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ABSTRACT This paper addresses the problem of adaptive output feedback control for a class of
non-triangular time-varying delay system with input constraints and full-state constraints. A variable
separation approach is adopted to overcome the design difficulty from the non-triangular structure. A novel
Lyapunov function is introduced to compensate the time-delay terms. Unknown functions are approximated
by the radial basis function neural networks. Only one parameter needs to be adjusted online, and a dynamic
surface control technique is employed to reduce the computation burden. Combining the barrier Lyapunov
functionwith a backstepping technique in the controller design procedure, the proposed controller guarantees
that all the signals in the closed-loop system are uniformly ultimately bounded and the full-state constraints
are met. The simulation results demonstrate the effectiveness of the proposed approach.

INDEX TERMS Adaptive neural control, non-triangular form systems, full state constraints, input saturation.

I. INTRODUCTION
The adaptive neural or fuzzy control have attracted much
attention in past decades. Based on neural networks (NNs)
or fuzzy logic systems (FLSs) inherent good approximation
ability for uncertain functions of the systems, many research
results have been made e.g., see [1]–[30]. For strict-feedback
systems, when states were measured, different adaptive meth-
ods were given in [2], [4]–[6], [10], and [16]. In [4], tracking
control for perturbed strict-feedback nonlinear delay sys-
tems has been studied. Reference [20] proposed a distributed
coordination control approach for multi-agent systems with
dead-zone input. For states were unmeasured, the researchers
did some study in [8], [12], [19], [20], and [24]. In [8] an
output feedback control method was presented for nonlinear
time-varying delay systems with unknown control direction.
For pure-feedback systems, [3] investigated the problem of
the tracking control design for pure-feedback systems with an
ISS-modular approach. Reference [18] addressed the prob-
lem of adaptive tracking control design for pure-feedback
systems with learning control. Compared to the above two
classes of systems, the non-triangular form system which
nonlinearities function of it include thewhole states [25]–[32]
is more general. The strict-feedback and pure-feedback
systems can be seen as its special cases. Reference [31]

investigated the problem of adaptive tracking control for
stochastic nonstrict-feedback switch systems. In [26] an
output feedback adaptive control method was proposed
for a class of nonstrict-feedback stochastic nonlinear sys-
tems. However, the ‘‘explosion of complexity’’ were exist
in backstepping design process in [10], [11], [20], [29],
and [30]. To overcome this drawback, the DSC technique
were employed for strict-feedback systems [13], [17], [34],
for pure-feedback system [9] and for nonstrict-feedback
systems [32]. In [32], Niu et al. gave an output feed-
back control approach for stochastic interconnected nonlinear
nonstrict-feedback systems with dead zone input. The DSC
techniquewhich has been applied in these literatures achieved
the good tracking performance and really reduces the compu-
tation burden.

It is well known, in practice systems, the time-delay is often
appears or input saturation is required, if they are handed
inappropriately, they can degrade the system performance and
even lead to system instability, hence analysis and design
of the nonlinear systems with input saturation or time-delay
become an important topic, much interesting research results
on these issues have been obtained in recent years [33]–[41].
In [33] a control method for uncertain discrete-time nonlinear
systems with input saturation was proposed. An dynamic

6072
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-9519-8675
https://orcid.org/0000-0001-8409-6465


R. Zhang, J. Li: Observer-Based Adaptive Neural Control for Non-Triangular Form Systems

model was employed to describe the saturation nonlinearity
with DSC for strict-feedback system was studied in [34].
When the states were unmeasured, [37] proposed control
scheme for nonlinear systems with unknown control direc-
tions and input saturation In [41], Zhou et al. presented
adaptive output feedback fuzzy tracking control method for
time-delay and input saturation nonlinear systems with DSC.
However, the abovemethods are only feasible in the nonlinear
triangular form systems and the constraints for the states were
ignored.

Constraints have become an important issues in many con-
trol systems, the constraints may appear in the output, input or
states, such as physical stoppage, saturation, performance and
safety specifications [42]. Recently, partial-state constraints
and full state constraints have been explored in this area by
using Barrier Lyapuov Functions (BLF) [43]–[50], [53], [54].
In [44] partial state constraints was explored by using BLF
for strict-feedback systems. Reference [45] investigated the
adaptive output constraints issue for nonlinear strict-feedback
systems with states unmeasured. In real systems, the full
state constraints may be required, [48] dealt with the tracking
control problem for an uncertain n-link robot with full state
constraints. For states were unmeasured, [46] and [49] gave
the output feedback control methods for strict-feedback sys-
tems. For pure-feedback systems, in [47], Liu and Tong pro-
posed a method for pure-feedback systems by employing the
mean value theorem transformed it into the strict-feedback
form with full state constraints. Reference [50] studied the
adaptive tracking control issue for switch pure-feedback sys-
tems with full state constraints. From the above observations,
we can see that most of the research results on full state
constraints are limited in strict-feedback and pure-feedback
formwithout DSC, they may be invalidated on non-triangular
form systems. It is natural question how to design the
non-triangular form systems especially the nonlinear function
include the whole states with DSC, To the best of the authors’
knowledge, there is seldom published works for such out-
put feedback system with DSC, especially the time-varying
delay and input saturation can be considered simultaneously.
This problem motivates the research of this paper. In this
paper, we will employ the BLF to investigate the problem
of adaptive tracking control design for non-triangular form
time-varying delay system with input saturation and full state
constraints.

The main contributions of this paper are summarized as
follows:

1) By constructing a new Lyapunov function, a DSC-based
adaptive output feedback neural control method is presented
for uncertain non-triangular form time-varying delay systems
with input saturation and full state constraints. Compared
with [1]–[8], [10]–[12], [14]–[16], and [18]–[24], the system
in this paper is more general and the computation burden is
reduced.

2) Only one parameter needs to be adjusted in controller
design procedure, this reduce the online computation burden
greatly.

3) It can guarantees that all the signals in the closed-loop
system are uniformly ultimately bounded and the full state
constraints are not violated.

The rest of paper is organized as follows: Section 2 present
problem formulation and preliminaries. In Section 3 the
state observer, adaptive neural control scheme and stabil-
ity analysis are given. Two examples are performed to
demonstrate the effectiveness of the proposed method in
Section 4, and Section 5 provides a summary of the work
performed.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. SYSTEMS REPRESENTATION
Consider the following non-triangular time-varying delay
system:
ẋi = xi+1 + fi (x)+ mi (x (t − τi (t)))+ di (x, t) ,

1 ≤ i ≤ n− 1
ẋn = u (v)+ fn (x)+ mn (x (t − τn (t)))+ dn (x, t) ,
y = x1.

(1)

where x = [x1, x2, · · · , xn]T ∈ Rn and y ∈ R denote the sys-
tem state and control output, respectively. For i = 1, · · · , n,
functions fi(·) and mi (·) are unknown smooth functions with
fi (0) = 0,mi (0) = 0τi (t) are the time-varying delay of the
ith subsystems, di (·) denote the external disturbance. The full
states are limited as |xi (t)| < Mi with Mi being a positive
constant. u (v (t)) is the saturation nonlinearly input function,
which is defined as:

u (v (t)) = sat (v (t))

=

{
sign (v (t)) uM , |v (t)| ≥ uM ,
v (t) , |v (t)| < uM ,

(2)

where v (t) ∈ R is the control input, uM is an upper bound
of u (t), sign (·) and sat (·) are the standard unit sign function
and saturation function, respectively. From the definition of
the saturation function (2), u (t) has a sharp corner when
|v (t)| = uM , thus backstepping technique cannot be directly
applied for (1) [51], the saturation nonlinearity with smooth
form which can be instead of (2) was described by [35] as
follows

h (v) = uM × tanh(
v
uM

) = uM
e
v/uM − e

−v/uM

ev/uM + e−v/uM
. (3)

To facilitate the control system design, the (2) can be
reformulated as

u (v) = h (v)+ p (v) , (4)

|p (v)| = |u (v)− h (v)| ≤ uM (1− tanh (1)) , K1, (5)

where K1 is a positive constant.
Remark 1: From (1), we can see that the unknown functions

fi (·) andmi (·) include all state variables, so it is more general
than systems in [1]–[24] and [33]–[50].
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Assumption 1 [28]: For nonlinear functions fi (·) andmi (·),
there exist positive constants pi, qi such that∣∣fi (x)− fi (x̂)∣∣ ≤ pi

∥∥x − x̂∥∥ ,∣∣mi (x)− mi (x̂)∣∣ ≤ qi
∥∥x − x̂∥∥ .

for all x, x̂ ∈ Rn.
Assumption 2: It is assumed that desired signal yr (t),

its 1th derivative y(1)r (t) and 2th derivative y(2)r (t) satisfy
|yr (t)| ≤ κ0 < M1,

∣∣∣y(1)r (t)
∣∣∣ ≤ κ1,

∣∣∣y(2)r (t)
∣∣∣ ≤ κ2 where

κ0, κ1, κ2 are positive constants.
Assumption 3: di (x, t) , i = 1, 2, · · · , n are bounded exter-

nal disturbance, there exists known positive constant d̄i, such
that |di (x, t)| ≤ d̄i.
Assumption 4: The discrete and distributed time-varying

delays τi (t) , i = 1, · · · , n − 1 satisfy 0 ≤ τi (t) ≤ d1
and the time derivations of τi (t) satisfies τ̇i (t) ≤ d∗1 < 1,
respectively, where d1, d∗1 are constants.
Assumption 5: There exists a constant m > 0, such that
|ρ̃| ≤ m, ρ̃ is an auxiliary design signal, which dynamic will
be described in the later.
Lemma1 [Young’s Inequality] [1]: For (x, y) ∈ R2 the

following inequality holds:

xy ≤
ςp

p
|x|p +

1
qςq
|y|q , (6)

where ς > 0, p > 1, q > 1 and (p− 1) (q− 1) = 1.
Lemma 2 [45]: For any positive constant kbi , if zi satisfy
|zi| < kbi , the following inequality holds.

log
kb2i

kb2i − z
2
i

<
z2i

kb2i − z
2
i

(7)

The control objective of this paper is to design an adaptive
neural output feedback controller such that:

1) the system output x1 tracks the reference trajectory yr (t)
and guarantees that all the signals in the closed-loop system
are uniformly ultimately bounded; 2) the full state constraints
are not violated.

B. NEURAL NETWORK APPROXIMATION
The radial basis function neural network (RBFNN) belongs
to a class of linearly parameterized network. An unknown
and continuous nonlinear function fi (Z ) : �z → R can be
approximated by RBFNN over a compact set �Z as follows:

fi (Z ) = 8∗Ti ξi (Z )+ δi (Z ) , ∀Z ∈ �Z ⊂ Rq (8)

where Z ∈ �Z ⊂ Rq is the input vector, ξi (Z ) =
[ξi1 (Z ) , ξi2 (Z ) , · · · ξil (Z )] ∈ Rl is basis function vector
with the NN node number l > 1, δi (Z ) is the approximation
error satisfying |δi (Z )| ≤ εi, εi are positive constants. ξij (Z )
are chosen as Gaussian function in the following form

ξij (Z ) = exp

[
−
(
Z −$ijk

)T (Z −$ijk
)

η2ij

]
(9)

where $ijk ∈ �Z are the centers and ηij are the width of the
receptive field, respectively. 8∗i = [φi1, φi2, · · · , φil] ∈ Rl is
the optimal weight vector, which are defined as follows:

8∗i = arg min
8i∈Rl

{
sup
Z∈�Z

∣∣∣fi (Z )−8T
i ξi (Z )

∣∣∣} . (10)

Remark 2: ξi (x) are radial basis function vector and satisfy
ξTi (x) ξi (x) ≤ 1. 8∗i is ideal weights vector, which are

unknown, we define θ∗ = max
{∥∥8∗i ∥∥2 , i = 1, 2, · · · , n

}
, θ̂

is the estimation of the θ∗, and the estimation error θ̃ = θ̂ −
θ∗. Compared with multiple parameters need to be estimated
in [25], [29], and [49], in this paper, only unknown parame-
ter θ∗ needs to be estimated, the computational burden can
be reduced. However, when different unknown parameters
need to be estimated, it should be use the multiple adaptive
laws [22].

III. OUTPUT FEEDBACK ADAPTIVE CONTROLLER
DESIGN AND STABILITY ANALYSIS
A. STATE OBSERVER DESIGN
In this paper, only state x1 is measured and the other states are
unavailable, let us consider the linear observer for system (1):{

˙̂xi = x̂i+1 + ki
(
y− x̂1

)
, i = 1, · · · , n− 1,

˙̂xn = u (v)+ kn
(
y− x̂1

)
,

(11)

where ki, i = 1, 2, · · · , n are positive design parame-
ters, x̂i, i = 1, 2, · · · , n are the observer states. x̂ =[
x̂1, x̂2, · · · x̂n

]T and e = x − x̂ are the observer state vector
and observer error vector, then the observer error dynamic can
be described as follows:

ė = Ae+ F (x)+M (x (t − τ (t)))+ D (x, t) (12)

where

A =

−k1... In−1
−kn 0 · · · 0

, F (x) =

 f1 (x)...
fn (x)


M (x (t − τ (t)))

=

m1 (x (t − τ1 (t)))
...

mn (x (t − τn (t)))


D (x, t) =

 d1 (x, t)...

dn (x, t)


Choose positive constants ki, i = 1, 2, · · · , n such that A is a
strict Hurwitz matrix, hence there exists a matrixP = PT > 0
such that

ATP+ PA = −Q. (13)
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B. ADAPTIVE NEURAL CONTTOLLER DESIGN AND
STABILITY ANALYSIS
In this section, adaptive neural controller will be proposed by
using the backstepping technique.

The change of coordinates are given as follow:

z1 = x̂1 − yr (14)

zi = x̂i − αif , i = 2, · · · , n− 1, (15)

zn = x̂n − αnf − ρ̃ (16)

χi = αif − αi−1, i = 2, · · · , n (17)

where zi is the virtual error, αif is the first-order filter output,
χi is the filter error, αi−1 is the virtual control input need to
be designed later. Let αi pass through a first-order filter with
time constant τi+1 the αi+1f can be obtained:{

τi+1α̇i+1f + αi+1f = αi,

αi+1f (0) = αi (0) ,
i = 1, · · · n− 1 (18)

The virtual control input signals αi, actual control input v and
parameter adaptive law for θ̂ are developed as:

αi = −cizi −
zi

2
(
k2bi − z

2
i

)
−
θ̂ziξTi (Zi) ξi (Zi)

2η2i
(
k2bi − z

2
i

) , 1 ≤ i ≤ n− 1, (19)

v = −cnzn −
zn

2
(
k2bn−z

2
n

)− θ̂znξTn (Zn) ξn (Zn)
2η2n

(
k2bn − z

2
n

) − ρ̃ (20)

˙̂
θ =

n∑
i=1

pz2i ξ
T
i (Zi) ξi (Zi)

2η2i
− σ θ̂ (21)

where ci, ηi, cn, ηn, p, σ are positive design parame-
ters, θ̂ is the estimation of parameter θ∗, Zi =[
x̂1, · · · x̂i, θ̂ , yr,ẏr,ÿr,

]T
∈ Ri+4.

Lemma 3: For change of coordinates z1 = x̂1 − yr zi =
x̂i−χi−αi−1, i = 2, · · · n− 1 and zn = x̂n−χn−αn−1− ρ̃,
the following inequality holds:∥∥x̂∥∥ ≤ n∑

i=1

|zi|βi
(
zi, θ̂

)
+

n∑
i=2

χi + µ (22)

where

βi

(
zi, θ̂

)
= 1+ ci +

1

2
(
k2bi − z

2
i

) + θ̂

2η2i
(
k2bi − z

2
i

)
µ = κ0 + m

Proof:
∥∥x̂∥∥ ≤ n∑

i=1

∣∣x̂i∣∣ = ∣∣x̂1∣∣+ n∑
i=2

∣∣x̂i∣∣
≤ |z1 + yr | +

n−1∑
i=2

{|zi+αi−1+χi|} + |zn + αn−1 + χn + ρ̃|

≤

n∑
i=1

|zi| +
n−1∑
i=1

|αi| +

n∑
i=2

χi + |yr | + |ρ̃|

≤

n∑
i=1

|zi| +
n−1∑
i=1

∣∣∣∣∣cizi + zi
2
(
k2bi − z

2
i

) + θ̂ziξTi ξi
2η2i

(
k2bi − z

2
i

) ∣∣∣∣∣
+

n∑
i=2

χi + µ ≤

n∑
i=1

|zi|βi
(
zi, θ̂

)
+

n∑
i=2

χi + µ.

Remark 3: According to (18), because
n∑
i=1

pz2i ξ
T
i (Zi)ξi(Zi)
2η2i

is

nonnegative, so we know that if initial condition θ̂ (t0) ≥ 0,
then the solution θ̂ (t) ≥ 0 for all t ≥ t0.

Combining with (9), (10) and (12), one obtains
ė = Ae+ F (x)+M (x (t − τ (t)))+ D (x, t) ,
ż1 = x̂2 + k1e1 − ẏr ,
˙̂xi = x̂i+1 + kie1, i = 2, · · · , n− 1,
˙̂xn = u (v)+ kne1.

(23)

A block diagram of control system is shown in Figure.1.

FIGURE 1. Block diagram of controlled system.

We consider the following Lyapunov function:

Ṽ = Ve + Vz + VH (24)

with

Ve =
1
2
eTPe

Vz =
n∑
i=1

Vi
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Vi =
1
2
log

k2bi(
k2bi − z

2
i

) + χ2
i+1

2
, i = 1, · · · , n− 1

Vn =
1
2
log

k2bn(
k2bn − z

2
n

)
VH =

e−γ (t−d1)

1− d∗1

n∑
i=1

∫ t

t−τi(t)

1
4
‖P‖2 eγ sq2i e

2
i (s) ds

+
e−γ (t−d1)

1− d∗1

n∑
i=1

∫ t

t−τi(t)
eγ sc̄z2i (s)β

2
i (s) ds

+
e−γ (t−d1)

1− d∗1

n∑
i=2

∫ t

t−τi(t)
eγ sc̄χ2

i (s) ds,

The matrix P satisfies (13) and γ is a positive constant.
Next, we consider the time derivative of the Lyapunov

function Ṽ .
First, we take the time derivative of Ve, from (12) V̇e is

follow:

V̇e =
1
2
ėTPe+

1
2
eTPė

=
1
2
eT
(
ATP+ PA

)
e+ eTPF (x)

+ eTPM (x (t − τ (t)))+ eTPD (x, t) . (25)

By applying the Young’s inequality, Assumptions 1, 3 and
Lemma 3, one can obtain the following inequalities:

eTP
(
F (x)− F

(
x̂
))
≤ ‖e‖2 +

1
4
‖P‖2

n∑
i=1

p2i ‖e‖
2

= ς1 ‖e‖2 , (26)

where

ς1 = 1+
1
4
‖P‖2

n∑
i=1

p2i · e
TPF

(
x̂
)

≤ ‖e‖2 +
1
4
‖P‖2

∥∥F (x̂)∥∥2
≤ ‖e‖2 +

1
4
‖P‖2

n∑
i=1

p2i
∥∥x̂∥∥2

≤ ‖e‖2+
1
4
‖P‖2

n∑
i=1

p2i

[
n∑
i=1

βi (zi, θ) |zi|+
n∑
i=2

χi+µ

]2

≤ ‖e‖2 +
1
2
n ‖P‖2

n∑
i=1

p2i

n∑
i=1

β2i (zi, θ) z
2
i

+
1
2
n ‖P‖2

n∑
i=1

p2i

n∑
i=2

χ2
i +

1
2
‖P‖2

n∑
i=1

p2i µ
2

≤ ‖e‖2 + c
n∑
i=1

z2i β
2
i + c

n∑
i=2

χ2
i + ε0 (27)

where

c =
n
2
‖P‖2

n∑
i=1

p2i , ε0 =
1
2
‖P‖2

n∑
i=1

p2i µ
2

· eTP
(
M (x (t − τ (t)))−M

(
x̂ (t − τ (t))

))
≤ ‖e‖2 +

1
4
‖P‖2

n∑
i=1

q2i e
2
i (t − τi (t)), (28)

eTPM
(
x̂ (t − τ (t))

)
≤ ‖e‖2 + c̄

n∑
i=1

z2i (t − τi (t))β
2
i (t − τi (t))

+ c̄
n∑
i=2

χ2
i (t − τi (t))+ ε̄0 (29)

eTPD (t) ≤
1
2
‖e‖2 +

1
2
‖P‖2

n∑
i=1

d̄2i , (30)

where c̄ = n
2 ‖P‖

2
n∑
i=1

q2i , ε̄0 =
1
2 ‖P‖

2
n∑
i=1

q2i µ
2.

Substitute (13) and (26)-(30) into (25) produces that

V̇e ≤ −λmin (Q) ‖e‖2 +
7
2
‖e‖2 + ς1 ‖e‖2 + ε0 + ε̄0

+ c̄
n∑
i=1

z2i (t − τi (t)) β
2
i (t − τi (t))+ c

n∑
i=2

χ2
i

+ c̄
n∑
i=2

χ2
i (t − τi (t))+

1
4
‖P‖2

n∑
i=1

q2i e
2
i (t − τi (t))

+ c
n∑
i=1

z2i β
2
i + 2ε ‖P‖2

n∑
i=1

d̄2i , (31)

Second, we take the time derivative of Vz, from (24) the
definition of Vz, first of all it need get V̇i, respectively.
Step 1: Take the time derivative of V1, V̇1 is given by

V̇1 =
z1ż1

k2b1 − z
2
1

+ χ2χ̇2

=
z1

k2b1 − z
2
1

(
x̂2 + k1e1 − ẏr

)
+ χ2χ̇2

=
z1

k2b1−z
2
1

(z2+α1+χ2+k1e1 − ẏr )+ χ2χ̇2,

(32)
z1

k2b1 − z
2
1

k1e1 ≤
$1

2
‖e1‖2 +

1
2$1

z21(
k2b1 − z

2
1

)2 k21 , (33)

z1
k2b1 − z

2
1

χ2 ≤
z21

2
(
k2b1 − z

2
1

)2 + χ2
2

2
. (34)

From (17), we can get

χ2χ̇2 ≤ −
χ2
2

τ2
+
χ2
2K

2
2

2δ2
+
δ2

2
, (35)

where $1, τ2, δ2 are design positive parameters. K2 is the
bound of α̇1
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Substituting (33)-(35) into (32) yields

V̇1 ≤
z1

k2b1 − z
2
1

z2 + z1

(
1

k2b1 − z
2
1

α1 +21

)

+
$1

2
‖e1‖2 +

χ2
2

2
−
χ2
2

τ2
+
χ2
2K

2
2

2δ2
, (36)

where 21 =
z1

2$1

(
k2b1
−z21

)2 k21 + z1

2
(
k2b1
−z21

)2 − 1
k2b1
−z21

ẏr .

Step 2: Take the time derivative of V2, V̇2 is given by

V̇2 =
z2ż2

k2b2 − z
2
2

+ χ3χ̇3

=
z2

k2b2−z
2
2

(
z3+χ3+α2+k2e1 − α̇2f

)
+χ3χ̇3,

(37)
z2

k2b2 − z
2
2

k2e1 ≤
$2

2
‖e1‖2 +

1
2$2

z22(
k2b2 − z

2
2

)2 k22 , (38)

z2
k2b2 − z

2
2

χ3 ≤
z22

2
(
k2b2 − z

2
2

)2 + χ2
3

2
. (39)

From (18) we can get

χ3χ̇3 ≤ −
χ2
3

τ3
+
χ2
3K

2
3

2δ3
+
δ3

2
, (40)

where $2, τ3, δ3 are design positive parameters. K3 is the
bound of α̇2.
Substituting (38)-(40) into (37) yields

V̇2 ≤
z2

k2b2 − z
2
2

z3 + z2

(
1

k2b2 − z
2
2

α2 +22

)

+
$2

2
‖e1‖2 +

χ2
3

2
−
χ2
3

τ3
+
χ2
3K

2
3

2δ3
, (41)

where 22 =
z2

2$2

(
k2b2
−z22

)2 k22 + z2

2
(
k2b2
−z22

)2 − α̇2f .
Step i (3 ≤ i ≤ n− 1): Take the time derivative of Vi, V̇i is

given by

V̇i =
ziżi

k2bi − z
2
i

+ χi+1χ̇i+1

=
zi

k2bi − z
2
i

(
zi+1 + χi+1 + αi + kie1 − α̇if

)
+χi+1χ̇i+1 (42)

zi
k2bi − z

2
i

kie1 ≤
$i

2
‖e1‖2 +

1
2$i

z2i(
k2bi − z

2
i

)2 k2i , (43)

zi
k2bi − z

2
i

χi+1 ≤
z2i

2
(
k2bi − z

2
i

)2 + χ2
i+1

2
, (44)

χi+1χ̇i+1 ≤ −
χ2
i+1

τi+1
+
χ2
i+1K

2
i+1

2δi+1
+
δi+1

2
, (45)

where $i, τi+1, δi+1 are design positive parameters. Ki+1 is
the bound of α̇i.

Substituting (43)-(45) into (42) yields

V̇i ≤
zi

k2bi − z
2
i

zi+1 + zi

(
1

k2bi − z
2
i

αi +2i

)

+
$i

2
‖e1‖2 +

χ2
i+1

2
−
χ2
i+1

τi+1
+
χ2
i+1K

2
i+1

2δi+1
, (46)

where 2i =
zi

2$i

(
k2bi−z

2
i

)2 k2i + zi

2
(
k2bi−z

2
i

)2 − α̇if .
Step n: Take the time derivative of Vn is

V̇n =
znżn

k2bn − z
2
n

=
zn

k2bn − z
2
n

(
u (v)+ kne1 − ˙̃ρ − α̇nf

)
, (47)

ρ̃ can be obtained from the following dynamic systems:

˙̃ρ = −ρ̃ + (h (v)− v) , (48)
zn

k2bn − z
2
n
kne1 ≤

$n

2
‖e1‖2 +

1
2$n

z2n(
k2bn − z

2
n

)2 k2n , (49)

zn
k2bn − z

2
n
p (v) ≤

z2n

2
(
k2bn − z

2
n

)2 + K 2
1

2
. (50)

Substituting (48)-(50) into (47) yields

V̇n ≤
zn

k2bn − z
2
n
(v+ ρ̃)+ zn2n +

$n

2
‖e1‖2 +

K 2
1

2
, (51)

where 2n =
zn

2$n

(
k2bn−z

2
n

)2 k2n + zn

2
(
k2bn−z

2
n

)2 − α̇nf $n > 0 is a

design parameter.
Remark 4: In this paper, we employ the DSC technique to

avoid the ‘‘explosion of complexity’’ arisen in the controller
design procedure, compared with [25]–[31], it reduces the
computation burden. There is few published works on this
issue in the non-triangular form systems.

Finally, we take the time derivative of VH , it can be
obtained

V̇H ≤
eγ d1

1− d∗1

1
4
‖P‖2 q2max ‖e‖

2

+

n∑
i=1

eγ (d1−τi(t)) (1− τ̇i (t))
1− d∗1

1
4
‖P‖2 q2i e

2
i (t − τi (t))

+
eγ d1

1− d∗1

n∑
i=1

c̄z2i β
2
i

−

n∑
i=1

eγ (d1−τi(t)) (1− τ̇i (t))
1− d∗1

c̄z2i (t − τi (t))

×β2i (t − τi (t))+
c̄eγ d1

1− d∗1

n∑
i=1

χ2
i

−

n∑
i=2

eγ (d1−τi(t)) (1− τ̇i (t))
1− d∗1

c̄χ2
i (t − τi (t))

− γVH , . (52)
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From Assumption 4 we can obtain the following inequality

eγ (d1−τi(t)) > 1, −
1− τ̇i (t)
1− d∗1

≤ −1. (53)

According to (31), (36), (41), (46), (51), (52) and (53),
the time derivation of the Lyapunov function Ṽ is

˙̃V ≤ −
(
λmin (Q)−

7
2
− ς1

−
eγ d1

4
(
1− d∗1

) ‖P‖2 q2max −

n∑
i=1

$i

2

)
‖e‖2

+ c
n∑
i=1

z2i β
2
i +

1

k2b1 − z
2
1

z1z2 + z1

[
1

k2b1 − z
2
1

α1 +21

]

+
1

k2b2 − z
2
2

z2z3 + z2

[
1

k2b2 − z
2
2

α2 +22

]

+

n−1∑
i=3

{
1

k2bi − z
2
i

zizi+1 + zi

(
1

k2bi − z
2
i

αi +2i

)}

+ zn

(
1

k2bn − z
2
n
(v+ ρ̃)+2n

)
+

eγ d1

1− d∗1

n∑
i=1

c̄z2i β
2
i

− γVH +
1
2
‖P‖2

n∑
i=1

d̄2i +
K 2
1

2
+ ε0 + ε̄0

−

n∑
i=2

(
1
τi
−

1
2
− c−

c̄eγ d1

1− d∗1
−
K 2
i

2δi

)
χ2
i .. (54)

To facilitate the adaptive controller design, denote

f̄1 = 21 + cz1β21 +
eγ d1

1− d∗1
c̄z1β21 , (55)

f̄2 = 22 + cz2β22 +
eγ d1

1− d∗1
c̄z2β22 +

z1
k2b1 − z

2
1

, (56)

f̄i = 2i + cziβ2i +
eγ d1

1− d∗1
c̄ziβ2i +

zi−1
k2bi−1 − z

2
i−1

,

3 ≤ i ≤ n− 1 (57)

f̄n = 2n + cznβ2n +
eγ d1

1− d∗1
c̄znβ2n +

zn−1
k2bn−1 − z

2
n−1

, (58)

The (54) can be rewritten as

˙̃V ≤ −k ‖e‖2 +
n−1∑
i=1

zi

 1(
k2bi − z

2
i

)αi + f̄i (Zi)


+ zn

 1(
k2bn − z

2
n

) (v+ ρ̃)+ f̄n (Zn)


− γVH + 2ε ‖P‖2
n∑
i=1

d̄2i

+
K 2
1

2
+ ε0 + ε̄0

−

n∑
i=2

(
1
τi
− c−

c̄eγ d1

1− d∗1
−

1
2
−
K 2
i

2δi

)
χ2
i , (59)

where k = λmin (Q)− 7
2 − ς1 −

eγ d1
4(1−d∗1 )

‖P‖2 q2max −
n∑
i=1

$i
2

choosing the proper design parameters ki, d1, d∗1 , γ, ωi, such
that k > 0.
The unknown smooth function f̄i (Zi) is approximated by

the NNs 8∗Ti ξi (Zi), so there exists an NNs on a compact set
�Zi , such that

f̄i (Zi) = 8∗Ti ξi (Zi)+ δi (Zi) (60)

where8∗i is the ideal weight vector, δi (Zi) is a neural approx-
imation error, and |δi (Zi)| ≤ εi

zi f̄i (Zi) ≤
θ∗z2i ξ

T
i (Zi) ξi (Zi)

2η2i
+
η2i

2
+
z2i
2
+
ε2i

2
(61)

where ηi > 0, εi > 0 are design constants.
According to (15), (16), (51) and (53), we have

˙̃V ≤ −k ‖e‖2 −
n∑
i=1

ci
z2i(

k2bi − z
2
i

) − n∑
i=1

θ̃z2i ξ
T
i (Zi) ξ (Zi)

2η2i

− γVH + 2ε ‖P‖2
n∑
i=1

d̄2i + ε0 + ε̄0 +
K 2
1

2

−

n−1∑
i=1

πi+1χ
2
i+1, (62)

where

πi+1 =
1
τi+1
− c−

c̄eγ d1

1−d∗1
−
1
2
−
K 2
i+1

2δi+1
, i = 1, · · · , n− 1,

select proper parameter such that πi+1 > 0.
Select the Lyapunov function V as follows:

V = Ṽ +
θ̃2

2p
, (63)

Combining with (62), one can get the V̇ as follows:

V̇ ≤ −k ‖e‖2 −
n∑
i=1

ci
z2i(

k2bi − z
2
i

) − γVH + 2ε ‖P‖2
n∑
i=1

d̄2i

+ ε0 + ε̄0 +
K 2
1

2
−

n−1∑
i=1

πi+1χ
2
i+1

−

n∑
i=1

θ̃z2i ξ
T
i (Zi) ξ (Zi)

2η2i
+
θ̃
˙̂
θ

p
(64)

Substitute (21) into (64) yields

V̇ ≤ −k ‖e‖2 −
n∑
i=1

ci
z2i

b2i − z
2
i

−

n−1∑
i=1

πi+1χ
2
i+1

− γVH −
σ θ̃ θ̂

p
+ 2ε ‖P‖2

n∑
i=1

d̄2i +ε0+ε̄0+
K 2
1

2
(65)
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Theorem 1: Assume that the Assumptions 1-4 held,
the closed-loop system consisting of the system (1) and
observer (11) with input saturation (4), the virtual con-
troller (19), actual controller (20) and the parameter adaptive
law (21), if the initial conditions are bounded, then we can
obtain that all the signals in the closed-looped system are
uniformly ultimately bounded and the full state constraints
are not violated.

Proof: Using the following inequality

−
σ θ̃ θ̂

p
≤ −

σ θ̃2

2p
+
σθ∗2

2p
, (66)

(65) can be rewritten as

V̇ ≤ −k ‖e‖2 −
n∑
i=1

ci
z2i(

k2bi − z
2
i

) − γVH − σ θ̃22p

−

n−1∑
i=1

πi+1χ
2
i+1 + 2ε ‖P‖2

n∑
i=1

d̄2i + C (67)

According to Lemma 2, we have

−ciz2i
k2bi − z

2
i

< log
−cik2bi
k2bi − z

2
i

(68)

then (68) can be expressed as

V̇ ≤ −ρ1V + C, (69)

where

ρ1 = min(
2k

λmax (P)
, 2ci (i = 1, · · · n) , 2πi+1 (i=2, · · · n−1) , γ, σ

)
C =

K 2
1

2
+ 2ε ‖P‖2

n∑
i=1

d̄2i +
σθ∗2

2p
+ ε0 + ε̄0

Resorting to (69), it can be conclude that

0 ≤ V (t) ≤
[
V (0)−

C
ρ1

]
e−ρ1t +

C
ρ1

≤ V (0)+
C
ρ1
, (70)

From the definition of V (t), we get |χi| ≤ ‖(χ2, · · ·χn)‖ ≤√
2
(
V (0)+ C

ρ1

)
= ρi, i = 2, · · · , n. According to defini-

tion of V and (68), we know that e, θ̃ , log
k2bi

k2bi−z
2
i
are bounded

and
1
2
eTPe ≤ V (0)+

C
ρ1
,

so

|ei| ≤ ‖e‖ ≤

√√√√2
(
V (0)+ C

ρ1

)
λmin (P)

= 1q.

Since x̂1 = z1 + yr (t) and |yr (t)| ≤ κ0, then we have
∣∣x̂1∣∣ ≤

|z1| + |yr (t)| < kb1 + κ0,from the definition of e1, we get

|x1| ≤
∣∣x̂1∣∣+|e1| < kb1+κ0+1q. LetM1 = κ0+1q+kb1 then

|x1| < M1. θ̃ is bounded and θ∗ is constant, so θ̂ is bounded.
Since x̂1, θ, yr , ẏr are bounded, so α1 is bounded, suppose ᾱ1
is the bound of α1, so |α1| ≤ ᾱ1, from z2 = x̂2−χ2−α1 and
|z2| < kb2 we can get

∣∣x̂2∣∣ < kb2+ ᾱ1+ρ2 from the definition
of e2, we have |x2| ≤

∣∣x̂2∣∣+ |e2| < kb2 + ᾱ1 + ρ2 +1q. Let
M2 = ᾱ1 + ρ2 +1q + kb2 then |x2| < M2. Similarly, it can
be in turn to prove that |xi+1| < Mi+1, i = 2, 3, · · · , n − 2
after verifying |αi| ≤ ᾱi. Since

∣∣x̂i∣∣ < kbi+ ᾱi+ρi, |zi| < kbi ,
we know |αi| ≤ ᾱi from (15) and (16), change of coordinates
zi+1 = x̂i+1 − αi − χi+1, then

∣∣x̂i+1∣∣ < kbi+1 + ᾱi + ρi+1 and
|xi+1| < kbi+1 + ᾱi+ ρi+1+1q. Which implies that |xi+1| <
Mi+1 ifMi+1 = ᾱi+ρi+1+1q+ kbi+1 . Since x̂n−1 and θ̂ are
bounded, so |αn−1| ≤ ᾱn−1, from zn = x̂n − ρ̃ − χn − αn−1,
we have

∣∣x̂n∣∣ < kbn + m + ᾱn−1 + ρn, so |xn| < kbn + m +
ᾱn−1 + ρn +1q as long asMn = ᾱn−1 + ρn +1q +m+ kbn
from (20) we can see that v is bounded. Therefore we can
conclude that all the signal u, x and θ̂ are bounded and the
system states are not violated.

From (24) and (70), one can obtain log k2b1/
(
k2b1 − z

2
1

)
≤

2
[
V (0)− C

ρ1

]
e−ρ1t+2 C

ρ1
, then it produces k2b1/

(
k2b1 − z

2
1

)
≤

e
2
[
V (0)− C

ρ1

]
e−ρ1t+2 C

ρ1 , further we have |z1| ≤ k2b1√
1− e

−2
[
V (0)− C

ρ1

]
e−ρ1t−2 C

ρ1 = 11 if V (0) = C
ρ1
, then

|z1| ≤ k2b1

√
1− e−2

C
ρ1 = 111 holds. If V (0) 6=

C
ρ1
, from k2b1

√
1− e

−2
[
V (0)− C

ρ1

]
e−ρ1t−2 C

ρ1 we can get
it is a decreasing function about t , so given any

112 > k2b1

√
1− e−2

C
ρ1 , there exist T1 = −

1
ρ1
×

In

[(
2C1 + In

(
1−

(
112
k2b1

)2
))

/
(
−2

(
V (0)− C

ρ1

))]
such

that t > T1, |z1| ≤ 112 holds, which implies that
lim
t→∞

sup |z1| ≤ 111, then t > T1, it holds |z1| ≤ 111. This
implies that z1 can be arbitrarily small by selecting proper
design parameter.

IV. SIMULATION EXAMPLES
In this section, two simulation examples are presented
to verify the effectiveness of our proposed scheme for
non-triangular form time-varying delay systems.
Example 1: Consider the following nonlinear system:
ẋ1 = x2 + 0.1x1x22 + x

2
1 (t − τ1 (t))

sin (x2 (t − τ1 (t)))+ d1 (x, t) ,
ẋ2=u (v)+x21 (t−τ2 (t)) sin (x2 (t−τ2(t)))+ d2 (x, t) ,
y = x1.

(71)

where the state constraints are |x1| < 0.2, |x2| < 0.5,
uncertainties terms are d1 (t) = 0.05 sin (2t) sin (x1x2),
d2 (t) = 0.1 sin (0.5t) sin

(
x1x22

)
, time-varying delay term are

τ1 (t) = τ2 (t) = 0.3 sin t , the reference trajectory yr =
0.1 sin (t) + 0.1 sin (0.5t). Control objective is to guarantee
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that all the signals in the closed-loop systems are bounded and
the full state constraints are not violated. The input u (v (t))is
described by

u (v (t)) = sat (v (t))

=

{
sign (v (t)) uM , |v (t)| ≥ uM
v (t) , |v (t)| < uM ,

(72)

with µM = 0.2.
Choose observer gains k1 = k2 = 3, from (11) the state

observer is designed as:{
˙̂x1 = x̂2 + 3

(
y− x̂1

)
,

˙̂x2 = u (v)+ 3
(
y− x̂1

)
.

(73)

The virtual control input signal α1, actual control input v
and the adaptive law ˙̂θ are given as follows:

α1 = −c1z1 −
z1

2
(
k2b1 − z

2
1

) − θ̂z1ξT1 (Z1) ξ1 (Z1)
2η21

(
k2b1 − z

2
1

) , (74)

v = −c2z2−
z2

2
(
k2b2 − z

2
2

)− θ̂z2ξT2 (Z2) ξ2 (Z2)
2η22

(
k2b2−z

2
2

) −ρ̃ (75)

˙̂
θ =

2∑
i=1

p

2η2i
z2i ξ

T
i (Zi) ξi (Zi)− σ θ̂, (76)

where z1 = x̂1− yr , z2 = x̂2−α2f − ρ̃, Z1 =
[
x̂1, yr , ẏr , θ

]T ,
Z2 =

[
x̂1, x̂2, yr , ẏr , ÿr , θ

]T , two NNs are employed in this
simulation. Neural networks 8̂T

1 ξ1 (Z1) contains 324 nodes
(i.e l1 = 324) with centers $l (l = 1, · · · , l1) evenly spaced
in [−0.2, 0.2]× [−0.5, 0.5]× [−0.2, 0.2]× [0, 1] and widths
ηl = 0.2. The other neural networks 8̂T

2 ξ2 (Z2)contain
1944 nodes (i.e. l2 = 1944)with centers $l (l = 1, · · · l2)
evenly spaced in [−0.2, 0.2] × [−0.5, 0.5] × [−0.2, 0.2] ×
[−0.2, 0.2] × × [−0.15, 0.15] × [0, 1] and widths ηl = 0.2
The design parameters applied in the simulation are set as
c1 = 6, c2 = 6, σ = 2, k1 = 3, k2 = 3, p = 2, η1 = 1,
η2 = 1, π2 = 0.02. The initial conditions are chosen as
x (0) = [0.1, 0.1]T , x̂ (0) = [0, 0.1]T and θ̂ (0) = 0.5.
The simulation results are shown in the Figs.2-9.

Fig.2 shows the good tracking performance of the system

FIGURE 2. Trajectories of x1 and yr in Example 1.

FIGURE 3. Trajectory of control v in Example 1.

FIGURE 4. Trajectory of control u in Example 1.

FIGURE 5. Trajectories of x1 and x̂1 in Example 1.

output and the tracking signal. Fig.3 and Fig.4 show the
control input signal v and u. Fig.5 and Fig.6 show the system
state and observer state, it can be seen that the observer have
good achieved performance. Fig.7 show the system states.
The trajectories of z1, z2, and θ̂ are demonstrated in Fig.8 and
Fig.9. From the simulation results, it is clearly that the pro-
posed controller guarantees all the signals in the closed-loop
systems are bounded and achieve good control performance.
Example 2: Consider the following Brusselator model

in [52]: which can be described by
ẋ1 = A− (B+ 1) x1 + x21x2 + x2 +

2
3
x1

+q1 (x (t − τ1 (t)))+ d1 (x, t)
ẋ2 = Bx1 − x21x2 + u+ q2 (x (t − τ2 (t)))+ d2 (x, t)
y = x1

(77)
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FIGURE 6. Trajectories of x2 and x̂2 in Example 1.

FIGURE 7. States trajectories x1 and x2 in Example 1.

FIGURE 8. Trajectories z1 and z2 in Example 1.

where

f1 (x) = A− (B+ 1) x1 + x21x2 +
2
3
x1

f2 (x) = Bx1 − x21x2
q1 (x (t − τ1 (t))) = 2x1 (t − τ1 (t))

τ1 (t) = 1+ 0.2 sin (t)
q2 (x (t − τ2 (t))) = 0.2x2 (t − τ2 (t))

τ2 (t) = 0.5+ sin (t)
d1 (x, t) = 0.1x1x22 cos (1.5t)

d2 (x, t) = 0.1
(
x21 + x

2
2

)
sin
(
t2
)

We assume the states are constrained in |x1| <

kc1 = 3 |x2| < kc2 = 6, the reference signal
yr = 2 sin (0.5t) + 0.05 sin (1.5t). Two NNs are employed
in this simulation. Neural networks 8̂T

1 ξ1 (Z1) contains

FIGURE 9. Trajectory of θ̂ in Example 1.

FIGURE 10. Trajectories of x1 and yr in Example 2.

FIGURE 11. Trajectory of control v in Example 2.

144 nodes (i.e l1 = 144) with centers $l (l = 1, · · · , l1)
evenly spaced in [−3, 3] × [−3, 3] × [−2, 2] × [0, 4] and
widths ηl = 2. The other neural networks 8̂T

2 ξ2 (Z2)contain
360nodes (i.e. l2 = 360) with centers $l (l = 1, · · · l2)
evenly spaced in [−3, 3] × [−6, 6] × [−3, 3] × [−2, 2] ×
× [−2, 2] × [0, 4] and widths ηl = 3. The design The
initial condition and the design parameters are chosen as
A = 1,B = 3, c1 = 6, c2 = 8, σ = 2, k1 = 3, k2 = 3, p = 4,
η1 = 2, η2 = 2, π2 = 0.02. The initial conditions are chosen
as x (0) = [0.02, 0]T , x̂ (0) = [0, 0.1]T , θ̂ (0) = 0.3uM = 6.
The simulation results are shown in the Figs.10-14.

Fig.10 shows the good tracking performance of the sys-
tem output and the tracking signal. Fig.11 and Fig.12 show
the control input signal v and u. Fig.13 show the system
states. The trajectories of z1, z2, and θ̂ are demonstrated
in Fig.14 and Fig.15.

VOLUME 7, 2019 6081



R. Zhang, J. Li: Observer-Based Adaptive Neural Control for Non-Triangular Form Systems

FIGURE 12. Trajectory of control u in Example 2.

FIGURE 13. States trajectories x1 and x2 in Example 2.

FIGURE 14. Trajectories z1 and z2 in Example 2.

FIGURE 15. Trajectory of θ̂ in Example 2.

V. CONCLUSIONS
In this paper an output feedback adaptive neural control
approach for a class of non-triangular time-delay systems
with input saturation and full state constraints has been
proposed. A variable separation approach is introduced to
overcome the non-triangular structure. The state observer and

BLF have been used to deal with the immeasurable states
and full state constraints. The DSC technique was employed
to overcome the ‘‘explosion of complexity’’. The proposed
controller guarantees that all the signals in the closed-loop
system are uniformly ultimate bounded and the full state
constraints are not violated. Two simulation results show that
the presented control method can perform successful control
and achieve desired performance.
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