classification | Abbreviation: AN: abnormal heart sounds, Acc: accuracy, TD: time-domain, FD: frequency-domain, TFD: time-frequency domain: TFD, SS-PLSR: scaled spectrogram and partial least squares regression, SVM-DM: SVM-diffusion maps, SS-TD: scaled spectrogram and tensor decomposition, CHF: chronic heart failure, SHM: systolic heart murmurs, HOC: higher-order cumulants, LPCC: linear predictive coding coefficients, VSD: ventricular septal defects, SVM-MCS: SVM-modified Cuckoo search, AHV: aortic heart valve, NAHV: normal AHV, ANAHV: abnormal AHV, MHV: mitral heart valve, NMHV: normal MHV, ANMHV: abnormal MHV, EBP: error back-propagation, AIS: artificial immune system, SM: systolic murmurs, DM: diastolic murmurs, CM: continuous murmurs, MLP-BP: multi-layer perceptron back-propagation, CART: classification and regression trees, BP-ANN: back-propagation artificial neural network, IM: innocent murmurs, PI: pulmonary insufficiency, TI: tricuspid insufficiency, MHMM: modified HMM, RBF: radial basis function, RBF-NN: radial basis function neural network, TVAR: time-varying auto-regression, CR: classification rate, PM: pathological murmurs, NM: no murmurs, IM: innocent murmurs, VHD: valvular heart disease, DA: discriminant analysis, WPD: wavelet packet decomposition, TGNN: time-growing neural network, OMS-WPD: optimum multi-scale wavelet packet decomposition, AWN: additive white noise, HSA: heart sounds analysis, NPV: negative predictive value, WM: without murmurs, CT LDB: cumulant-based trapezoidal local discriminant basis, FCM: fuzzy C-means, RWNN: radial wavelet neural network, EKF: extended Kalman filter, PNN: probabilistic neural network, ANFIS: adaptive-neuro fuzzy inference system, FWT: fast wavelet transform, FFM: frequency feature matrix, GRKF: Gaussian radial basis kernel function, LKF: linear kernel function, PKF: polynomial kernel function, SKF: sigmoid kernel function, GTSVM: growing time support vector machine, VIM: Viola integral method, EEMD: ensemble Empirical mode decomposition, MLBS: multi-level bias selection, MFCC: mel-frequency cepstral coefficient, GSVM: genetic-SVM, CQA: cycle quality assessment, DNN: deep neural network, MFSC: melfrequency spectral coefficients, SEC: systolic ejection click, ISOM: incremental self-organizing map, WVD: Wigner-Ville distribution, SPWVD: smoothed pseudo WVD, RQA: recurrence quantification analysis, WD: wavelet decomposition, FFNN: feed-forward neural network, WPNN: wavelet packet neural network, CAD: coronary artery disease, CWD: Choi-Williams distribution, ELM: extreme learning machine, PMV: prolapsed mitral valve, BPSO: binary particle swarm optimization, SVD: singular value decomposition, DT: decision trees, TRF: time-frequency representation, ERBF: exponential radial basis function, MWKF: Morlet wavelet kernel function, SG: summation gallop, PDA: patent ductus arteriosus, BAV: bicuspid aortic valve, LVI: left ventricular impairment, PMD: papillary muscle dysfunction, NRMR: non-rheumatic mitral regurgitation, SCAS: severe calciphic aortic stenosis, LSM: late systolic murmur, DC: dilated cardiomyopothy, LBBB: left bundle branch block, CNN: convolutional neural network, DHSs: Doppler heart sounds. not included in the data synthesis because of a limited number of articles available. The performance of algorithms focusing on the segmentation and classification of heart sounds was synthesized as the accuracy measures in Table 6. Segmentation of S_1 (FHSD) reported in [25], [29], [45], [47], [52], [57], [64], [87]–[89], [92], [94], [96], [100], [104], and [113], achieved mean accuracy of $94.54 \pm 5.15\%$ in correct identification of S_1 at the event level, while mean classification accuracy achieved was $89.77 \pm 4.53\%$ in [66], [90], [97], [106], and [111]. Similarly, identification of S_2 (SHSD) at the event level, was reported in [25], [29], [45], [47], [52], [57], [64], [87]–[89], [92], [94], [96], [100], and [104], achieving a mean accuracy of 93.96 \pm 5.01%; while the mean classification accuracy reported in [90], [106], and [111] was $90.82 \pm 6.58\%$. Pathological heart sounds detection (PHSD) at the event level reported in [29], [64], [65], [67], and [112], achieved mean accuracy of 88.50 \pm 5.93%, while pathological heart sounds classification (PHSC) reported in [64], [69], [75], [78], [95], [105], [110], [140], [142], [145], [146], [155], [157], [158], [162]–[164], [167], [170], [183], [185], and [191], achieved mean classification accuracy of $90.28 \pm 7.82\%$. The mean accuracy in the identification of S_1 at the event level was found to be the highest. However, pathological sounds' detection at the event level achieved the least accuracy. # **VI. DISCUSSION** This systematic review provides an overview of the current state-of-the-art in algorithms developed for
computerized heart sounds analysis and classification. Algorithms reviewed here investigated advanced signal processing tools and learning based approaches to automate the process. These algorithms were carefully evaluated to understand current challenges. Segmentation and classification of heart sounds were found to be still challenging, mainly because of the noise associated with the acquired signals that affected the quality of analysis. Also, the complexity and non-uniformity associated with heart sounds signals were difficult to model. Most of the segmentation approaches reviewed utilized adaptive threshold values of peak amplitudes, assumptions related to the systolic and diastolic intervals, and cardiac cycle period, to localize the peaks in the heart sounds signals. These assumptions are not valid for all kinds of subjects. Also, most of the segmentation algorithms fail in case the systole and diastole periods are of nearly equal duration. Thus, the error at the segmentation level may propagate to the next level of analysis. Only a few reviewed articles studied the noise tolerance while segmenting heart sounds signals [29], [50], [61], [64], [96], [112]. Recently suggested probabilistic models by Springer *et al* [80] and Schmidt *et al* [45] achieved good segmentation accuracy even for noisy signals. From the results synthesized, it was found that identification of fundamental heart sounds S_1 and S_2 achieved higher accuracy compared to the pathological sounds' identification during the segmentation process: $(94.54 \pm 5.15\%)$ and $(93.96 \pm 5.01\%)$, respectively, versus $(88.50 \pm 5.93\%)$. While most of the articles identified S_1 and S_2 heart sounds at the event level, the identification of S_1 sounds achieved higher accuracy compared to the S_2 sounds. Among the articles reviewed here, only a few articles aimed to identify pathological heart sounds at the event level. These articles include detection of S_3 ([64], [65]), S_4 ([64], [65]) and murmurs [29], [64], [67], [112]). The Hilbert-Huang Transform was suggested for identification of S_3 and S_4 [65]. However, the selection of intrinsic mode functions (IMFs) required in the model was challenging because of the varying temporal-spectral characteristics of heart sounds. More recently, the Empirical wavelet transform was also suggested as a decomposition approach to segment heart sounds and to detect S_1 , S_2 , S_3 and murmurs [64]. Though these results appear to indicate that pathological sounds can be identified at the event level during the segmentation, most of the studies performed classification to diagnose pathologies. A few studies also suggested to segment cardiac signals directly into cardiac cycles rather than identifying the peak locations [56], [79], [91], [114], [158]. In these approaches, initial localization of S_1 and S_2 was skipped if prior knowledge of cardiac cycles was available. From the data summarized in Table 6, it can be found that different characterization measurements are evaluated based on the classification problems. Statistical features are mostly extracted to identify the fundamental heart sounds and systole and diastole intervals in a cardiac cycle. Additionally, morphological, spectral, perceptual, fractal features, wavelet features, higher-order statistics and other time-varying and time-frequency domain discriminative features are recommended to distinguish pathological sounds. These features take into account the dynamics of heart sounds under pathological conditions. Most of the features yielded promising results for classification between normal and abnormal heart sounds. Only a few reviewed articles reported features to identify particular cardiac pathologies which are discussed in the following paragraphs. Reported characterization measurements are extracted using various heart sounds signal transformations and decompositions suggested. Among them, wavelet-based decomposition and reconstruction methods to obtain signal characteristics in both, time and frequency domains, for feature extraction were suggested in most of the recent articles [91], [175], [193]. The coefficients of mother wavelet transform are also evaluated as promising features. Some articles presented a comparative study of mother wavelets and suggested continuous wavelet transform using a Morlet wavelet as a potential transformation to extract features for detection of cardiac abnormalities - such as S_3 , S_4 , aortic stenosis, mitral regurgitation, midsystolic click, ventricular septal defect, atrial septal defect, mitral stenosis and aortic regurgitation [104], [130]. While others suggested the Daubechies wavelet for heart sounds analysis [67], [79], [150], [194]. Mel-frequency spectral coefficients (MFSCs) and Mel-Frequency Spectral Coefficients (MFSCs) have yielded promising results, compared to time-domain and short-time Fourier transform based features [132], [133], [155], in classification of fundamental heart sounds, S_3 , S_4 , ejection click, opening snap and diastolic and systolic murmurs [133]. However, MFCCs are not efficient in murmur classification with large energy lobes [118]. Hence, in addition to timefrequency domain features (such as STFT, wavelet transform, etc.), perceptual features (such as MFCCs), non-linear and chaos based features (such as recurrence quantification analysis and higher order statistics) and fractal features (such as correlation dimension, Largest Lyapunov Exponent and Hurst exponent) are recommended for identification of valve disorders [94], [102]. Other features included multi-fractal spectrum [192], that achieved 96.91% accuracy in identifying prolapsed mitral valve; and multi-level basis selection [70] which yielded 97.56% accuracy in identification of aortic stenosis, mitral insufficiency, and atrial insufficiency. Similarly, along with time-domain based features, the center of gravity and the width of the frequency distribution extracted using a moving windowed Hilbert transform, reported up to 98.40% accuracy for identification of ventricular septal defects. Identification of systolic ejection click using spectral analysis with a time growing window also reported promising results (97.00% accuracy). Other than this, instantaneous frequency and amplitude of decomposed signal were found to be useful for the identification of splitting of fundamental heart sounds [22]. Reviewed articles also suggested other features extraction methods - partial least squares regression method [79], matching pursuit based methods [97], sparse coefficient matrix [138] and multivariate matching pursuit [93] - for which extracted features achieved promising results in classifying normal and abnormal heart sounds. In general, temporal, statistical, wavelet coefficients, spectral and instantaneous amplitude, and frequency based features were extracted for abnormality detection. Most of the recent studies classified pathological heart sounds using learning based approaches (Artificial Neural Network (ANN) or Support Vector Machine (SVM)). Articles also suggested modified support vector machines (such as Genetic SVM (G-SVM) [145], Least-Square Support Vector Machine (LS-SVM) [124], [195], Growing Time Windows based Support Vector Machine (GTSVM) [140], Support Vector Machine and Modified Cuckoo search (SVM-MCS) [111]), and validated the classification performance of SVM using different kernel functions in identification of normal and pathological sounds. It was found TABLE 6. Accuracy measure of heart sounds' detection and classification approaches. | | First heart
sounds
detection
(FHSD) (%) | Second heart
sounds detection
(SHSD) (%) | Pathological heart
sounds detection
(PHSD) (%) | First heart sounds
classification
(FHSC) (%) | Second heart
sounds
classification
(SHSC) (%) | Pathological heart
sounds
classification
(PHSC) (%) | |--------------------|--|--|--|--|--|--| | | 98.60 [25] | 98.60 [25] | 97.47 [29] | 86.00 [66] | 84.10 [90] | 95.50 [64] | | | 97.47 [29] | 97.47 [29] | 94.21 [64] | 84.10 [90] | 91.12 [106] | 94.50 [69] | | | 98.60 [45] | 98.60 [45] | 90.40 [65] | 93.00 [97] | 97.25 [111] | 98.84 [75] | | | 95.00 [47] | 95.00 [47] | 85.50 [65] | 91.12 [106] | | 99.60 [78] | | | 94.86 [52] | 95.92 [52] | 85.47 [67] | 94.63 [111] | | 86.00 [95] | | | 98.53 [57] | 98.31 [57] | 86.47 [67] | | | 85.60 [105] | | | 91.92 [64] | 91.92 [64] | 80.00 [112] | | | 95.00 [110] | | | 93.60 [87] | 93.60 [87] | | | | 91.50 [158] | | | 88.20 [88] | 88.20 [88] | | | | 76.70 [157] | | | 93.00 [89] | 93.00 [89] | | | | 84.15 [155] | | | 97.00 [92] | 94.00 [92] | | | | 92.31 [191] | | | 92.00 [94] | 92.00 [94] | | | | 79.00 [183] | | | 100.00 [96] | 97.00 [96] | | | | 98.33 [162] | | | 96.90 [100] | 96.50 [100] | | | | 90.00 [185] | | | 79.30 [104] | 79.30 [104] | | | | 94.74 [146] | | | 97.80 [113] | | | | | 94.52 [145] | | | | | | | | 94.42 [163] | | | | | | | | 88.00 [170] | | | | | | | | 84.00 [140] | | | | | | | | 70.20 [167] | | | | | | | | 94.00 [164] | | | | | | | | 99.39 [142] | | Mean accuracy | 94.54 | 93.96 | 88.50 | 89.77 | 90.82 | 90.28 | | Standard deviation | 5.15 | 5.01 | 5.93 | 4.53 | 6.58 | 7.82 | that the Gaussian Radial Basis Kernel Function (GRKF) produced the best results in classifying normal, aortic stenosis, pulmonary stenosis, tricuspid insufficiency and mitral insufficiency heart sounds compared to Linear Kernel Function (LKF), Polynomial Kernel Function (PKF) and Sigmoid Kernel Function (SKF)) [107]. Also, the least-square support vector machine (LS-SVM) classifiers were found promising in identifying
normal, valvular defects, septal defects and other defects [139], with Morlet wavelet kernel function. Least square SVM was also suggested for identifying cases of chronic heart failure [73]. This achieved similar results to the back-propagation artificial neural network (BP-ANN) and hidden Markov models (HMM) and required less training time compared to its counterpart [148]. Other classification approaches such as decision trees [174], were also reported for the classification of fundamental heart sounds, aortic stenosis and mitral regurgitation. However, these methods are not suitable for complex feature classification [56]. Most of the studies reported methods to identify murmurs as systolic or diastolic murmurs. However, the classification of these murmurs into various sub-classes was not found in general. In a recent study, it was found that wavelet-based features and coefficients such as entropy, achieved promising results using a decision-based classification algorithm in classifying murmurs into systolic murmurs (early, mid, late, pan) and diastolic murmurs (early, mid, late, pan) and continuous murmurs [64]. Murmurs of valvular defects, mainly because of the stenosis, regurgitation and insufficiency, were mostly investigated. Wavelet transformation and wavelet coefficients such as entropy, were found useful to classify normal, aortic stenosis, aortic regurgitation, mitral stenosis and mitral regurgitation [64], [70], [147]. Another method based on murmur likelihood computation and SVM classifier was found useful in classifying normal, aortic stenosis, mitral regurgitation, ventricular septal defect, aortic regurgitation, mitral stenosis, and mitral valve prolapse [105]. SVM classifier based approaches were also extended to diagnose ventricular septal defects and atrial fibrillation and achieved satisfactory results in abnormalities classification [78], [85]. Other diagnostic heart sounds such as gallop rhythm were also classified using an SVM based classifier after pre-processing signals using the optimum multi-scale wavelet packet decomposition [143]. Other than these sounds, splitting of fundamental heart sounds has also been identified as a pathological event. While a limited number of articles investigated the splitting of second heart sounds (S_2) at the event level, no quantitative measurement of splitting of the first heart sounds (S_1) was found. The split identification was found to be obscured mainly because of the overlap of the components $(M_1$ and T_1 of S_1 and A_2 and P_2 of S_2). In the articles reviewed here, it was not possible to ascertain the accuracy level in detecting the splitting of fundamental heart sounds due to the lack of articles available and the lack of quantitative analysis. Apart from these diagnostic sounds, a large amplitude of S_3 or S_4 and the presence of extra peaks in the cardiac cycle may reflect valvular malfunctioning or abnormalities, but these have not been investigated. Although existing approaches reported promising results, algorithms were specifically developed for identification and classification of certain types of pathological sounds. In some cases, the accuracy of the algorithm was greatly dependent on the disease being investigated. Thus, these results cannot be interpolated to analyze other heart sounds that may be present in a cardiac cycle. Other than this, in some of the studies, the class of murmurs was not specified. Data acquisition systems and databases used by the reviewed studies were also examined, coming to the conclusion that databases available for the validation of the algorithms are limited. In addition, demographics of the subjects and protocols followed when performing signal acquisition were not always fully specified. Sensors locations were also generally missing. Only a few studies validated the proposed algorithm with a database containing normal and abnormal heart sounds [111]. As most of the algorithms for the heart sounds analysis were validated with limited duration of recordings, the performance of these algorithms is not statistically significant. Thus, the robustness of algorithms still needs to be validated using large databases and with signals obtained from different subjects populations, including wider age ranges, and in real use scenarios. This is even more important considering that heart sounds are very sensitive to noise and interference, and different databases show different levels of data corruption. Furthermore, libraries of auscultatory recordings containing sounds signals from all possible auscultation sites from different subjects have not been reported. The analysis should be extended to test the robustness of the algorithms against the placement of the sensor (auscultation positions) while performing the signal acquisition. In relation to this, acquisition systems and noise reduction techniques should be developed in parallel, since different acquisition systems respond differently to artifacts, which consequently might affect the performance of specific noise reduction algorithms. Overall, existing algorithms show satisfactory results in classifying heart sounds in controlled conditions. However, it is not possible to extrapolate from this how they would operate in long-term continuous monitoring of signals in real life environments, mostly when subject-specific training is not an option. # **VII. STUDY LIMITATIONS** When evaluating the accuracy measurements, the differences in the databases utilized for the verification and validation of algorithms had to be neglected. Approaches for data collection and feature extraction were not included in the data synthesis due to the lack of standardized methods and proper indexes for performance comparison. Lack of large databases in the studies makes it difficult to assess the primary outcome and to establish a proper comparison. Also, in some cases, it was hard to determine the accuracy level because of the missing performance metrics. ## **VIII. CONCLUSION** The key objective of this systematic review was the identification of methodological approaches for computerized heart sounds analysis and classification. This included the review of databases used for testing of the different algorithms, methods for segmentation, feature extraction and classification of heart sounds. A cost-effective system with precise automatic analysis of heart sounds may assist in early diagnosis and to improve the outcomes of cardiovascular diseases. However, extraction and analysis of these signals is a challenging task because of their complex non-stationary nature as well as the noise and interference corruption due to the limitations associated with the acquisition systems. Algorithms for automated analysis of the acoustic cardiac signals have been reported but with limited capabilities. There is a large variation in data in terms of accuracy of some of the studied algorithms. Evaluation with universally standardized databases still needs to be carried out for a proper comparison, and if the algorithms are intended to be used with wearable systems, the design and validation needs to take into account the practical challenges associated to the specific wearable. ## **APPENDIX** Preferred reporting items provide on the PRISMA 2009 Checklist [13] document with the page number indicating the reported items in this systematic review. #### **REFERENCES** - World Health Organization. (2015). Media Centre-Cardiovascular Diseases (CVDs) Fact Sheet. Accessed: May 1, 2017. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs317/en/ - [2] D. Mozaffarian *et al.*, "Heart disease and stroke statistics-2015 update: A report from the American heart association," *Circulation*, vol. 131, no. 4, pp. e29–e322, 2015. - [3] L. H. Schwamm *et al.*, "Recommendations for the implementation of telehealth in cardiovascular and stroke care: A policy statement from the American heart association," *Circulation*, vol. 135, no. 7, pp. e24–e44, 2017 - [4] J. Hu et al., "Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care," *Biotechnol. Adv.*, vol. 34, no. 3, pp. 305–320, 2016. - [5] J. S. Shinbane and L. A. Saxon, "Digital monitoring and care: Virtual medicine," *Trends Cardiovascular Med.*, vol. 26, no. 8, pp. 722–730, 2016. - [6] Z. Jiang and S. Choi, "A cardiac sound characteristic waveform method for in-home heart disorder monitoring with electric stethoscope," *Expert Syst. Appl.*, vol. 31, no. 2, pp. 286–298, 2006. - [7] S. Mangione and L. Z. Nieman, "Cardiac auscultatory skills of internal medicine and family practice trainees: A comparison of diagnostic proficiency," *JAMA*, vol. 278, no. 9, pp. 717–722, 1997. - [8] L.-G. Durand and P. Pibarot, "Digital signal processing of the phonocardiogram: Review of the most recent advancements," *Crit. Rev. Biomed. Eng.*, vol. 23, nos. 3–4, pp. 163–219, 1995. - [9] A. K. Bhoi, K. S. Sherpa, and B. Khandelwal, "Multidimensional analytical study of heart sounds: A review," *Int. J. Bioautomat.*, vol. 19, no. 3, pp. 351–376, 2015. - [10] G. D. Clifford et al., "Recent advances in heart sound analysis," Physiol. Meas., vol. 38, no. 8, pp. E10–E25, 2017. - [11] R. M. Rangayyan and R. J. Lehner, "Phonocardiogram signal analysis: A review," Crit. Rev. Biomed. Eng., vol. 15, no. 3, pp. 211–236, 1998. - [12] M. Nabih-Ali, E. S. A. El-Dahshan, and A. S. Yahia, "A review of intelligent systems for heart sound signal analysis," *J. Med. Eng. Technol.*, vol. 41, no. 7, pp. 553–563, 2017. - [13] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, "Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement," *PLoS Med.*, vol. 6, no. 7, p. e1000097, 2009. - [14] C. Liu et al., "An open access database for the evaluation of heart sound algorithms," *Physiol. Meas.*, vol. 37, no. 12, pp. 2181–2213, 2016. - [15] S. Leng, R. S. Tan, K. T. C. Chai, C.
Wang, D. Ghista, and L. Zhong, "The electronic stethoscope," *Biomed. Eng. OnLine*, vol. 14, no. 66, pp. 1–66, 2015. - [16] A. Leatham, Auscultation of the Heart and Phonocardiography, vol. 10. London, U.K.: J. & A. Churchill, 1970. - [17] S. M. Debbal and F. Bereksi-Reguig, "Time-frequency analysis of the second cardiac sound in phonocardiogram signals," *Med. Phys.*, vol. 32, no. 9, pp. 2911–2917, 2005. - [18] M. Jabloun, P. Ravier, O. Buttelli, R. Lédée, R. Harba, and L.-D. Nguyen, "A generating model of realistic synthetic heart sounds for performance assessment of phonocardiogram processing algorithms," *Biomed. Signal Process. Control*, vol. 8, no. 5, pp. 455–465, 2013. - [19] D. Mason, Listening to the Heart: A Comprehensive Collection of Heart Sounds and Murmurs, 2nd ed. Philadelphia, PA, USA: Hahnemann University, 2000. - [20] Y. D. Shin et al., "The correlation between the first heart sound and cardiac output as measured by using digital esophageal stethoscope under anaesthesia," Pakistan J. Med. Sci., vol. 30, no. 2, p. 276, 2014. - [21] T. R. Reed, N. E. Reed, and P. Fritzson, "Heart sound analysis for symptom detection and computer-aided diagnosis," *Simul. Model. Pract. Theory*, vol. 12, no. 2, pp. 129–146, 2004. - [22] S. Barma, B.-W. Chen, K. L. Man, and J.-F. Wang, "Quantitative measurement of split of the second heart sound (S2)," *IEEE/ACM Trans. Comput. Biol. Bioinf.*, vol. 12, no. 4, pp. 851–860, Jul. 2015. - [23] J. Xu, L. G. Durand, and P. Pibarot, "Nonlinear transient chirp signal modeling of the aortic and pulmonary components of the second heart sound," *IEEE Trans. Biomed. Eng.*, vol. 47, no. 10, pp. 1328–1335, Oct. 2000. - [24] L.-J. Thoms, G. Colicchia, and R. Girwidz, "Phonocardiography with a smartphone," *Phys. Educ.*, vol. 52, pp. 023004-1–023004-4, Jan. 2017. - [25] H. Naseri and M. R. Homaeinezhad, "Detection and boundary identification of phonocardiogram sounds using an expert frequency-energy based metric," Ann. Biomed. Eng., vol. 41, no. 2, pp. 279–292, 2012. - [26] A.-L. Noponen, S. Lukkarinen, A. Angerla, and R. Sepponen, "Phonospectrographic analysis of heart murmur in children," *BMC Pediatrics*, vol. 7, no. 1, p. 23, 2007. - [27] J. Grayzel, "Gallop rhythm of the heart: I. Atrial gallop, ventricular gallop and systolic sounds," Amer. J. Med., vol. 28, no. 4, pp. 578–592, 1960. - [28] C. E. Lok, C. D. Morgan, and N. Ranganathan, "The accuracy and interobserver agreement in detecting the 'gallop sounds' by cardiac auscultation," *Chest*, vol. 114, no. 5, pp. 1283–1288, 1998. - [29] S. Ari, P. Kumar, and G. Saha, "A robust heart sound segmentation algorithm for commonly occurring heart valve diseases," *J. Med. Eng. Technol.*, vol. 32, no. 6, pp. 456–465, 2008. - [30] PhysioNet. Accessed: Jan. 2017. [Online]. Available: https://physionet.org/ - [31] G. D. Clifford et al., "Classification of normal/abnormal heart sound recordings: The PhysioNet/computing in cardiology challenge 2016," in Proc. Comput. Cardiol., vol. 43, Sep. 2016, pp. 609–612. - [32] P. Bentley, G. Nordehn, M. Coimbra, S. Mannor, and R. Getz. (2011). The PASCAL Classifying Heart Sounds Challenge 2011 (CHSC2011). Accessed: Mar. 3, 2017. [Online]. Available: http://www.peterjbentley.com/heartchallenge/ - [33] R. D. Judge and R. Mangrulkar. (2015). The open michigan heart sound & murmur library (OMHSML). University of Michigan. Accessed: Mar. 26, 2017. [Online]. Available: http://www.med.umich. edu/lrc/psb/heartsounds/ - [34] eGeneral Medical. Cardiac Auscultation of Heart Murmurs Database. Accessed: May 27, 2017. [Online]. Available: http://www.egeneralmedical.com/listohearmur.html - [35] ThinkLabs. Heart Sound Library. Accessed: May 26, 2017. [Online]. Available: http://www.thinklabs.com/heart-sounds-old - [36] J. M. Wilson and R. J. Hall. Heart sounds laboratory: Heart sounds podcast series. Texas Heart Institute. Accessed: Jan. 2017. [Online]. Available: http://feeds.texasheart.org/HeartSoundsPodcastSeries - [37] Frontiers in Bioscience: Normal and Abnormal Heart Sounds. [Online]. Available: http://int-prop.lf2.cuni.cz/heart_sounds/h14/sound.htm - [38] The Johns Hopkins University School of Medicine, Helen B. Taussig Children's Heart Center. (2015). Cardiac Auscultatory Recording Database. Accessed: May 26, 2017. [Online]. Available: http:// murmurlab.org/card6/ - [39] M. E. Tavel, R. W. Campbell, and M. E. Gibson, *Heart Sounds and Murmurs: An Audio Visual Presentation*. Chicago, IL, USA: Year Book Medical Publisher, 1973. - [40] M. Malik et al., "Heart rate variability: Standards of measurement, physiological interpretation, and clinical use," Eur. Heart J., vol. 17, no. 3, pp. 354–381, 1996. - [41] C. Liu, D. Springer, and G. D. Clifford, "Performance of an open-source heart sound segmentation algorithm on eight independent databases," *Physiol. Meas.*, vol. 38, no. 8, pp. 1730–1745, 2017. - [42] Z. H. Syed, "MIT automated auscultation system," M.S. thesis, Massachusetts Inst. Technol., Cambridge, MA, USA, 2003. - [43] Z. Syed, D. Leeds, D. Curtis, F. Nesta, R. A. Levine, and J. Guttag, "A framework for the analysis of acoustical cardiac signals," *IEEE Trans. Biomed. Eng.*, vol. 54, no. 4, pp. 651–662, Apr. 2007. - [44] H. Naseri, M. R. Homaeinezhad, and H. Pourkhajeh, "Noise/spike detection in phonocardiogram signal as a cyclic random process with non-stationary period interval," *Comput. Biol. Med.*, vol. 43, no. 9, pp. 1205–1123, 2013. - [45] S. E. Schmidt, C. Holst-Hansen, C. Graff, E. Toft, and J. J. Struijk, "Segmentation of heart sound recordings by a duration-dependent hidden Markov model," *Physiol. Meas.*, vol. 31, no. 4, pp. 513–529, 2010. - [46] S. E. Schmidt, C. Holst-Hansen, J. Hansen, E. Toft, and J. J. Struijk, "Acoustic features for the identification of coronary artery disease," *IEEE Trans. Biomed. Eng.*, vol. 62, no. 11, pp. 2611–2619, Nov. 2015. - [47] A. Moukadem, A. Dieterlen, N. Hueber, and C. Brandt, "A robust heart sounds segmentation module based on S-transform," *Biomed. Signal Process. Control*, vol. 8, no. 3, pp. 273–281, May 2013. - [48] A. Moukadem, A. Dieterlen, N. Hueber, and C. Brandt, "Localization of heart sounds based on S-transform and radial basis function neural network," in *Proc. NBC Biomed. Eng. Med. Phys.*, vol. 34, 2011, pp. 168–171. - [49] C. D. Papadanil and L. J. Hadjieontiadis, "Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features," *IEEE J. Biomed. Health Inform.*, vol. 18, no. 4, pp. 1138–1152, Jul. 2014. - [50] H. Tang, T. Li, Y. Park, and T. Qiu, "Separation of heart sound signal from noise in joint cycle frequency-time-frequency domains based on fuzzy detection," *IEEE Trans. Biomed. Eng.*, vol. 57, no. 10, pp. 2438–2447, Oct. 2010. - [51] H. Tang, T. Li, and T. Qiu, "Noise and disturbance reduction for heart sounds in cycle-frequency domain based on nonlinear time scaling," *IEEE Trans. Biomed. Eng.*, vol. 57, no. 2, pp. 325–333, Feb. 2010. - [52] H. Tang, T. Li, T. Qiu, and Y. Park, "Segmentation of heart sounds based on dynamic clustering," *Biomed. Signal Process. Control*, vol. 7, no. 5, pp. 509–516, 2012. - [53] T. Li, H. Tang, T. Qiu, and Y. Park, "Best subsequence selection of heart sound recording based on degree of sound periodicity," *Electron. Lett.*, vol. 47, no. 15, pp. 841–843, 2011. - [54] R. Sameni and M. Samieinasab, "Fetal phonocardiogram extraction using single channel blind source separation," in *Proc. 23rd Iran. Conf. Elect. Eng.*, May 2015, pp. 78–83. - [55] H. Nazeran, "Wavelet-based segmentation and feature extraction of heart sounds for intelligent PDA-based phonocardiography," *Methods Inf. Med.*, vol. 46, pp. 1–7, Aug. 2007. - [56] W. Zhang, J. Han, and S. Deng, "Heart sound classification based on scaled spectrogram and tensor decomposition," *Expert Syst. Appl.*, vol. 84, pp. 220–231, Oct. 2017. - [57] S. Sun, Z. Jiang, H. Wang, and Y. Fang, "Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform," *Comput. Methods Programs Biomed.*, vol. 114, no. 3, pp. 219–230, 2014. - [58] S. Sun, "An innovative intelligent system based on automatic diagnostic feature extraction for diagnosing heart diseases," *Knowl.-Based Syst.*, vol. 75, pp. 224–238, Feb. 2015. - [59] D. Boutana, M. Benidir, and B. Barkat, "Segmentation and identification of some pathological phonocardiogram signals using time-frequency analysis," *IET Signal Process.*, vol. 5, no. 6, pp. 527–537, 2011. - [60] M. S. Manikandan and K. P. Soman, "Robust heart sound activity detection in noisy environments," *Electron. Lett.*, vol. 46, no. 16, pp. 1100–1102, 2010. - [61] V. N. Varghees and K. I. Ramachandran, "A novel heart sound activity detection framework for automated heart sound analysis," *Biomed. Signal Process. Control*, vol. 13, pp. 174–188, Sep. 2014. - [62] S. Patidar and R. B. Pachori, "Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform," *Biomed. Signal Process. Control*, vol. 8, no. 6, pp. 559–567, 2013. - [63] Texas Heart Institute Database. Accessed: Jan. 2017. [Online]. Available: https://www.texasheart.org/ - [64] V. N. Varghees and K. I. Ramachandran, "Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope," *IEEE Sensors J.*, vol. 17, no. 12, pp. 3861–3872, Jun. 2017. - [65] Y.-L. Tseng, P.-Y. Ko, and F.-S. Jaw, "Detection of the third and fourth heart sounds using Hilbert-Huang transform," *Biomed. Eng. OnLine*, vol. 11, no. 8, pp. 1–13, 2012. - [66] G. Amit, N. Gavriely, and N. Intrator, "Cluster analysis and classification of heart sounds," *Biomed. Signal Process. Control*, vol. 4, no. 1, pp. 26–36, 2009. - [67] C. N. Gupta, R. Palaniappan, S. Swaminathan, and S. M. Krishnan, "Neural network classification of homomorphic segmented heart sounds," *Appl. Soft Comput.*,
vol. 7, no. 1, pp. 286–297, 2007. - [68] F. Javed, P. A. Venkatachalam, and M. H. A. Fadzil, "A signal processing module for the analysis of heart sounds and heart murmurs," *J. Phys.*, vol. 34, no. 1, pp. 1098–1105, 2006. - [69] I. Turkoglu, A. Arslan, and E. Ilkay, "An intelligent system for diagnosis of the heart valve diseases with wavelet packet neural networks," *Comput. Biol. Med.*, vol. 33, no. 4, pp. 319–331, 2003. - [70] F. Safara, S. Doraisamy, A. Azman, A. Jantan, and A. R. A. Ramaiah, "Multi-level basis selection of wavelet packet decomposition tree for heart sound classification," *Comput. Biol. Med.*, vol. 43, no. 10, pp. 1407–1414, Oct. 2013. - [71] P. Banerjee and A. Mondal, "An irregularity measurement based cardiac status recognition using support vector machine," *J. Med. Eng.*, vol. 2015, Oct. 2015, Art. no. 327534. - [72] A. Iwata, N. Ishii, N. Suzumura, and K. Ikegaya, "Algorithm for detecting the first and the second heart sounds by spectral tracking," *Med. Biol. Eng. Comput.*, vol. 18, no. 1, pp. 19–26, 1980. - [73] Y. Zheng, X. Guo, J. Qin, and S. Xiao, "Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics," *Comput. Methods Programs Biomed.*, vol. 122, no. 3, pp. 372–383, 2015. - [74] W. Zhang, X. Guo, Z. Yuan, and X. Zhu, "Heart sound classification and recognition based on EEMD and correlation dimension," *J. Mech. Med. Biol.*, vol. 14, no. 4, pp. 1450046-1–1450046-17, 2014. - [75] J. E. Guillermo, L. J. R. Castellanos, E. N. Sanchez, and A. Y. Alanis, "Detection of heart murmurs based on radial wavelet neural network with Kalman learning." *Neurocomputing*, vol. 164, pp. 307–317, Apr. 2015. - Kalman learning," *Neurocomputing*, vol. 164, pp. 307–317, Apr. 2015. [76] M. Elgendi *et al.*, "Spectral analysis of the heart sounds in children with and without pulmonary artery hypertension," *Int. J. Cardiol.*, vol. 173, no. 1, pp. 92–99, 2014. - [77] K. Hassani, K. Bajelani, M. Navidbakhsh, D. J. Doyle, and F. Taherian, "Heart sound segmentation based on homomorphic filtering," *Perfusion*, vol. 29, no. 4, pp. 351–359, 2014. - [78] S. Choi and Z. Jiang, "Cardiac sound murmurs classification with autoregressive spectral analysis and multi-support vector machine technique," *Comput. Biol. Med.*, vol. 40, no. 1, pp. 8–20, 2010. - [79] W. Zhang, J. Han, and S. Deng, "Heart sound classification based on scaled spectrogram and partial least squares regression," *Biomed. Signal Process. Control*, vol. 32, pp. 20–28, Feb. 2017. - [80] D. B. Springer, L. Tarassenko, and G. D. Clifford, "Logistic regression-HSMM-based heart sound segmentation," *IEEE Trans. Biomed. Eng.*, vol. 63, no. 4, pp. 822–832, Apr. 2016. - [81] I. Turkoglu, A. Arslan, and E. Ilkay, "A wavelet neural network for the detection of heart valve diseases," *Expert Syst.*, vol. 20, no. 1, pp. 1–7, 2003 - [82] H. Uğuz, "A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases," *J. Med. Syst.*, vol. 36, no. 1, pp. 61–72, 2012. - [83] S. Kang, R. Doroshow, J. McConnaughey, and R. Shekhar, "Automated identification of innocent Still's murmur in children," *IEEE Trans. Biomed. Eng.*, vol. 64, no. 6, pp. 1326–1334, Jun. 2017. - [84] P. Sharma, S. A. Imtiaz, and E. Rodriguez-Villegas, "An algorithm for heart rate extraction from acoustic recordings at the neck," *IEEE Trans. Biomed. Eng.*, vol. 66, no. 1, pp. 246–256, Jan. 2019. - [85] S. Sun, H. Wang, Z. Jiang, Y. Fang, and T. Tao, "Segmentation-based heart sound feature extraction combined with classifier models for a VSD diagnosis system," *Expert Syst. Appl.*, vol. 41, pp. 1769–1780, Mar. 2014. - [86] Z. Yan, Z. Jiang, A. Miyamoto, and Y. Wei, "The moment segmentation analysis of heart sound pattern," *Comput. Methods Programs Biomed.*, vol. 98, no. 2, pp. 140–150, 2010. - [87] A. A. Sepehri, A. Gharehbaghi, T. Dutoit, A. Kocharian, and A. Kiani, "A novel method for pediatric heart sound segmentation without using the ECG," *Comput. Methods Programs Biomed.*, vol. 99, no. 1, pp. 43–48, 2010. - [88] S. Choi and Z. Jiang, "Comparison of envelope extraction algorithms for cardiac sound signal segmentation," *Expert Syst. Appl.*, vol. 34, no. 2, pp. 1056–1069, 2008. - [89] H. Liang, S. Lukkarinen, and I. Hartimo, "Heart sound segmentation algorithm based on heart sound envelogram," in *Proc. Comput. Cardiol.*, vol. 24, Sep. 1997, pp. 105–108. - [90] F. Plesinger, I. Viscor, J. Halamek, J. Jurco, and P. Jurak, "Heart sounds analysis using probability assessment," *Physiol. Meas.*, vol. 38, no. 8, pp. 1685–1700, 2017. - [91] S. Yuenyong, A. Nishihara, W. Kongprawechnon, and K. Tungpimolrut, "A framework for automatic heart sound analysis without segmentation," *Biomed. Eng. OnLine*, vol. 10, no. 13, pp. 1–23, 2011. - [92] A. Gharehbaghi, T. Dutoir, A. Sepehri, P. Hult, and P. Ask, "An automatic tool for pediatric heart sounds segmentation," in *Proc. Comput. Cardiol.*, Sep. 2011, pp. 37–40. - [93] S. Jabbari and H. Ghassemian, "Modeling of heart systolic murmurs based on multivariate matching pursuit for diagnosis of valvular disorders," *Comput. Biol. Med.*, vol. 41, no. 9, pp. 802–811, 2011. - [94] E. Delgado-Trejos, A. F. Quiceno-Manrique, J. I. Godino-Llorente, M. Blanco-Velasco, and G. Castellanos-Dominguez, "Digital auscultation analysis for heart murmur detection," *Ann. Biomed. Eng.*, vol. 37, no. 2, pp. 337–353, 2009. - [95] C. Ahlstrom et al., "Feature extraction for systolic heart murmur classification," Ann. Biomed. Eng., vol. 34, no. 11, pp. 1666–1677, 2006. - [96] M. El-Segaier, O. Lilja, S. Lukkarinen, L. Sörnmo, R. Sepponen, and E. Pesonen, "Computer-based detection and analysis of heart sound and murmur," *Ann. Biomed. Eng.*, vol. 33, no. 7, pp. 937–942, 2005. - [97] W. Wang, Z. Guo, J. Yang, Y. Zhang, L.-G. Durand, and M. Loew, "Analysis of the first heart sound using the matching pursuit method," *Med. Biol. Eng. Comput.*, vol. 39, pp. 644–648, Nov. 2001. - [98] M. W. Groch, J. R. Domnanovich, and W. D. Erwin, "A new heart-sounds gating device for medical imaging," *IEEE Trans. Biomed. Eng.*, vol. 39, no. 3, pp. 307–310, Mar. 1992. - [99] R. J. Lehner and R. M. Rangayyan, "A three-channel microcomputer system for segmentation and characterization of the phonocardiogram," *IEEE Trans. Biomed. Eng.*, vol. BME-34, no. 6, pp. 485–489, Jun. 1987. - [100] D. Gill, N. Gavrieli, and N. Intrator, "Detection and identification of heart sounds using homomorphic envelogram and self-organizing probabilistic model," in *Proc. Comput. Cardiol.*, vol. 32, Sep. 2005, pp. 957–960. - [101] A. D. Ricke, R. J. Povinelli, and M. T. Johnson, "Automatic segmentation of heart sound signals using hidden Markov models," in *Proc. Comput. Cardiol.*, Sep. 2005, pp. 953–956. - [102] M. Abdollahpur, A. Ghaffari, S. Ghiasi, and M. J. Mollakazemi, "Detection of pathological heart sounds," *Physiol. Meas.*, vol. 38, no. 8, pp. 1616–1630, 2017. - [103] M. N. Homsi and P. Warrick, "Ensemble methods with outliers for phonocardiogram classification," *Physiol. Meas.*, vol. 38, no. 8, pp. 1631–1644, 2017. - [104] E. Kay and A. Agarwal, "DropConnected neural networks trained on time-frequency and inter-beat features for classifying heart sounds," *Physiol. Meas.*, vol. 38, no. 8, pp. 1645–1657, 2017. - [105] C. Kwak and O.-W. Kwon, "Cardiac disorder classification by heart sound signals using murmur likelihood and hidden Markov model state likelihood," *IET Signal Process.*, vol. 6, no. 4, pp. 326–334, 2012. - [106] T.-E. Chen et al., "S1 and S2 heart sound recognition using deep neural networks," *IEEE Trans. Biomed. Eng.*, vol. 64, no. 2, pp. 372–380, Feb. 2017. - [107] Y. Zheng, X. Guo, and X. Ding, "A novel hybrid energy fraction and entropy-based approach for systolic heart murmurs identification," *Expert Syst. Appl.*, vol. 42, no. 5, pp. 2710–2721, 2015. - [108] V. Nigam and R. Priemer, "Accessing heart dynamics to estimate durations of heart sounds," *Physiol. Meas.*, vol. 26, no. 6, pp. 1005–1018, 2005. - [109] S. Sanei, M. Ghodsi, and H. Hassani, "An adaptive singular spectrum analysis approach to murmur detection from heart sounds," *Med. Eng. Phys.*, vol. 33, no. 3, pp. 362–367, 2011. - [110] Z. Dokur and T. Ölmez, "Heart sound classification using wavelet transform and incremental self-organizing map," *Digit. Signal Process.*, vol. 18, pp. 951–959, Nov. 2008. - [111] G. Redlarski, D. Gradolewski, and A. Palkowski, "A system for heart sounds classification," *PLoS One*, vol. 9, no. 11, p. e112673, 2014. - [112] V. Nigam and R. Priemer, "A simplicity-based fuzzy clustering approach for detection and extraction of murmurs from the phonocardiogram," *Physiol. Meas.*, vol. 29, no. 1, pp. 33–47, 2008. - [113] T. Oskiper and R. Watrous, "Detection of the first heart sound using a time-delay neural network," in *Proc. Comput. Cardiol.*, vol. 29, Sep. 2002, pp. 537–540. - [114] S.-W. Deng and J.-Q. Han, "Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps," *Future Gener. Comput. Syst.*, vol. 60, pp. 13–21, Feb. 2016. - [115] A. Haghighi-Mood and J. N. Torry, "A sub-band energy tracking algorithm for heart sound segmentation," in *Proc. Comput. Cardiol.*, Sep. 1995, pp. 501–504. - [116] J. Herzig, A. Bickel, A. Eitan, and N. Intrator, "Monitoring cardiac stress using features extracted from S1 heart sounds," *IEEE Trans. Biomed. Eng.*, vol. 62, no. 4, pp. 1169–1178, Apr. 2015. - [117] R. Abbasi-Kesbi, A. Valipour, and K. Imani, "Cardiorespiratory system monitoring using a developed acoustic sensor," *Healthcare Technol. Lett.*, vol. 5, no. 1, pp. 7–12, 2018. - [118] H. M. Fahad, M. U. G. Khan, T. Saba, A. Rehman, and S. Iqbal, "Microscopic abnormality classification of cardiac murmurs using ANFIS and HMM," *Microsc. Res. Techn.*, vol. 81, no. 5, pp. 449–457, 2018 - [119] Online Database 3M Littmann.
Accessed: Jan. 2017. [Online]. Available: www.littmann.in - [120] Y. Soeta and Y. Bito, "Detection of features of prosthetic cardiac valve sound by spectrogram analysis," *Appl. Acoust.*, vol. 89, pp. 28–33, Mar. 2015. - [121] M. S. Obaidat, "Phonocardiogram signal analysis: Techniques and performance comparison," *J. Med. Eng. Technol.*, vol. 17, no. 6, pp. 221–227, 1993. - [122] N. E. Huang et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. Roy. Soc. London A, Math., Phys. Eng. Sci., vol. 454, no. 1971, pp. 903–995, Mar. 1998. - [123] P. M. Bentley, P. M. Grant, and J. T. E. McDonnell, "Time-frequency and time-scale techniques for the classification of native and bioprosthetic heart valve sounds," *IEEE Trans. Biomed. Eng.*, vol. 45, no. 1, pp. 125–128, Jan. 1998. - [124] S. Ari, K. Hembram, and G. Saha, "Detection of cardiac abnormality from PCG signal using LMS based least square SVM classifier," Expert Syst. Appl., vol. 37, no. 12, pp. 8019–8026, 2010. - [125] S. M. Debbal and F. Bereksi-Reguig, "Analysis of the second heart sound using continuous wavelet transform," *J. Med. Eng. Technol.*, vol. 28, no. 4, pp. 151–156, 2004. - [126] S. M. Debbal and F. Bereksi-Reguig, "Filtering and classification of phonocardiogram signals using wavelet transform," *J. Med. Eng. Tech*nol., vol. 32, no. 1, pp. 53–65, 2008. - [127] O. Rioul and P. Flandrin, "Time-scale energy distributions: A general class extending wavelet transforms," *IEEE Trans. Signal Process.*, vol. 40, no. 7, pp. 1746–1757, Jul. 1992. - [128] M. Akay, "Wavelet applications in medicine," *IEEE Spectr.*, vol. 34, no. 5, pp. 50–56, May 1997. - [129] S. M. Debbal and F. Bereksi-Reguig, "Detection of differences of the phonocardiogram signals by using the continuous wavelet transform method," *Biomed. Soft Comput. Hum. Sci.*, vol. 18, no. 2, pp. 73–81, 2013. - [130] B. Ergen, Y. Tatar, and H. O. Gulcur, "Time-frequency analysis of phonocardiogram signals using wavelet transform: A comparative study," *Comput. Methods Biomech. Biomed. Eng.*, vol. 15, no. 4, pp. 371–381, 2012. - [131] S. M. Debbal and A. M. Tani, "Heart sounds analysis and murmurs," Int. J. Med. Eng. Inform., vol. 8, no. 1, pp. 49–62, 2016. - [132] P. Wang, C. Lim, S. Chauhan, J. Foo, and V. Anantharaman, "Phonocardiographic signal analysis method using a modified hidden Markov model," *Ann. Biomed. Eng.*, vol. 35, no. 3, pp. 367–374, 2007 - [133] S. Chauhan, P. Wang, C. S. Lim, and V. Anantharaman, "A computer-aided MFCC-based HMM system for automatic auscultation," *Comput. Biol. Med.*, vol. 38, no. 2, pp. 221–233, 2008. - [134] P. Lubaib and K. V. A. Muneer, "The heart defect analysis based on PCG signals using pattern recognition techniques," *Procedia Technol.*, vol. 24, pp. 1024–1031, Jan. 2016. - [135] J. E. Jacobs, K. Horikoshi, and M. L. Petrovick, "Feasibility of automated analysis of phonocardiogram," *J. Audio Eng. Soc.*, vol. 17, no. 1, pp. 49–54, 1969. - [136] T. H. Joo, J. H. McClellan, R. A. Foale, G. S. Myers, and R. S. Lees, "Pole-zero modeling and classification of phonocardiograms," *IEEE Trans. Biomed. Eng.*, vol. BME-30, no. 2, pp. 110–118, Feb. 1983. - [137] P. D. Stein, H. N. Sabbah, J. B. Lakier, S. R. Kemp, and D. J. Magilligan, "Frequency spectra of the first heart sound and of the aortic component of the second heart sound in patients with degenerated porcine bioprosthetic valves," *Amer. J. Cardiol.*, vol. 53, no. 4, pp. 557–561, 1984. - [138] B. M. Whitaker, P. B. Suresha, C. Liu, G. Clifford, and D. Anderson, "Combining sparse coding and time-domain features for heart sound classification," *Physiol. Meas.*, vol. 38, pp. 1701–1713, Jul. 2017. - [139] S. Patidar, R. B. Pachori, and N. Garg, "Automatic diagnosis of septal defects based on tunable-Q wavelet transform of cardiac sound signals," *Expert Syst. Appl.*, vol. 42, no. 7, pp. 3315–3326, 2015. - [140] A. Gharehbaghi, M. Borga, B. J. Sjöberg, and P. Ask, "A novel method for discrimination between innocent and pathological heart murmurs," *Med. Eng. Phys.*, vol. 37, no. 7, pp. 674–682, 2015. - [141] A. Gharehbaghi, I. Ekman, P. Ask, E. Nylander, and B. Janerot-Sjoberg, "Assessment of aortic valve stenosis severity using intelligent phonocardiography," *Int. J. Cardiol.*, vol. 198, pp. 58–60, Nov. 2015. - [142] F. Safara, "Cumulant-based trapezoidal basis selection for heart sound classification," Med. Biol. Eng. Comput., vol. 53, no. 11, pp. 1153–1164, 2015. - [143] Y. Wang, W. Li, J. Zhou, X. Li, and P. Yifei, "Identification of the normal and abnormal heart sounds using wavelet-time entropy features based on OMS-WPD," *Future Gener. Comput. Syst.*, vol. 37, pp. 488–495, Jul. 2014. - [144] T. Gokhale, "Machine learning based identification of pathological heart sounds," in *Proc. Comput. Cardiol.*, vol. 43, Sep. 2016, pp. 553–556. - [145] E. Avci, "A new intelligent diagnosis system for the heart valve diseases by using genetic-SVM classifier," *Expert Syst. Appl.*, vol. 36, no. 7, pp. 10618–10626, 2009. - [146] I. Maglogiannis, E. Loukis, E. Zafiropoulos, and A. Stasis, "Support vectors machine-based identification of heart valve diseases using heart sounds," *Comput. Methods Programs Biomed.*, vol. 95, no. 1, pp. 47–61, 2009. - [147] S. Choi, "Detection of valvular heart disorders using wavelet packet decomposition and support vector machine," *Expert Syst. Appl.*, vol. 35, no. 4, pp. 1679–1687, 2008. - [148] E. Çomak, A. Arslan, and İ. Türkoğlu, "A decision support system based on support vector machines for diagnosis of the heart valve diseases," *Comput. Biol. Med.*, vol. 37, no. 1, pp. 21–27, 2007 - [149] R. Saraçoğlu, "Hidden Markov model-based classification of heart valve disease with PCA for dimension reduction," Eng. Appl. Artif. Intell., vol. 25, no. 7, pp. 1523–1528, 2012. - [150] H. Uğuz, A. Arslan, and İ. Türkoğlu, "A biomedical system based on hidden Markov model for diagnosis of the heart valve diseases," *Pattern Recognit. Lett.*, vol. 28, no. 4, pp. 395–404, 2007. - [151] A. F. Quiceno-Manrique, J. I. Godino-Llorente, M. Blanco-Velasco, and G. Castellanos-Dominguez, "Selection of dynamic features based on time-frequency representations for heart murmur detection from phonocardiographic signals," *Ann. Biomed. Eng.*, vol. 38, no. 1, pp. 118–137, 2010. - [152] L. D. Avendaño-Valencia, J. I. Godino-Llorente, M. Blanco-Velasco, and G. Castellanos-Dominguez, "Feature extraction from parametric time– frequency representations for heart murmur detection," *Ann. Biomed. Eng.*, vol. 38, no. 8, pp. 2716–2732, 2010. - [153] A. Sengur and I. Turkoglu, "A hybrid method based on artificial immune system and fuzzy k-NN algorithm for diagnosis of heart valve diseases," *Expert Syst. Appl.*, vol. 35, no. 3, pp. 1011–1020, 2008. - [154] F. Beritelli, G. Capizzi, G. Lo Sciuto, C. Napoli, and F. Scaglione, "Automatic heart activity diagnosis based on Gram polynomials and probabilistic neural networks," *Biomed. Eng. Lett.*, vol. 8, no. 1, pp. 77–85, 2018. - [155] V. Maknickas and A. Maknickas, "Recognition of normal-abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients," *Physiol. Meas.*, vol. 38, no. 8, pp. 1671–1684, 2017. - [156] H.-L. Her and H.-W. Chiu, "Using time-frequency features to recognize abnormal heart sounds," in *Proc. Comput. Cardiol.*, vol. 43, Sep. 2016, pp. 1145–1148. - [157] S.-K. Teo, B. Yang, L. Feng, and Y. Su, "Power spectrum analysis for classification of heart sound recording," in *Proc. Comput. Cardiol.*, vol. 43, Sep. 2016, pp. 1169–1172. - [158] M. Zabihi, A. B. Rad, S. Kiranyaz, M. Gabbouj, and A. K. Katsaggelos, "Heart sound anomaly and quality detection using ensemble of neural networks without segmentation," in *Proc. Comput. Cardiol.*, vol. 43, Sep. 2016, pp. 613–616. - [159] C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, "Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds," in *Proc. Comput. Cardiol.*, vol. 43, Sep. 2016, pp. 621–624. - [160] M. Tschannen, T. Kramer, G. Marti, M. Heinzmann, and T. Wiatowski, "Heart sound classification using deep structured features," in *Proc. Comput. Cardiol.*, vol. 43, Sep. 2016, pp. 565–568. - [161] A. Gharehbaghi, T. Dutoit, P. Ask, and L. Sörnmo, "Detection of systolic ejection click using time growing neural network," *Med. Eng. Phys.*, vol. 36, no. 4, pp. 477–483. - [162] H. Uğuz, "Adaptive neuro-fuzzy inference system for diagnosis of the heart valve diseases using wavelet transform with entropy," *Neural Com*put. Appl., vol. 21, no. 7, pp. 1617–1628, 2012. - [163] S. Babaei and A. Geranmayeh, "Heart sound reproduction based on neural network classification of cardiac valve disorders using wavelet transforms of PCG signals," *Comput. Biol. Med.*, vol. 39, no. 1, pp. 8–15, 2009. - [164] A. A. Sepehri, J. Hancq, T. Dutoit, A. Gharehbaghi, A. Kocharian, and A. Kiani, "Computerized screening of children congenital heart diseases," *Comput. Methods Programs Biomed.*, vol. 92, pp. 186–192, Nov. 2008. - [165] J. P. D. Vos and M. M. Blanckenberg, "Automated pediatric cardiac auscultation," *IEEE Trans. Biomed. Eng.*, vol. 54, no. 2, pp. 244–252, Feb. 2007. - [166] K. Higuchi, K. Sato, H. Makuuchi, A. Furuse, S. Takamoto, and H. Takeda, "Automated diagnosis of heart disease in patients with heart murmurs: Application of a neural network technique," *J. Med. Eng. Technol.*, vol. 30, no. 2, pp. 61–68, 2006. - [167] N. Andrisevic, K. Ejaz, F. Rios-Gutierrez, R. Alba-Flores, G. Nordehn, and S. Burns, "Detection of heart murmurs using wavelet analysis and artificial neural networks," *J. Biomed. Eng.*, vol. 127, no. 6, pp. 899–904, 2005. - [168] S. R. Bhatikar, C. DeGroff, and R. L. Mahajan, "A classifier based on the artificial neural network approach for cardiologic auscultation in pediatrics," *Artif. Intell. Med.*, vol. 33, no. 3, pp. 251–260,
2005. - [169] T. Ölmez and Z. Dokur, "Classification of heart sounds using an artificial neural network," *Pattern Recognit. Lett.*, vol. 24, pp. 617–629, Jan. 2003. - [170] R. Folland, E. L. Hines, P. Boilot, and D. Morgan, "Classifying coronary dysfunction using neural networks through cardiovascular auscultation," *Med. Biol. Eng. Comput.*, vol. 40, no. 3, pp. 339–343, 2002. - [171] I. Cathers, "Neural network assisted cardiac auscultation," Artif. Intell. Med., vol. 7, no. 1, pp. 53–66, 1995. - [172] Y. M. Akay, M. Akay, W. Welkowitz, and J. Kostis, "Noninvasive detection of coronary artery disease," *IEEE Eng. Med. Biol. Mag.*, vol. 13, no. 5, pp. 761–764, Nov. 1994. - [173] R. C. King, E. Villenueve, R. J. White, R. S. Sherratt, W. Holderbaum, and W. S. Harwin, "Application of data fusion techniques and technologies for wearable health monitoring," *Med. Eng. Phys.*, vol. 42, pp. 1–12, Apr. 2017. - [174] S. Pavlopoulos, A. C. H. Stasis, and E. N. Loukis, "A decision tree-based method for the differential diagnosis of aortic stenosis from mitral regurgitation using heart sounds," *Biomed. Eng. OnLine*, vol. 3, no. 1, p. 21, 2004. - [175] F. Safara, S. Doraisamy, A. Azman, A. Jantan, and S. Ranga, "Wavelet packet entropy for heart murmurs classification," *Adv. Bioinf.*, vol. 2012, Oct. 2012, Art. no. 327269. - [176] L.-G. Durand, M. Blanchard, G. Cloutier, H. N. Sabbah, and P. D. Stein, "Comparison of pattern recognition methods for computerassisted classification of spectra of heart sounds in patients with a porcine bioprosthetic valve implanted in the mitral position," *IEEE Trans. Biomed. Eng.*, vol. 37, no. 12, pp. 1121–1129, Dec. 1990. - [177] L. Atallah, B. Lo, R. King, and G.-Z. Yang, "Sensor positioning for activity recognition using wearable accelerometers," *IEEE Trans. Biomed. Circuits Syst.*, vol. 5, no. 4, pp. 320–329, Aug. 2011. - [178] A. M. Mannini and A. Sabatini, "Machine learning methods for classifying human physical activity from on-body accelerometers," *Sensors*, vol. 10, no. 2, pp. 1154–1175, 2010. - [179] C. Cortes and V. Vapnik, "Support-vector networks," *Mach. Learn.*, vol. 20, no. 3, pp. 273–297, 1995. - [180] Y.-J. Son, H.-G. Kim, E.-H. Kim, S. Choi, and S.-K. Lee, "Application of support vector machine for prediction of medication adherence in heart failure patients," *Healthcare Inform. Res.*, vol. 16, no. 4, pp. 253–259, 2010. - [181] Y.-L. Tseng, K.-S. Lin, and F.-S. Jaw, "Comparison of support-vector machine and sparse representation using a modified rule-based method for automated myocardial ischemia detection," *Comput. Math. Methods Med.*, vol. 2016, Jan. 2016, Art. no. 9460375. - [182] M. Hamidi, H. Ghassemian, and M. Imani, "Classification of heart sound signal using curve fitting and fractal dimension," *Biomed. Signal Process.* Control, vol. 39, pp. 351–359, Jan. 2018. - [183] P. Langley and A. Murray, "Heart sound classification from unsegmented phonocardiograms," *Physiol. Meas.*, vol. 38, pp. 1658–1670, Jul. 2017. - [184] M. Rouhani and R. Abdoli, "A comparison of different feature extraction methods for diagnosis of valvular heart diseases using PCG signals," J. Med. Eng. Technol., vol. 36, no. 1, pp. 42–49, 2012. - [185] Y. Chen, S. Wang, C.-H. Shen, and F. K. Choy, "Matrix decomposition based feature extraction for murmur classification," *Med. Eng. Phys.*, vol. 34, no. 6, pp. 756–761, 2012. - [186] Z. Dokur and T. Ölmez, "Feature determination for heart sounds based on divergence analysis," *Digit. Signal Process.*, vol. 19, no. 3, pp. 521–531, 2009 - [187] K. Altun, B. Barshan, and O. Tunçel, "Comparative study on classifying human activities with miniature inertial and magnetic sensors," *Pattern Recognit.*, vol. 43, no. 10, pp. 3605–3620, Oct. 2010. - [188] N. Bicocchi, M. Mamei, and F. Zambonelli, "Detecting activities from body-worn accelerometers via instance-based algorithms," *Pervasive Mobile Comput.*, vol. 6, no. 4, pp. 482–495, Aug. 2010. - [189] Z. Wang, Z. Yang, and T. Dong, "A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time," *Sensors*, vol. 17, no. 2, p. 341, 2017. - [190] B. Al-Naami, J. Al-Nabulsi, H. Amasha, and J. Torry, "Utilizing wavelet transform and support vector machine for detection of the paradoxical splitting in the second heart sound," *Med. Biol. Eng. Comput.*, vol. 48, no. 2, pp. 177–184, 2010. - [191] G. V. H. Prasad and P. R. Kumar, "Wavelet Feature Selection Approach for Heart Murmur Classification," *Int. J. Med., Heal., Biomed., Bioeng. Pharmaceutical Eng.*, vol. 9, no. 3, pp. 315–322, 2015. - [192] A. Gavrovska, G. Zajić, I. Reljin, and B. Reljin, "Classification of prolapsed mitral valve versus healthy heart from phonocardiograms by multifractal analysis," *Comput. Math. Methods Med.*, vol. 2013, Apr. 2013, Art. no. 376152. - [193] M. Abo-Zahhad, M. Farrag, S. N. Abbas, and S. M. Ahmed, "A comparative approach between cepstral features for human authentication using heart sounds," *Signal, Image Video Process.*, vol. 10, no. 5, pp. 843–851, 2016. - [194] C. Ahlstrom, T. Länne, P. Ask, and A. Johansson, "A method for accurate localization of the first heart sound and possible applications," *Physiol. Meas.*, vol. 29, no. 3, pp. 417–428, 2008. - [195] G. E. Güraksın and H. Uğuz, "Classification of heart sounds based on the least squares support vector machine," *Int. J. Innov. Comput., Inf. Control*, vol. 7, no. 12, pp. 7131–7144, 2011. **AMIT KRISHNA DWIVEDI** (GS'14) received the B.Tech. degree in electronics from the Vishveshwarya Institute, India, in 2012, and the M.E. degree in electronics from the Birla Institute of Technology, Mesra, India, in 2015. He received the Certificate of Academic Excellence for the academic years 2009–2010, 2010–2011, and 2011–2012 for his top academic performances. He also secured first positions in both the bachelor's and master's degrees. He was a recipient of the GATE Scholar- ship from AICTE, Government of India, for the academic years 2013–2015, and the Visvesvaraya Scholarship, Ministry of Electronics and Information Technology, Government of India, for the academic year 2015–2016. He is currently a President's PhD Scholar, and pursuing the Ph.D. degree with the Department of Electrical and Electronic Engineering, Imperial College London, London, U.K. From 2015 to 2016, he was a Research Scholar with the Department of Electrical Engineering, IIT Delhi, India. His research interests include biomedical circuits and systems focused toward low-power electronics and its applications. He is the author or co-author of more than 25 research papers in reputed journals and international conferences, and book chapters. **ESTHER RODRIGUEZ-VILLEGAS** (SM'08) received the Ph.D. degree from the University of Seville, Spain, in 2002. Since 2002, she has been a Faculty Member with the Imperial College London. Since 2015, she holds the Chair of Low Power Electronics with the Department of Electrical and Electronic Engineering. She is also the Director of the Wearable Technologies Lab. She has trained over 700 engineers from all over the world at the M.S. or Ph.D. levels in ultralow-power electronic design. She is also the Chief Scientific Officer of TainiTec, Ltd., and the Co-Chief Executive Officer of Acurable, Ltd., which she founded. She has received a number of awards and honors, including being recognized as the Top Young Scientist/Engineer in Spain, in 2009 (the Complutense Award); the Institution of Engineering and Technology (United Kingdom) Innovation Award, in 2009; being recognized twice by the European Research Council as a Research Leader in Europe (Starting and Consolidator Awards, in 2010 and 2016); and the XPRIZE (United States) Award, in 2014. . . . **SYED ANAS IMTIAZ** (S'07–M'16) received the B.Eng. degree from the National University of Sciences and Technology, Islamabad, Pakistan, in 2008, and the M.Sc. and Ph.D. degrees from the Imperial College London, London, U.K., in 2009 and 2015, respectively. From 2009 to 2010, he was a Digital Design Engineer with Imagination Technologies, Kings Langley, U.K. He is currently a research fellow and focuses on creating novel wearable technologies to aid in the long-term monitoring and diagnosis of different medical conditions. His current research interests include developing low-complexity signal processing algorithms and their low-power mixed-signal circuit design, particularly for use in sleep medicine and epilepsy monitoring.