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ABSTRACT An accurate description of laneway space with self-localization is a key issue when coal
mine rescue robots (CMRRs) perform post-disaster exploration and rescue missions. The 3D simultaneous
localization and mapping (SLAM) is an effective but time-critical and highly challenging task in complex
laneway scenarios, especially after disasters. In this paper, we propose a novel real-time 3D SLAM based on
normally distributed transform (NDT) that employs pose graph optimization and loop closure to further
improve mapping consistency. We innovatively extract floors and walls in the laneway as plane nodes
to construct landmark constraints, in addition to applying pose nodes from the lidar odometry via NDT.
A lightweight and effective loop detection method is conducted using odometry with an appearance-based
approach to building a globally consistent map. The proposed method was evaluated on a public dataset,
and field tests in an underground coal mine were performed. Results indicate that our algorithm can achieve
lower computational complexity and drift, which can provide pose estimation and environment description
for CMRRs to realize remote control assistance and automatic navigation in coal mine rescue missions.

INDEX TERMS CMRRs, SLAM, NDT, pose graph optimization.

I. INTRODUCTION
Disasters and accidents in coal mines are highly risky for
miners and rescuers. Coal mine rescue robots (CMRRs)
equipped with multiple sensors can inspect accident sites and
re-establish communication with disaster regions. Sounds,
images, temperature, gas concentrations, and other data can
be transmitted to the command center for formulating a
rescue strategy [1]. However, available robot positioning
methods are limited in coal mine laneways, which are com-
plex environments with unpredictable scenarios (Fig. 1).
Coal mine disasters lead to priori signposts and maps no
longer reliable. The scene is also impossible to reach with
GPS, and other wireless positioning methods that rely on
base stations are unavailable in the event of post-disaster
power interruption. Robotic pose estimation based on dead
reckoning cannot provide precise long-term estimation due
to the cumulative error on rough terrain, especially in the
case of rotation. At present, most CMRRs are based on
video for remote operation and positioning, which limits the
robot’s range of motion and safety [2], [3]. 3D simultaneous

localization and mapping (SLAM) is an effective method to
provide robot pose estimation and construct a laneway spatial
model simultaneously, serving as an important reference for
rescue missions. SLAM build maps and provide an intuitive
visualization for rescue responders. CMRR path planning
and autonomous navigation can also be realized. Yet despite
remarkable progress throughout the last 30 years, SLAM
algorithms are often unable to cope with overly challeng-
ing motions from either the robot or the environment, nor
can these algorithms consistently meet strict performance
requirements [4]. The application of SLAM technology to
CMRRs has faced many obstacles. Coal mines are a hostile
environment because the grounds are rugged and laneways
are typically degenerated, thus posing obstacles to laser-based
SLAM. Due to power interruption, the CMRR must use its
own light source, which has low illumination and changes
dramatically, leading to difficulty in the application of visual-
based SLAM. CMRR sensors must also meet explosion-
proof requirements, thereby limiting the available sensor
types.
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FIGURE 1. Typical environments in underground coal mine. (a) is a tunnel-like main roadway which is a structure
environment; (b) is the area near the coal mining face which is a semi-structure environment; (c) is a messy scene after a
disaster which is unstructured.

Overall, 2D laser-based SLAM has lower computational
requirements and can build amap in the scanning plane in real
time. However, it cannot estimate a robot pose that moves in
an uneven 3D space with six degrees of freedom (DOF) on
uneven ground. The other drawback is that due to too few
available features in one scan plane, the long laneway with
high similarity is hardly adaptable. Some researchers adopted
the method of 2-axis lidar moving in 6-DOF to produce 3D
point clouds. Thrun et al. [5] used two orthogonal lidars for
3D mapping in underground mine. The horizontal mounted
lidar was used to build a 2D map and restore the robot’s pose.
The upward scan was converted to a point cloud. Zhang and
Singh [6] utilized a motor-driven rotating laser scanner and
implemented two parallel threads to perform motion estima-
tion and mapping. In these methods, a distance measurement
that generated a 3D model based on 2D lidar was received
from different times. Hence, the configuration of point cloud
assembly was relatively complicated. In addition, inaccurate
motion estimation could easily cause distort the point cloud,
resulting in mis-registration.

Huber and Vandapel [7] used a cart to carry a 3D laser
range scanner to draw a high-precision 3D geological model
of themine laneway. Thismethod used a stop-scan-gomethod
to convert a 3D scan obtained by a 3D laser range scanner
into a unified coordinate system. Yet high-precision laser
scanners are expensive. Because of the large amount of data
in laser point clouds, they need to be stitched offline, which
cannot meet real-time mapping and localization requirements
for CMRRs. Reference [8] proposed a 3D mapping approach
based on a Velodyne HDL-64 laser scanner, focusing on han-
dling measurement noise and building precise model using an
off-line map-refinement step.

Many SLAM systems have combined a laser scanner
with other sensors to obtain higher accuracy and robustness.
López et al. [9] integrated a 2D laser, vision, altimeter and
Inertial measurement unit (IMU) to improve the 6D pose
estimation of an aerial robot in GPS-denied environments.
Bosse et al. [10] utilized a 2D laser coupled with IMU
mounted on a spring, which demonstrated good adaptability
to severe motion. Their findings were suitable for mapping
but not for robot positioning. Zhang’s subsequent work [11]

merged data from 3D lidar, camera and IMU to handle highly
dynamic motion and in dark, texture-less and structure-less
environments, which seemed the most suitable approach for
coal mine application.

Current 3D SLAM methods usually require many calcu-
lations and cannot realize real-time operation under limited
computing resources [7], [8], [12]. Without a method to
reduce cumulative errors in real time, most laser-based meth-
ods have only focused on the scan registration process [13];
or were used solely in lidar odometry [6], [11], leading to poor
adaptability in large scale and rough ground environments.
This paper focuses on using 3D lidar to achieve real-time state
estimation and mapping for CMRR applications. We believe
that a reasonable SLAM algorithm should consider environ-
mental features and be application-oriented. For example,
a CMRR may encounter planar surfaces such as walls beside
the tunnel and ground plane in the main road. But when it
enters a cluttered scene, planar surfaces may not be detected,
and other features would need to be used. Cumulative error
must also be eliminated because thewalking ground is uneven
and far away, but we cannot expect a loop to necessarily
appear, in which case the complex calculation of loop closure
would not be conducive to real-time processing.

The main objective of this work is to provide accurate
pose estimation and environmental description for CMRRs,
therefore providing a reference for coal mine rescue mis-
sions. We propose a real-time and graph-optimized 3D
SLAM for mapping and pose estimation of CMRRs in
complex environments with variable scenarios. The rest of
paper is organized as follows. Section 2 introduces related
work. Section 3 describes the proposed approach in detail.
Section 4 presents a set of experiments over a public dataset
and field tests in an underground coal mine. Finally, we pro-
vide a conclusion and suggestions for future work.

II. RELATED WORK
The SLAM method, based on a laser range finder, has been
the cornerstone of research on mobile robot mapping and
navigation in the past 20 years. 6-DOF localization with 3D
mapping remains a focal point of research. Most work on
3D lasers has centered on scan registration, which is used
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to estimate the relative transformation between two scans,
(i.e., the rigid body transformation matrix representing trans-
lation and rotation). Extensive research has focused on the
iterative closet point (ICP) method and its variants [14]. The
standard ICP method iterates over the nearest point pair and
optimizes the solution by minimizing the sum of the point-to-
point square Euclidean distance. ICP performance is mainly
influenced by factors such as the environment type, motion
trajectory, and uncertainty of the initial pose. It is sensitive
to the accuracy of the initial value and has poor adaptability
to dynamic environments. Armesto et al. [15] proposed a
metric ICP method to improve robustness to adapt to the
uncertainty of mobile robot platform motion. Generalized
ICP [16] uses an improved cost function to reduce the effects
of incorrectly associated point pairs. In addition to point-to-
point, correspondences can be point to line, point to plane,
normal vectors, and curvature [17]. References [18] and [19]
proposed 6D SLAM, which combines ICP scan registra-
tion with a heuristic loop detection and a global relaxation
method. This approach results in a highly precise mapping
system, but cannot run in real time. LOAM [6] uses edge
points and planar points as features, computing point-to-
line and point to plane distance. It is considered state-of-
the-art laser SLAM, although LOAM does not involve loop
closure, and thus cannot correct motion drift in the long-term.
Recently, a light-weight and ground-optimized SLAM algo-
rithm, LeGO-LOAM [20], was proposed and achieved sim-
ilar accuracy with reduced computational costs compared to
LOAM. LeGO-LOAM adopted the same features as LOAM
but was conducted in a graph optimization framework, per-
forming loop closure simply using ICP. Besides point and line
features, planar features [21], [22] can also be employed in
SLAM.Weingarten [23] proposed an approach involves using
planar features in an EKF-based framework. Trevor et al. [24]
took the same planar feature extraction method and employed
a graph-based approach, which is similar to our work. How-
ever, their method relied on a large number of planes and
could only build a sparse plane feature map, which is not
suitable for complex occasions where there are no planar
surfaces.

NDT is a novel scan registration algorithm, which was
first applied to 2D laser scan matching [25]. ICP and NDT
were compared with regard to registration robustness and
speed in [26], revealing NDT to achieve better performance
in these aspects than ICP. Reference [27] evaluated two types
of scan registration: NDT for local registration and MUMC
for global matching on a challenging benchmark, which again
performed more robust registration than ICP.

Inevitably, that the cumulative error will occur when
pose estimation is only considered in the adjacent time,
which makes it impossible to obtain globally consistent
trajectories and maps. Scan registration usually applies in
the post-processing stage of stitching to eliminate errors,
requiring a stop-scan-go strategy and offline process-
ing [7], [18], [19], [28]. Graph optimization is an effective
method for reducing cumulative error, and is commonly used

in the SLAM back-end [29]. Graph-based SLAM often uses
robot poses and landmarks in the environment as state vari-
ables. Nodes in the graph are the variables to be optimized,
and the edges are the observation constraints between the
two interconnected variables. Bundle adjustment (BA) [30]
is a classical optimization method for visual-based SLAM.
It takes the sensor poses and positions of features in the
environment as optimization variables and decreases dimen-
sions based on the sparse characteristic. Pose graph optimiza-
tion [31] only considers keyframe nodes formed by sensor
poses, thus saving optimization time of for many features and
resulting in more efficient calculation.

Loop closure produces a correlation between current data
and all historical data, providing more constraints for graph
optimization to build globally consistent maps, and relocating
after scan matching fails due to intense motion. Because
of minor differences in textures and features, loop detec-
tion under degenerate scenes such as tunnels and laneways
in underground coal mines remains difficult and time con-
suming. Much work on loop detection has been based on
visual and 2D scan data. Bag-of-words [32] is a common
method in visual SLAM,which uses feature clustering to con-
struct a dictionary and detect similarities between two image
frames. Google’s Cartographer [33] applies scan-to-submap
matching via the brance-and-bound approach to create loop
closure constraints.Magnusson [34] proposed an appearance-
based loop closure method, created a feature histogram of
surface topography to effectively match a two-frame scan,
and achieved good detection results.

The approach most similar to ours is that of
Mendes et al. [35] and Einhorn and Gross [36]. In [35],
an ICP layer was used as the front-end to construct and
concatenate local maps. Further, a graph layer with loop
closure was constructed as a back -end. In essence, this work
applied ICP registration which is time consuming in a nearest
neighborhood search. A constraint in the pose graph was
only added by the transformation computed by ICP along
with an estimation of its covariance or by loop closing.
An error function was taken to judge a loop closing when it
lay below a threshold, which was too tolerant and susceptible
to failure when encountering similar scenes. In [36], NDT
mapping was combined with occupancy mapping to handle
dynamic objects, which was also based on a graph approach
for lifelong SLAM usage.

This paper proposes an efficient and robust 3D-SLAM
method that allows CMRRs to solve state estimation and
mapping problems in complex various environments. This
paper’s contribution is threefold: First, point cloud segmen-
tation is performed to extract planar surfaces as landmarks
to construct measurement constraints, which is suitable for
graph-SLAM for CMRRs in unbroken structured roadways.
Second, NDT is used to construct lidar odometry constraints,
which plays amajor role in unstructured environments. Third,
a lightweight but effective loop closure is designed using
an odometry and appearance-based approach and applied to
correct motion drift once the loop appears. In addition, our
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results indicate a complete graph-based framework for 3D
lidar SLAM, which provides a demonstration for practical
applications in the industrial and rescue fields.

III. APPROACH
Scan registration is the core of laser-based SLAM
approaches, solving the problems of feature extraction, data
correlation and motion estimation. Our work is based on
the NDT method to construct lidar odometry. Unlike ICP
and its variants which look for associated features such as
points, lines, and planes, NDT uses range scans to describe
the environment model. The space is partitioned into cells and
normal distributions are assigned to represent the probability
model of the measured space. Points in the data scan are
registered with a series of distributions in the model scan.
The advantage of NDT scan registration is that it does not
need to compute the complex search of the nearest neighbor.
The point cluster represented by a normal distribution (ND)
does not need to store a large amount of point cloud data in the
original scan frame, which takes up low storage. In addition,
the gradient vector and Hessian matrix used to compute the
score function each has analytical solutions, allowing the
standardized nonlinear optimization method to be used to
determine optimal motion estimation. These factors improve
the computation speed and robustness of the algorithm when
facing complex environments.

FIGURE 2. System overview, showing all the steps performed by the
prefilter, lidar odometry, floor constraint, and loop closure with pose
graph optimization threads.

An overview of the proposed algorithm framework is pre-
sented in Figure 2. The approach is based on four main
parallel threads: prefiltering, lidar odometry, plane constraint,
and pose graph optimization. The original point cloud con-
tains many redundant points, whereas the data acquisition
process has many noisy points due to unsteady robot move-
ment. To improve calculation speed and registration preci-
sion, filtering is used to compress point clouds and remove
outliers. NDT scan registration is used in the process of lidar
odometry for pose estimation, as well as in loop detection
for environmental similarity detection. Lidar odometry is in
charge of creating keyframes by pose changes. The keyframes
are used to optimize the graph and detect loops. These steps
save computational time compared to optimizing all scans.

The point cloud segment approach of RANdom Sample Con-
sensus (RANSAC) is taken to extract planar surfaces of the
laneway floor and sidewall to construct the plane node. Edges
are constructed by using the constraint relationship between
the pose nodes of the keyframe and corresponding plane
nodes. These steps are explained in detail in the following
sections.

A. 3D-NDT
An important innovation of this paper is applying NDT
to pose estimation, loop detection, graph optimization and
mapping respectively. Therefore, the NDT algorithm and the
factors affecting performance are analyzed first.

1) ND DESCRIPTION
The nearest neighbor search is time-consuming and requires a
lot of storage space to compute the point-to-point registration
method, which has low registration accuracy in complex and
dynamic environments. ND describes the model scanning
without using the point’s position; instead, it is divided into
voxels (squares for 2D, cubes for 3D), using the probability
density function (PDF) constructed by all points within the
voxel to represent the distribution characteristics, (e.g., the
location, direction and smoothness of the point cloud sur-
face). We assume that the reference frame surface points
are generated by a 3D random process. The point xi of the
scanned frame is filtered from these distributions. Model scan
Y is divided into K individual cells and k is the nearest cell
to xi. The inner point set is expressed as Yk = {y

(k)
1 . . . y(k)M },

where element y(k)i represents the position of point i within
cell k . The likelihood function where there is a point at
position xi in cell Yk can be formulated as

p(xi) =
1

(2π)3/2
√
det6k

exp

(
−
(xi − µk )T6

−1
i (xi − µk )
2

)
(1)

Themean and covariance of all points’ positionswithin cell
k can be expressed as

µk =
1
Mk

Mk∑
i=1

y(k)i (2)

∑
k
=

1
Mk − 1

Mk∑
i=1

(y(k)i − µk )(y
(k)
i − µk )

T (3)

The eigenvalues and eigenvectors of the covariance matrix
reflect the surface orientation and smoothness. Three orthog-
onal eigenvectors reflect the shape of an ellipsoid, which can
be linear (one eigenvalue is much larger than the other two),
planar (one eigenvalue is significantly smaller than the other
two), and point or spherical (three eigenvalues are similar).
The covariance matrix is singular when there are fewer than
4 points in a cell. Cells with fewer than 4 points will be
considered unoccupied.
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2) NDT REGISTRATION
The objective of scan registration is to find the optimal pose
transformation, which canmaximize the likelihood of the cur-
rent data scan falling on the surface of the reference scan. The
current data scan is represented as X = {x1 . . . xN}, where
element xi is the location of each scan point. Rotation and
translation parameters for pose estimation can be represented
by p = [tx ty tz θx θy θz]T . Using 3D rigid body space
transformation, the transformed poses of scan points can be
represented as

x′i = T(p) · xi = Rz(θz)Ry(θy)Rx(θx)xi + t (4)

where R(θ ) is the rotation matrix of each axis, and t is the
translation matrix. ICP directly maps the transformed point
to the closest point in the reference scan by using brute force
search iteratively. NDT assumes another strategy, which uses
point-to-distribution correspondence to calculate the optimal
transformation relationship when all points fall into these
distributions to obtain the maximum likelihood

ψ̄(p) =
N∏
i=1

p(T (p, xi)) =
N∏
i=1

p(x′i) (5)

Then the following score function is used to establish an
optimization problem

score(p, xi, k) = − log ψ̄(p) = −
N∑
i=1

log(p(x′i))

=

N∑
i=1

(x′n − µk )T6
−1
k (x′n − µk )
2

+ const

(6)

We can use an arbitrary probability density function (PDF)
that describes the local surface structure and is robust to
outliners. To reduce the influences of outliers on the results,
a mixed Gaussian distribution is employed instead of the
standard ND function (1), which is expressed as

p(x′i) = c1 exp

(
−
(x′i − µk )T6

−1
k (x′i − µk )
2

)
+ c2p0

(7)

This function limits the influences of outliers in the
bounded scope. c1 and c2 are constants that integrate the kth
cell to one, and p0 is the ratio of outliers. The negative log-
likelihood can be approximated by

p̄(x′i) = − log(c1 exp

(
−
(x′i−µk )T6

−1
k (x′i−µk )
2

)
+c2p0)

≈ −d1 exp(−d2
(x′i − µk )T6

−1
k (x′i − µk )
2

) (8)

Thus the score function can be represented as

score = −
N∑
i=1

p̄(x′i) = −
N∑
i=1

p̄(T (p, xi)) (9)

The optimal parameter p can be calculated by minimiz-
ing Eq.(9). Because the first and second derivatives of this
score function have analytic forms, Newton’s method can be
directly used to search the optimal p iteratively:

H1p = −g

p ← p+1p (10)

The distance from the converted position of a point in the
data scan to the center of its nearest cell is defined as x′i ≡
T(p, xi)-µk . Thus the gradient can be written as

gj=
∂s
∂pj
=

n∑
k=1

d1d2x′
T
i 6
−1
i
δx′i
δpj

exp(−
d2
2
x′Ti 6

−1
i x′i) (11)

Hjl corresponding to Hessian matrix H, can be calcu-
lated by

Hjl =
∂2s
∂pj∂pl

=

n∑
i=1

d1d2 exp(
d2
2
x′Ti 6

−1
i x′i)

×

(
−d2(x′Ti 6

−1
i
δx′i
δpj

)(x′Ti 6
−1
i
δx′i
δpl

)

)

+ x′Ti 6
−1
i

∂2x′

∂pj∂pl
+
δx′Ti
δpl

6−1i
δx′i
δpl

(12)

If convergence is found or the limited iteration number is
met, the nonlinear optimization will terminate to obtain the
optimal relative transform T. NDT registration can be accel-
erated with a given initial estimate, which can be derived from
estimation of other sensors such as an odometer. In this work,
the last keyframe’s pose will be set as the initial estimation of
the new pair-wise registration to accelerate the convergence
process.

Many factors affect the performance of the NDT algorithm
in actual environments. A discussion about the influence of
the sample method, cell partitioning and valley of conver-
gence for NDT in different scenes can be found in [13]. Due to
the inefficiency of the NDT algorithm in the PCL library [37],
we use multiple threads to accelerate the algorithm. The
system relies on several heuristics that require fine tuning
to obtain good results in the selected environment; therefore,
we provide adjustable interfaces for some parameters to deal
with different environmental characteristics.

B. PREFILTER
The point cloud feature of laser scanning indicates that a
farther distance leads to sparser points and more outliers in
the point cloud; hence, a region filter approach is used to
extract an effective point cloud from the distance between
20cm to 100m. We only keep the point cloud within the
specified distance for subsequent processing. The filter is
achieved by constructing a voxel grid and down-sampling.
The number of point clouds can be reduced substantially by
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approximating all points in voxel with the center of their grav-
ity to achieve point cloud compression. We use the RADIUS
filter to eliminate outliers by giving the search radius and
the number threshold of the points in the circle, which is
faster than the statistical-based filter. The above three filtering
processes are achieved based on the PCL library.

C. LIDAR ODOMETRY
There is little new information and few accumulated linear
errors when processing continuous scans. The keyframe can
be utilized in odometry estimation, pose graph optimization,
loop detection, and mapping. It can improve computational
efficiency substantially, particularly for a large map size,
and can make the algorithm run in real-time. The concept
of a keyframe was first used in visual SLAM [38]. When
establishing keyframes, steps should be taken to decrease
redundant keyframes and save computation while reducing
registration error; however, overly sparse keyframes lead to
increased uncertainty in the observation between the frames
and are highly unfavorable in optimization, thus compromis-
ing mapping quality. Referring to the visual SLAM method,
we use a simple approach to establish keyframes and elimi-
nate redundant selections. Poses lie in the special Euclidean
group of SE(3), and we are interested in translation and
rotation. The first filtered point cloud is always treated as
a keyframe. The input point cloud will be registered in the
nearest keyframe to calculate the lidar odometry. The relative
pose 1Tk−1,i from a new scan frame i to the last keyframe
k−1 can be obtained by matching the input point cloud to the
previous keyframe through NDT registration. Accordingly,
the pose of the current input point cloud i and the lidar
odometry can be calculated by:

Ti = Tk−11Tk−1,i (13)

The keyframe poses can be expressed as 4 × 4 homoge-
neous matrices. The NDT registration can run faster when
using the previous relative transformation 1Tk−1,i−1 as an
initial guess, assuming the robot does not change the motion
state drastically. Once the change is larger than a thresh-
old, which causes the NDT to no longer converg, the pre-
vious keyframe Tk−1 and relative transformation 1Tk−1,i−1
will be used to calculate the odometry of the current input
point cloud. According to Formula (13), the transformation
between adjacent frames can be expressed as

1Tk−1,i = T−1k−1Ti =
[
1R 1t
0 1

]
(14)

The Euclidean norm of translation vector1t, which repre-
sents the translation of current frame and the last keyframe, is

‖1t‖ =
√
1x2 +1y2 +1z2 (15)

The rotation of these adjacent frames1r can be defined as
the Geodesic distance directly from the rotation matrix 1R.

1r = arccos
(
trace(1R)− 1

2

)
(16)

The keyframe pose will be updated when the following
condition applies. Set the threshold of minimum translation
distance threshold tmin, the rotation angle threshold rmin and
the running time threshold hmin. Once one of the three thresh-
old is exceeded, a keyframe pose will be updated by the pose
of current lidar odometry. The keyframe will be registered in
the graph when one of the former two conditions is met. Thus,
every input point cloud will be used in odometry estimation,
but only those satisfying the relative transformation condi-
tion can be considered keyframes and participate in graph
optimization. This method eliminates redundant information,
especially when the robot is not moving for a long time.

FIGURE 3. The plane nodes, the keyframe pose nodes, and their
relationship of geometric constraints. The red curve represents the
trajectory of the robot, and the black dotted line is the constraint provided
by wall or ground. The spheres and the corresponding coordinate systems
represent the poses of different keyframes. The green sphere indicates
that the pose is subjected to both wall and ground constraints in most
cases. The yellow sphere indicates a condition in which only the walls are
constrained while the robot moves on the uneven road. The blue sphere
indicates that the movement is only constrained by the ground when the
robot is at the junction of the laneways.

D. LOOP CLOSURE AND POSE GRAPH OPTIMIZATION
1) PLANE CONSTRAINT
The coal mine environment is usually dominated by laneways
of equal width over a long distance, as shown in Fig. 1-a.
The large area of ground surface and side wall plane can
provide additional constraints for motion estimation of the
keyframes. The purpose of establishing plane constraints is to
provide additional vertices for optimization of the pose graph
while decreasing accumulated errors by using more con-
straint information. Although additional constraints increase
computational complexity, the ‘stiffness’ of the pose graph
can increase, thus improving the accuracy of pose estimation.
Fig. 3 presents the plane nodes, keyframe pose nodes, and
their relationship in geometric constraints. When the robot
is running in different of space regions, the plane of the
ground or wall can provide additional constraints on the
pose of the current keyframe. The same plane node may be
observed under different pose nodes. In mutative conditions
with uneven or forked laneways, different plane nodes can be
constructed to provide keyframes constraints.

The key to establishing ground and wall constraints is the
extraction of horizontal and vertical planes in space, which
can be regarded as a problem of point cloud segmentation.
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An iterative RANSAC is used for plane detection. The plane
with the most and sufficient inlier points will be extracted
and saved. After removing all inliers from the last detection,
the next largest plane will be searched as long as a sufficient
number of points can be found. After each plane extraction,
inliers will be clustered to remove small clusters of points and
separate multiple surfaces that are coplanar but correspond
to different locations. Clusters with a sufficient number of
points will be used as plane landmarks for graph optimiza-
tion. Detected planes must track continually to strengthen the
graph constraints as the same surfaces can be seen in different
poses.

To deal with multiple models in one dataset, feature filter-
ing will be performed before iterative RANSAC by using the
normal direction of the point cloud surface. The target point
clouds used to detect the plane by RANSAC are limited to
those whose normal directions are within a certain threshold
range from the vertical or horizontal normal. If there are
sufficient points after filtering, the iterative RANSAC will
be further used to detect the plane. In real environments,
especially structured mines, the planar landmarks we want to
detect are always either side walls or ground, which are often
perpendicular to each other. Feature filter will decrease the
points processed when performing RANSAC and accelerate
extraction of planar landmarks. Fig. 4 presents an intuitive
explanation for segmented planar points using the above
approach.

FIGURE 4. The segmented planar points in one scan by the iterative
RANSAC. (a) The blue, green and cyan points on three planes will be
modeled as planar features, as well as the ground points in different
colors. Points in red are filtered by the feature filter. (b) The original point
cloud in one scan.

After planar extraction, the model of a plane can be rep-
resented as: ax + by + cz + d = 0. The segmented point
cloud of wall and ground, as well as the model coefficient,
will be released separately and registered in the pose graph.
Constraints from planar features reduce accumulated error,
particularly when orientated in environments with large flat
planes.

2) LOOP CLOSURE
Because the laser odometry in the front end only obtains the
local pose constraint, errors generated before will inevitably
accumulate to the next moment, making it difficult to con-
struct a globally consistent trajectory and map. Loop detec-
tion can identify the revisit area, after which accumulated
errors can be greatly decreased by graph optimization.
We propose a simple method that combines an odometry-
based with an appearance-based approach to detect loop
candidates.

First, it is impossible for the robot to reach a loop in a
few scene sequences in a real scenario. The transformation
between any two keyframes is estimated in the real world by
lidar odometry. If the distance between two non-contiguous
keyframes is less than a threshold, then a loop is highly
likely to emerge. To avoid redundant loops caused by contigu-
ous keyframes, the minimum accumulated distance threshold
between any two keyframes is set. Using the odometry-based
approach, loop candidates are spatially constrained within a
set range.

Second, during the appearance-based stage, the same
method to describe scene similarity by histogram is taken as
in [34]. As mentioned earlier, three orthogonal eigenvectors
(λ1 < λ2 < λ3) can reflect the distribution shapes of a fixed
voxel:
• If λ2/λ3 ≤ 0.1, then the distribution tends to be linear.
• If it is non-linear and λ1/λ2 ≤ 0.1, then the distribution
is deemed planar.

• If neither of the above applies, then the distribution is
considered spherical.

The histogram based on the above three types of shapes will
be counted within a certain range of the robot. The higher the
similarity of the histogram, the greater the likelihood of the
loop appearing. Loop candidates are further decreased when
using an appearance-based approach.

Finally, NDT is applied to confirm the loop following the
above two stages through the fitness score. The fitness score,
which reflects appearance similarity, can be calculated by the
root mean squared error (RMSE) of the Euclidean distance of
the nearest point pairs:

fitness_score =
1
N

N∑
k=1

√
1x2 +1y2 +1z2 (17)

When the fitness score is less than the threshold, it can
be considered the same scene. The smaller the threshold is
set, the more severely the detected similarity. At the same
time, the loop edges that are too close to each other will be
eliminated to save the calculation.

A false positive in loop detection has an adverse effect
because it adds incorrect edges to the graph and results in
poor optimization. A good loop detection algorithm must
maximize the true positive and minimize the false positive.
Features in the coal mine laneway are few and similar,
which can easily lead to inaccurate loop detection. In a real
application, we can adjust the appearance similarity and
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FIGURE 5. The factor graph of the pose graph SLAM. The pose nodes
{x0, x1 . . . xn, xn+1 . . .} of the keyframes and plane nodes {f1 . . . fm . . .} of
the detected wall or ground plane are represented by gray circles. The
blue circles are the constraints (U) constructed by the motion model of
lidar odometry. The red circles are the loop closure constraints (Z )
constructed by scan matching measurement model. The plane
constraints (G) are the yellow circles which are constructed by the
measurement model from common detected planes.

distance threshold to increase precision. Although it may
reduce recall, a slight overlap is better than incorrect opti-
mization, which may render the map invalid.

3) POSE GRAPH OPTIMIZATION
The cumulative error of laser odometry will continue to
increase as the trajectory and map size increase in pair-
wise registration. Pose graph optimization is a cost-effective
approach as the back-end, which can improve the estimation
accuracy and obtain a globally consistent trajectory and map.
Fig. 5 shows the factor graph of the pose graph SLAM. Nodes
in the graph are keyframe poses and common planes detected
by different keyframes. The edges are either lidar odometry
constraints (U ), loop closure constraints (Z ), or plane con-
straints (G) constructed by the ground or wall. The poses and
constraints can be modeled as the joint distribution:

P(X ,U ,Z ,G) =
M∏
i=1

P(xi|xi−1,ui)

·

N∏
j=1

P(zj|xij, xlj) ·
K∏
k=1

P(gk |xk ) (18)

Here, assuming there are M poses, N loop closures and,
K plane constraints, we can minimize the negative log of the
joint probability to find the maximum a posteriori (MAP)
estimate over the robot poses:

X∗ = argmin
X

P(X ,U ,Z ,G)

= argX min(− logP(X ,U ,Z ,G))

= argmin(
M∑
i=1

‖fi(xi−1,ui)− xi‖26i,i−1

+

M∑
j=1

‖hj(xja, xjb)− zj‖26j

+

M∑
k=1

‖hk (xk )− gk‖
2
6k

) (19)

The objective function of the whole problem consists of
the sum of squares of multiple errors from different sources.

fi(·) is the lidar odometry motion model, and hj(·) is the
loop closure measurement model. These two models can be
represented by the transformation from NDT scan matching.
hk (·) is the plane constraint measurement model. xi, zj, gk
and 6i, 6j and 6k respectively represent the mean and the
information matrix. Here, information matrices 6i and 6j,
which reflect the certainty of relative pose estimation can be
calculated by:

6 =

(
6tra 0
0 6rot

)
, 6tra

=
I

σ 2
tra · e

, 6rot
=

I

σ 2
rot · e

(20)

where I is an identify matrix; σ 2
tra and σ

2
rot are the variance of

translation and rotation errors, respectively; e is the root mean
squared error (RMSE) in Eq. (17) of the matching between
two poses from keyframe nodes or loop candidates.

Information matrix 6k reflects the certainty of registered
edges between plane nodes and keyframe nodes, represent-
ing the plane normal and perpendicular distance constraints.
As planar features are re-observed in adjacent poses, the land-
mark’s convex hull will grow as additional portions are
detected. We use the previously observed planar features
(En, d) in the map frame as the predicted term. Combined
with a measured plane (Enm, dm), the error term in (19) can
be written as

ehj =
(

RT
· En− Enm

〈En, t〉 + d − dm

)
(21)

where (R, t) is the transform between the map frame and
the robot frame. Using Formula (21) and the corresponding
Jacobian w.r.t the pose and landmark, planar normal and
perpendicular distances can be utilized as landmarks in the
graph-optimization problem. Lie algebras se(3) is used to
represent state variables and solve an unconstrained least-
squares optimization problem on manifold [39]. A problem
in this form can be effectively solved by the standard opti-
mization methods such as Gauss-Newton or the Levenberg-
Marquardt (LM) [40] algorithm, which have been integrated
in the optimization library G2O [41].

E. MAPPING
The mapping process runs at a lower frequency than lidar
odometry; and is activated only when a new keyframe or loop
is detected. The main idea is to convert the point cloud
of adjacent keyframes to the world coordinate system for
stitching, which is also done by NDT registration. Fig. 6 illus-
trates the mapping process. When the k + 1 key frame is
built, lidar odometry generates the local point cloud Pk+1 in
tk+1, as well as the relative pose transformation, TT

k+1. The
mapping algorithm utilizes pose transformation TL

k+1 and the
last keyframe TWk to match and register Pk+1 to the world
coordinate system, {W} and constructs the new map ofQk+1
based on the existing map of Qk . When a loop is detected,
the map is optimized along with the keyframe pose to obtain
a globally consistent map. To save storage space andmaintain
enough effective point cloud information for loop closure
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FIGURE 6. Illustration of the mapping process. The blue curve indicates
the trajectory of the lidar. The red dots are the poses of the adjacent
keyframes, TW

k and TW
k+1, which are obtained by lidar odometry. The

purple curve is the relative pose transformation between adjacent
keyframes, TL

k+1. With TW
k and TL

k+1, the new point cloud Pk+1 which is
published from the new pose TW

k+1, can be projected into the existing
cloud on the map Qk , and construct the new map of Qk+1.

FIGURE 7. (a) Platform used in KITTI benchmark. Our method uses data
from the Velodyne HDL-64E only. The ground truth data is provided by the
OXTS RT3003 and GPS navigation system. (b) A real scene (upper figure)
and its corresponding point cloud.

detection, the octree structure [42] is used to compress point
clouds at the same time for rapid searching.

IV. EXPERIMENT
A. TESTS WITH KITTI DATASETS
Initial tests were conducted with the KITTI odometry bench-
mark [43] which is widely used in the SLAM community for
algorithm evaluation. Fig.7 dipicts the platform used in the
benchmark and a typical scene in the datasets. The platform
contains aVelodyneHDL-64E 3D laser scanner and anOXTS
RT3003 inertial and GPS navigation system, etc. Real-world
situations include an urban setting with buildings, country
setting with surrounding vegetations, and highway with open
scene. Because KITTI odometry benchmarks have corrected
the point distortion in the data collection from the lidar, the
raw dataset was used in our experiment. The algorithm was
run on an industrial personal computer (IPC) with CPU:
i7-3555LE (2.5 GHz, 4 core) and 8G memory.

Fig. 8 shows the mapping result of our NDT based graph
SLAM. We can see that the point cloud is consistency with
high mapping quality. Benefit from the loop detection and
graph optimization, the map is extremely coincidence with
the real scene. The octree map saves storage space of point
cloud in the meantime ensuring the map precision and details.

To determine the accuracy of pose estimation, the proposed
method was compared with NDT only (NDT-Odometry),
ICP-based graph SLAM, state-of-the-art LeGO-LOAM, and
the ground truth on four sequences 00, 01, 05, 07. A typically

FIGURE 8. (a) and (b) represents the point cloud map built by our method
on sequence 00. The color in (b) and (c) reflects the elevation of different
points. (c) is a close shot of an intersection in the urban scene. It shows
that the mapping quality is pretty good by the proposed approach.

large loop exists in sequences 00, 05, and 07, which benefits
global optimization. Compared with ICP-based graph SLAM
proposed in [35], we reproduced the algorithm because it
is not open source. In the same way, we handled motion
estimation and mapping processes based on the keyframe,
and constructed the optimization problem. The difference is
that we use the keyframe extraction and mapping strategy in
this paper without using local maps, and G2O was used for
optimization. The trajectory results are presented in Fig.8.

The trajectories in Fig.9 indicate that, LeGO-LOAM per-
formed the best in terms of accuracy and consistency in
sequences 00, 05, and 07. These sequences are all in resi-
dential areas and city roads, containing many line and plane
features in the environment. On all sequences, our algo-
rithm performed better than the ICP-graph-SLAM and
NDT-Odometry approaches in consistency and coincidence
with ground truth. Compared with NDT-Odometry, bene-
fiting from the loop detection and optimization process,
the pose estimation of the proposed approach did not diverge
along the way. This is particularly obvious in sequence 00
(Fig. 9-a) in which our algorithm returned to the origin but
NDT-Odometry did not. ICP-graph-SLAM also performed
well on consistency, but the generated trajectory did not
coincide well with the ground truth on each sequence. All tra-
jectories exhibited large shifts on sequence 01 (Fig. 9-b).
The real path length was roughly 2450 m. The length of
our proposed approach was 2300.6 m, whereas that of NDT-
Odometry was only 1297.3 m and that of ICP-graph-SLAM
was 1090.1 m. The LeGO-LOAM also demonstrated poor
performance, especially in the orientation direction. The large
shift was due to the scene is being on a highway where roads
were wide and the surrounding environment was structure-
less, representing a typically degenerate scene that negatively
affects scan registration. Another important influencing fac-
tor is the point distortion became more obviously when the
move speed is faster. Despite this, our algorithm performed
well. We suspect the proposed algorithm is superior to the
other three algorithms due to extracting the surface of the
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FIGURE 9. The trajectories estimated by NDT-graph-SLAM (blue), NDT-Odometry (green), ICP-graph-SLAM (black), LeGO-LOAM (magenta)
and the corresponding ground truth (red) on (a) sequence with loops 00, (b) sequence without loop 01, (c) sequence with loops 05,
(d) sequence with loops 07.

coplanar ground as landmarks, which provided additional
constraints and achieved better consistenc.

Quantitatively, the relative pose error (RPE) and absolute
trajectory error (ATE) are always used for evaluation metrics
for in SLAM [44]. The former reflects the local accuracy,
and the latter reflects the global consistency. We only focused
on the ATE and RPE w.r.t translation portions to simplify
analysis because the problem is sequential and rotation errors
would show up as errors in translation later. Fig. 10 shows
that in most sequences, the proposed algorithm performed
similarly to the state-of-the-art LeGO-LOAM on ATE and
RPE, especially in sequence 1, which had better results. Even
if the performance on sequence 07 was not good enough
(Table 1), the difference was small on average but had a more
concentrated distribution (Fig.10). The final translation error
performed nearly the best or second-best as listed in Table 2.
We can also infer that our approach had the best adaptability
for degenerate scenes with fast driving and less features
because it demonstrated the best results on ATE and RPE in
sequence 01.

TABLE 1. The ATE-RMSE w.r.t translation part on the 4 sequences (m).

TABLE 2. The RPE-RMSE w.r.t translation part on the 4 sequences (%).

To explore the potential for real-time application, we ran
the proposed algorithms on KIITI dataset at 10% of the real-
time speed (similar to LeGO-LOAM in [20]) and recorded the
time cost by each module. The front-end modules of prefilter,
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FIGURE 10. The line and box plots corresponding to the four sequences on ATE & RPE. The x-axis of the line-plot represents the poses index.
The blue line and box plot result represent our proposed NDT-graph-SLAM. The orange line and box result represent LeGO-LOAM. The green line
and box plot result represent NDT-Odometry approach. The red line and box plot result represent ICP-graph-SLAM.

scan registration, and planar segmentation should be per-
formed in real-time to respond to the new scan frame. Loop
detection and graph optimization were in another thread and
operated at a low frequency of 3 s. The downsample resolu-
tion was set to 0.5m in this open environment. Table 3 shows
that the front-end ran at 96.65 ms on average and could
process a scan at 10Hz on average (Fig. 11). In practical
applications, the number of iterations by scan registration will
be constrained to ensure real-time performance. The down-
sample resolution can be adjusted to be larger to reduce the
point number processed by scan registration and plane seg-
mentation but should balance effects on accuracy and speed.

TABLE 3. Runtime of modules for processing once ms).

The map update process by graph optimization together with
loop closure required 2604.9ms, which is suitable for real-
time mapping applications.
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FIGURE 11. The run time needed for prefilter, planar segment and scan
registration on KITTI dataset, which must be performed once a new scan
came. The proposed algorithm runs at 96.65 ms on average (below the
blue line of 100 ms) and have the ability to process a scan at 10Hz on
average.

FIGURE 12. The explosion-proof mobile platform with multiple types of
perception sensors. 3D lidar is the main sensor used in this paper, but
RGB-D camera, 2D lidar and IMU are also deployed in the sensor suite for
further study. There are also other sensors like multi-gas sensor (CD10,
a kind of integrated sensors which can detect 10 kinds of environmental
information), gas sensor (measure gas concentration at different position
in vertical direction), infrared obstacle sensor, and intrinsically safe
speaker device, which are all used for environmental detection.

B. FIELD TESTS
1) ROBOT PLATFORM
In our previous work [45], we designed a multi-drive
crawler walking mechanism to ensure high maneuverabil-
ity of the CMRR when dealing with complicated terrain.
Fig.12 presents the new generation of a CMRR system,
an explosion-proof mobile platform with multiple percep-
tion sensors. The system is equipped with a separate sen-
sors suite, including a 3D sweep lidar (rslidar-16,12V/9W),
motor-driven rotating 2D lidar (UTM-30LX, 12V/8.4W),
IMU (Xsens Mti-G-710, in the suite), and RGB-D camera
(Xtion Pro Live, powered by USB2.0 interface). All sensors
are connected to the mobile platform by physical isolation of
a power supply and network cable. The suite ismade of flame-
retardant anti-static material to meet coal mine application
requirements. In this work, we only used the 3D lidar for
SLAM work.

Coal mine equipment should be explosion-proof. Either
the platform or the carrying sensors must be explosion-
proof to ensure they will not become detonation sources for

accumulated gas in the laneway. The main control circuits
and drivers are deployed in the flameproof chamber. All
sensors exposed outside are intrinsically safe devices, which
form an explosion-proof and intrinsically safe system with
the platform. A laser beam is a possible source of danger,
but studies have shown that gas and dust below 150 mW or
20 mW/mm2 pose no threat [5], which can be satisfied by
most sweep lidars. Furthermore, multi-gas sensors (CD10)
and the gas sensor are used to detect explosive gases in
the environment. Once the concentration exceeds the limit,
the internal circuit triggers a relay and cuts off power to the
external sensor including the 2D, and 3D lidar, as well as the
RGB-D camera.

FIGURE 13. The top-view of the map generated by NDT-SLAM with
several scan poses. The robot started at point A and followed this
sequence A-B-C-B-D-C-B-E-A-F-G-H. Stationary reflective markers were
arranged at cross of A, C, D, F, G.

2) EXPERIMENTAL RESULTS
Field tests were carried out in the gas explosion laboratory of
CUMT which fully simulates the environment of an under-
ground mine. The top-view map of Fig. 13 was generated
by our SLAM algorithm. The traverse started at point A and
continued to points B, C, and D. Then the robot returned back
from points C, B, E and created a small loop at A. Finally, the
robot ran through points F, G and stopped at point H. There
were four junctions (A, B, F, and G) and only area from point
A to C was illuminated. It constituted a long, narrow laneway
nearly 200 m long and 2.5m wide from C to D, including
a slight curvature and no lighting. The F-G portion was a
variable-width roadway: one had a width of 4.75m and length
of 15 m; the other is a width of 2.5 m and length of 55 m.
The region from G to H was a downward sloping roadway.
Fig. 14 presents the four local maps and photos respectively
generated from B to C, point A, from F to G, and point G
in Fig.13.

During all tests, the robot moved at a speed of roughly
0.5 m/s and was controlled by tele-operation. Combined with
wired and wireless, packaged data were sent back to the host
computer for controlling and displaying. TROSBAG tool was
used to record the original point cloud, tf, map, and other
topical information, which were used in subsequent analysis.
The robot also used an IPC with CPU: i7-3555LE (2.5 GHz,
4 core), and 8G memory for data processing and algorithm
implementation.

It is a challenging to obtain ground-truth poses for a
CMRR due to occlusions and the aspect ratio of narrow and
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FIGURE 14. Maps generated in the field tests and their actual positions
in Fig.13. (a-b) is a long laneway with same width from B to C. (c-d) is a
branch in the tunnel, from E to A. (e-f) is a dark tunnel with different
width, between F and G. (g-h) is a dark tunnel junction, near G. The robot
moved on an average speed of 0.5m/s.

long laneways. We placed reflective markers at several key
locations at points A, C, D, F, and G and used a tape ruler to
manually measure the distance between reflective markers as
the ground truth to reflect modeling accuracy in the forward
direction.

TABLE 4. Relative error of mapping between the arranged reflected
markers in Figure 13.

Table 4 lists the relative errors of the mapping results. The
error in the segment of A-C was only 4.7% to 118m, far less
than 24% to 70m in the C-D segment and 29% to 200m in
the F-G segment. This result is reasonable because from A
to C, A and B were junctions and had many wall surfaces
in different directions along with air doors and ventilation
pipes, which provided rich environmental features. The C-D
and F-G segments were typical degenerate scenarios and only
had walls of equal width on each side, which could easily
cause registration failure. The robot mistakenly believed it
did not move, resulting in mapping a length smaller than that
of the actual roadway. There was only a small loop from
point B, E to point A. Our algorithm detected the loop and
optimized the mapping result successfully. Although loop
detection and graph optimization could improve mapping
consistency, these processes could only ensure that the map
was continuous; they could not eliminate error caused by the
registration error of lidar odometry.

In coal mine rescue missions, the topological relation-
ship of environmental characteristics and the robot position
relative to the side wall of the laneway are of great help
to rescue responders in visual observation of teleoperation
control. An accurate environmental model and the position
of the robot extending the roadway direction are not of great
concern. For autonomous navigation, the position of the robot
to the side of the laneway must be accurate to ensure it
will not hit the wall. The impact of inaccurate localization

caused by degenerate problems in the forward direction on
driving safety is not fatal beacuse once irregular obstacles
appear, degradation will be eliminated. Nevertheless, we seek
to develop SLAM algorithms that are more accurate and meet
computational requirements, which will be our future work.
LeGO-LOAM overly reliant on line features and surface
features in this scenario, which cannot always exist in the
degraded scenes of coal mine laneway. In the tunnel-likemain
roadway, few line features exist because of the parallel struc-
tured environment. Lego-LOAM cannot extract sufficient
line features, leading to registration failure. In these cases,
the NDT algorithm which is a distribution-based registration
approach, has a highermatching success rate. Although it also
suffers from the degradation problem, the worst result is that
the estimated distance may be shorter than the true distance.
The utilization of planar landmarks in graph optimization
further improves modeling and positioning accuracy.

TABLE 5. Runtime of modules for processing once(ms).

FIGURE 15. The run time needed for prefilter, planar segment and scan
registration on the coal mine dataset, which must be performed once a
new scan came.

Table 5 shows the time cost of each module to process
our coal mine dataset. The downsample resolution was set
to 0.1 m in the closed and narrow coal mine laneway. The
front-end processing time needed about 43.48 ms on average
and 187.95 ms at most to process a scan at 10 Hz on average
(Fig.15). The time cost reduction occurred because our lidar
(16 beams) contained only 75% of the original point cloud
data compared to the lidar (64 beams) used in the KITTI
dataset. The map update processed by graph optimization
with loop closure requried at most 1565.3 ms at most, which
can meet requirement of real-time mapping in 3 s.
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V. CONCLUSION AND FUTURE WORK
In this paper, a new 3D laser-based SLAM algorithm with
loop closure and graph optimization is proposed. 3D-NDT is
taken to construct the lidar odometry constraints and planar
surfaces in the coal mine laneway are extracted by iterative
RANSAC to serve as the landmarks, improving the map-
ping consistency and localization robustness. Lightweight
loop closure is realized by detecting appearance similarity
and distance between keyframes. Multi-thread acceleration is
used to further improve the computation speed to meet real-
time applications. Evaluation of KITTI datasets is compared
with the ICP-graph-SLAM and NDT-Odometry approach,
showing the effectiveness of our improved approach on loop
detection and pose graph building. The results of the field
test in an underground coal mine demonstrated consistency
with the actual environment, and the time cost can satisfy the
application of localization and mapping for CMRRs in coal
mine rescue missions.

In future work, a multi-sensor fusion including IMU and
infrared vision will be carried out to improve accuracy perfor-
mance in degenerate directions. After the coal mine model is
constructed, a multi-sensor integrated positioning approach
based on NDT will also be further studied, which could be
used for precise positioning of othermine robots and trackless
vehicles to solve the problem of a limited location method in
the mine environment.
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