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ABSTRACT Although kernel fuzzy clustering can handle non-spherical clusters by mapping data to a more
separable feature space, its performance is highly determined by the setting of kernels. So, themultiple kernel
fuzzy clustering (MKFC) is proposed to obtain the flexibility in designing an optimal kernel from a large set
of candidates. In MKFC, many predefined general kernels like Gaussian and polynomial ones are linearly
aggregated and the weights of kernels are adjusted automatically. However, the performance of MKFC is
greatly hampered by two noticeable problems. First, MKFC only uses predefined general kernels and pays
less attention to the inherent structure of specific data. This leads to the trouble of selecting proper base
kernels for different data. The second problem is the ignorance of correlations between kernels in MKFC.
It results in redundant kernels being used to define the feature space. This paper solves the two problems
simultaneously by introducing a newMKFCmodel. Based on unsupervised random forests (RFs), some data-
dependent kernels are generated and combined with others to build a more representative feature space. The
correlations between kernels are also calculated and inserted into the objective function of fuzzy clustering
as a matrix-induced regularization to encourage the diversity in kernels. We name the new model as MKFC
with unsupervised RFs kernel and matrix-induced regularization. The optimization algorithm for the new
model is derived, and the experiments on benchmark datasets demonstrate its superiority over other MKFC
approaches.

INDEX TERMS Fuzzy clustering, multiple kernel, unsupervised random forests, regularization.

I. INTRODUCTION
For the task of data clustering, fuzzy c-means (FCM)
and its variants have attracted much attention in the past
decades [1]–[7]. But these methods are not effective in han-
dling arbitrarily shaped clusters due to the use of squared
Euclidean distance as the dissimilarity measure [8]. In order
to solve this problem, kernel fuzzy clustering (KFC) was
suggested and widely studied [8]–[12]. KFC maps original
data points into a high even infinite dimensional feature
space, where data points are more linearly separable. Unfor-
tunately, the performance of KFC is greatly impacted by the
setting of kernel or the design of feature space [8]. Therefore,
multiple kernel fuzzy clustering (MKFC) was proposed to
linearly combine a number of predefined general kernels like

Gaussian and polynomial ones. The new ensemble kernel can
acquire a more representative feature space, presenting the
advantages in flexibility and adaptability compared with a
single kernel [13]–[16].

However, the performance of MKFC is still hampered by
two noticeable problems. The first one is using only prede-
fined general kernels like Gaussian and polynomial ones in
the linear combination. This brings the trouble of selecting
proper candidate kernels for different data because there is
no general kernel suitable to all [8]. For instance, in [14],
one polynomial and seven Gaussian kernels are selected to
cluster 20 machine learning datasets, while three carefully
designed Gaussian kernels are applied for image data clus-
tering. Of course, to avoid the selection of kernels, we may
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directly include all available candidates in the aggregation.
But this highlights the second problem of MKFC: the igno-
rance of correlations between different kernels in the frame-
work of clustering. Using a large set of kernels in MKFC
without the consideration of diversities can result in redun-
dant kernels in feature space design and hence degrade the
performance of MKFC.

To get the best combination of kernels, many solutions
have been proposed [17]–[20]. By assigning L2,1 norm,
Du et al. [17] made multiple kernel k-means algorithm more
robust to noise and outliers. Zhou et al. [18] utilized the
maximum entropy method to obtain the optimal assignment
of kernel weights. By combining kernels in a localized way,
Gönen andMargolin [19] can get rid of sample-specific noise
and capture sample-specific data features. Whereas, all these
methods mentioned above did not consider the correlations
between kernels. To select base kernels which are most rep-
resentative and non-redundant, many methods were proposed
with an unsupervised manner in the field of supervised learn-
ing. Gu et al. [21] proposed a representative multiple kernel
learning (RMKL) method, i.e. kernel weights can be obtained
by performing principal component analysis (PCA) on the
predefined general kernels. To select significant kernels not
all candidates, sparse MKL [22] method was proposed to
acquire kernel by robust PCA. Furthermore, nonnegative
matrix factorization (NMF) and kernel NMF (KNMF) can be
used to obtain a good kernel combination [23]. Significant
kernels obtained by such methods can be used for clustering
as well. However, all these are two-stage methods [20] which
search the base kernel combination independently of the
clustering. The kernels selected by these methods may not
be the ones that are useful for clustering.

To solve the two problems mentioned above simultane-
ously, a new MKFC model called multiple kernel fuzzy
clustering with unsupervised random forests kernel and
matrix-induced regularization (MKFC-URFK-MR) is pro-
posed in this paper. At first, the unsupervised random forests
kernel (URFK) is designed by transforming the conventional
supervised random forests into an unsupervised one. Specif-
ically, the URFK is generated from the proximity matrix of
an unsupervised random forest, which reveals the underlying
structure of data. URFK is a data-dependent kernel, it can
alleviate our burden in choosing candidate kernels for differ-
ent data.Wewill also show thatMKFCwith URFKs (MKFC-
URFK) performs much better than the ones using only
predefined general kernels. To build a more representative
feature space, some URFKs and predefined general kernels
are integrated linearly. Clearly, for such a combinationwith so
many kernels, suppressing the correlations between kernels is
of great importance. A matrix-induced regularization [24] is
then inserted to the objective function of MKFC to encourage
the diversity of kernels. As a result, the optimization algo-
rithm for the regularized new model is derived. Moreover,
the experiments on benchmark data demonstrate the good
performance of the proposed new MKFC-URFK-MR model
and its superiority over other MKFC approaches.

The contributions of this paper are summarized as
follows.

(1) A type of data-dependent kernel named URFK is pro-
posed and applied in clustering herein. URFK reveals the
inherent structure of specific data, and therefore, possesses
advantages of stability and adaptability over predefined gen-
eral kernels.

(2) To balance the objective of clustering and the diver-
sity of kernels, a matrix-induced regularization is introduced
to consider the correlation of kernels in the framework of
clustering.

(3) By combining the URFK and the diversity based reg-
ularization in MKFC, a novel model named MKFC-URFK-
MR has been proposed. The optimization algorithm of the
new model is derived. The new model shows better perfor-
mance over other MKFC approaches when tested on bench-
mark data.

The rest of the paper is organized in following order. The
related work is reviewed in Section II. Then in Section III,
the URFK is introduced and the proposedMKFC-URFK-MR
model is formulated. The optimization algorithm of MKFC-
URFK-MR is also presented there. In Section IV, experi-
mental results of MKFC-URFK-MR on benchmark data are
discussed. Finally, we conclude this paper in Section V.

II. RELATED WORK
Fuzzy clustering algorithms are seeking tominimize the com-
pactness of clusters:

J =
N∑
i=1

C∑
j=1

uαjiD
2
ij (1)

where the membership value uji ∈ [0, 1], with constraint
C∑
j=1

uji = 1, denotes the membership of data xi belonging

to center vj. Fuzzification coefficient α > 1 is a value
that controls the fuzziness of clustering. To cluster well, D2

ij,
as dissimilaritymeasurement between the ith data and jth cen-
ter, has been studied from different perspectives [25]–[29].

A. FUZZY C-MEANS AND KERNEL FUZZY C-MEANS
The dissimilarity measurement takes the form of D2

ij =∥∥Xi − Vj∥∥2 in Fuzzy C-means (FCM). Specifically, FCM [3]
groups given data into clusters by minimizing the weighted
sum of Euclidean distances between dataX = {x1, x2, ..., xN }
and cluster centers V = {v1, v2, ..., vC }. Now the objection
function (1) is:

J =
N∑
i=1

C∑
j=1

uαji
∥∥Xi − Vj∥∥2 (2)

where ‖ · ‖ denotes the Euclidean distance. Centers and
membership values are updated according to following rules
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in FCM until convergence:

Vj =

N∑
i=1

uαjiXi

N∑
i=1

uαji

(3)

uji =
1

C∑
h=1

(
‖Xi−Vj‖
‖Xi−Vh‖

) 2
α−1

(4)

However, Euclidean distance is not helpful in nonlinear
data clustering. Kernel Fuzzy C-means (KFCM) solves this
problem by changing the form of dissimilarity measurement.

Mapping original data Xi from the data space χ to a high
even infinite dimensional space (the feature space) H by
a transform function φ : χ → H , KFCM can acquire
a satisfactory clustering result from transformed data φ(Xi)
that becomes more linearly separable in the feature space.
Using kernel trick [30], we only need to know kernel function
K (x, x ′) = φ(x)φ(x ′)T explicitly. The predefined general
kernels like Gaussian kernel K (x, x ′) = exp(−‖x − x ′‖2/δ2)
and polynomial kernel K (x, x ′) = (x · x ′ + d)2 are widely
used in KFCM.

The loss function of KFCM is defined in the feature space:

J =
N∑
i=1

C∑
j=1

uαji
∥∥φ(Xi)− Vj∥∥2 (5)

Then the membership values and the clusters are updated
alternatively until convergence as follows. More details can
be found in [8].

Vj =

N∑
i=1

uαjiφ(Xi)

N∑
i=1

uαji

(6)

uji =
1

C∑
h=1

( ∥∥∥D2
ij

∥∥∥∥∥D2
ih

∥∥
) 1
α−1

(7)

where

D2
ij = K (Xi,Xi)−

2
N∑
p=1

uαjpK (Xp,Xi)

N∑
p=1

uαjp

+

N∑
p=1

N∑
q=1

K (Xp,Xq)

(
N∑
p=1

uαjp)
2

(8)

B. MULTIPLE KERNEL FUZZY CLUSTERING
MKFC offers more flexible representation space by a com-
posite kernel which linearly combines several base kernels.
The loss function of MKFC is similar to KFCM, i.e.,

J =
N∑
i=1

C∑
j=1

uαji‖9(Xi)− Vj‖2 (9)

The only difference between (5) and (9) is that the mapping φ
are replaced by 9, which is derived from a composite kernel
K9 (x, x ′) =< 9(x, x ′), 9(x, x ′) >. The composite kernel
is the linear combination of several predefined base kernels,
i.e. K9 = ω1K1 + ω2K2 + . . . + ωmKm [14], [31], where
[ω1, ω2, · · ·, ωm] are the weights of kernels.
For MKFC, the updating rules of centers and member-

ships are similar to the ones in (6) and (7). The difference
is that the kernel function K in these equations is replaced
by the combined kernel K9 . The updating rule for kernel
weights has different expressions depending on specific
algorithms [14], [18].

III. MULTIPLE KERNEL FUZZY CLUSTERING WITH
UNSUPERVISED RANDOM FORESTS KERNEL AND
MATRIX-INDUCED REGULARIZATION
A. UNSUPERVISED RANDOM FORESTS KERNEL
As mentioned in the introduction section, defining a data-
dependent kernel benefits the design of multiple kernel fuzzy
clustering. In this section, we will build such a kernel based
on random forests. But random forest (RF) is a supervised
ensemble method that is constructed by growing a set of deci-
sion trees [32]–[34]. In order to apply RF on the unlabeled
data, we need to transform it into an unsupervised method
which is called unsupervised random forest (URF) [35].

FIGURE 1. The diagram of URFK generation.

As shown in Fig. 1, the general process of URF and the
production of URF kernel (URFK) include following steps:
Step 1: Generate a synthetic dataset X ′ from the original

dataset X . Assuming that the original dataset X is a matrix
with size N × M , where N is the number of data and M is
the number of dimensions for each data, and the synthetic
dataset X ′ is also a matrix with sizeN×M . The k th (kε[1,N ])
synthetic data X ′k is randomly sampled from the product of
marginal distribution of variables in the original dataset X .
Step 2: Impose two different labels to the original data X

and the synthetic data X ′, respectively. Then we concatenate
these two data into a single one with size 2N ×M .
Step 3: Classify the combined data as a binary classifica-

tion problem by a random forest, taking the original data X
as one class, the synthetic data X ′ as another class.
Step 4: A proximity matrix [36] with size 2N × 2N

can be produced from the random forest derived in step 3.
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This proximity matrix represents the similarities between
data. In the matrix, by choosing the elements belonged to the
original data, a new sub-proximity matrix with size N × N
can be obtained. According to the lemma below, the sub-
proximity matrix is a valid kernel matrix, which is denoted
as the unsupervised random forests kernel (URFK) herein.
The specific procedure to generate a proximity matrix from
the unsupervised random forest is also detailed in the proof.
Lemma 1: Sub-proximity matrix is a valid kernel matrix.
Proof: According to [30], to prove a matrix is a kernel

one, we only need to show it is symmetrical and positive
semi-definite, i.e. a function K : χ × χ → R on a
set χ that is symmetric: ∀(x, x ′) ∈ χ2,K (x, x ′) = K (x ′, x)
and which satisfies, for all N ∈ N, (x1, x2, · · · , xN ) and

(a1, a2, · · · , aN ) ∈ RN
:

N∑
i=1

N∑
j=1

aiajK (xi, xj) ≥ 0.

Sub-proximity matrix is a type of similarity matrix with
size N × N . For the ith and jth samples in the original
data, starting from 0, if the two samples follow the same
routes and terminate at the same node along one decision tree
predictor in the forest, the similarity between sample i and j,
i.e. s(i, j) will increase by 1. The final N × N similarity
values are acquired by looping all samples and all trees, and
then normalized through dividing the total number of trees
in the forest. In other words, s(i, j) could be expressed as
s(i, j) = 1

t v(i)v(j)
T , where t is the number of trees in the forest

and v(i) is a binary vector which uses a one-hot encoding of
all the leaves for the ith sample. Considering all samples in the
data, V is a matrix consisting of all the binary vectors. Then
the sub-proximity matrix S could be expressed as S = 1

t VV
T .

For any x ∈ Rn, we have

xT Sx =
1
t
xTVV T x =

1
t
(V T x)TV T x =

1
t
‖V T x‖2 ≥ 0

(10)

So the sub-proximity matrix S is symmetrical and positive
semi-definite. For this reason, it is a valid kernel matrix.

As URFK is produced by comparing the original data with
the synthetic one, it is a data-dependent kernel that can reveal
the underlying structure of the data. In contrast to traditional
predefined general kernels, URFK shows better adaptability
to different data. Later, experiments on machine learning data
and image data will demonstrate this point.

Combining URFK with other kernels can provide more
information in feature space representation and improve the
performance of MKFC. In this paper, Gaussian kernels,
polynomial kernel and the proposed URFKs are linearly inte-
grated in MKFC for all data. The specific settings of different
kernels are detailed in the experiments part.

B. MKFC-URFK-MR
In previous subsection, many predefined general kernels and
data-dependent kernels are combined in MKFC. To subtly
adjust the weights of kernels according to the correlation
information between them, a matrix-induced regularization is
proposed into the objective function of multiple kernel fuzzy

clustering. The novel objective function is expressed as:

J =
N∑
i=1

C∑
j=1

uαji‖9(Xi)− Vj‖2 + γ
L∑
p=1

L∑
q=1

ωpωqMqp (11)

subject to
C∑
j=1

uji = 1, uji ∈ [0, 1];

L∑
p=1

ωp = 1, ωp ∈ [0, 1];

where 9(Xi) =
L∑
p=1

ωp8p, 8p is the mapping represented

by the pth kernel. ωp is the weight of the pth kernel. L is the
kernel number. N is data number. C is center number. γ is
a trade-off parameter which allocates the weights of kernels.
uji represents the extent of ith data belonging to jth cluster.
Mqp denotes the correlation between Kp and Kq.
In the new objective function. The first term is to encourage

homogeneous elements grouped into the same cluster, while
the second term is to optimize weights of kernels by a matrix-
induced regularization to reduce the redundancy and enhance
the diversity of selected kernels.

It is necessary to understand the importance of the second
term. Let’s study a case of linear combination of three kernels
(K1 K2 K3) in MKFC. Here we assume that high correla-
tion M12 appears between K1 and K2 and low correlation
M13 presents between K1 and K3. The high redundancy is
produced when large weights are assigned to K1 and K2 at
the same time. But this issue can be suppressed by the pro-
posed regularization because ω1ω2M12 should be minimized.
Similarly, low diversity may be produced when the weights

of K1 and K3 are suppressed by constraint
L∑
p=1

ωp = 1.

But the small value of M13 alleviates this problem because
minimizing ω1ω3M13 in the regularization offers K1 and K3
the chance to take higher values.

Particularly, Mqp or the correlation between two kernel
matrices can be defined in many ways, such as by KL
divergence [37], by maximum mean discrepancy [38], by
Hilbert-Schmidt independence criteria [39], to name a few.
As a loose approximation of the correlation betweenmatrices,
the inner product of Kp and Kq, Tr(K>p Kq) [24], is used in the
proposed model as Mqp.

C. OPTIMIZATION ALGORITHM
Considering the dissimilar measurement takes the form of
D2
ij = ‖9(Xi) − Vj‖2, the objective function (11) can be

rewritten as follows:

J =
N∑
i=1

C∑
j=1

uαjiD
2
ij + γ

L∑
p=1

L∑
q=1

ωpωqMqp (12)

We can minimize this objective function in an alternatively
way.
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1) OPTIMIZING MEMBERSHIPS AND CLUSTER CENTERS
At first, fixing the kernel weights W and cluster centers V ,
loss function (12) with Lagrange multiplier λ for the con-

straint
C∑
j=1

uji = 1 can be written as

Jλ =
N∑
i=1

C∑
j=1

uαjiD
2
ij + γ

L∑
p=1

L∑
q=1

ωpωqMqp + λ

C∑
j=1

uji (13)

Take partial derivatives to memberships uji and set them to
zero:

∂J
∂uji
= αD2

iju
α−1
ji + λ = 0

then,

uji = (−
λ

α
)1/(α−1)

1

D2/(α−1)
ij

Considering
C∑
j=1

uji = 1, we have following updating rule of

memberships:

uji = 1/
C∑
h=1

(D2
ij/D

2
ih)

1/(α−1) (14)

Similarly, with fixedweightsW andmembership valuesU ,
taking derivatives over centers V and setting them to zero,
we have

∂J
∂Vj
= −2

N∑
i=1

uαji(9(Xi)− Vj) = 0

then the updating rule of cluster centers is:

Vj =

N∑
i=1

uαji9(Xi)

N∑
i=1

uαji

=

N∑
i=1

ûji9(Xi) (15)

2) OPTIMIZING WEIGHTS OF KERNELS
From equation (15), we can derive

D2
ij = ‖9(Xi)− Vj‖2 = (9(Xi)− Vj)T (9(Xi)− Vj)

= 9(Xi)T9(Xi)− 29(Xi)T (
N∑
i′=1

ûji′9(Xi′ ))

+ (
N∑
i′=1

ûji′9(Xi′ ))
T (

N∑
i′′=1

ûji′′9(Xi′′ ))

=

L∑
p=1

ω2
pKp(Xi,Xi)− 2

N∑
i′=1

L∑
p=1

ûi′jω
2
pKp(Xi,Xi′ )

+

N∑
i′=1

N∑
i′′=1

L∑
p=1

ûi′jûi′′jω
2
pKp(Xi′ ,Xi′′ ) (16)

Let

ξijp = Kp(Xi,Xi)− 2
N∑
i′=1

ûi′jKp(Xi,Xi′ )

+

N∑
i′=1

N∑
i′′=1

ûi′jûi′′jKp(Xi′ ,Xi′′ ) (17)

The objective function (12) can be rewritten as

J =
N∑
i=1

C∑
j=1

uαji

L∑
p=1

ξijpω
2
p + γ

L∑
p=1

L∑
q=1

ωpωqMqp (18)

Let

βp =

N∑
i=1

C∑
j=1

uαjiξijp (19)

we have

J =
L∑
p=1

βpω
2
p + γ

L∑
p=1

L∑
q=1

ωpωqMqp (20)

with constraint

L∑
p=1

ωp = 1, ωp ∈ [0, 1]

Then, the weights of kernels can be acquired by solving the
following quadratic programming (QP) problem with linear
constraints W T IL = 1

min
W

J = min
W

(W TBW + γW TMW ) (21)

where IL is the unit vector with dimension L, W T
=

[ω1 ω2 · · ·ωL], B = diag([β1 β2 · · ·βp]). Such a QP problem
can be easily handled by calling corresponding solvers in
software packages like Matlab.

With the new kernel weights derived from (21), the dis-
tance (16) is updated by

D2
ij =

L∑
p=1

ξijpω
2
p (22)

3) FINAL ALGORITHM
Combining all the updating steps detailed above and

applying URFK and other predefined general kernels as
the base kernels, the final MKFC-URFK-MR algorithm is
illustrated in Algorithm 1. In this algorithm, given a random
membership matrixU , the related parameters in the iteration,
including ξijp, βp, ωp, D2

ij and U are updated according
to equations (17), (19), (21), (22) and (14), respectively.
The algorithm will terminate until when either the iteration
counter reaches tmax , or the variation of U between two
iterations is less than the threshold ε.

VOLUME 7, 2019 3971



Y.-P. Zhao et al.: MKFC-URFK-MR

TABLE 1. Summary of UCI datasets.

Algorithm 1 Multiple Kernel Fuzzy Clustering With
Unsupervised Random Forests Kernel and Matrix-Induced
Regularization
Require:

Dataset X = {x1, x2, ..., xN }; parameter α; maximum
iteration number tmax ; iteration counter t = 1;threshold ε;
random membership matrix U ; A set of kernel functions
{Kp}Lp=1 produced by unsupervised random forests, Gaus-
sian kernels and Polynomial kernels.
repeat
update coefficients ξijp according to (17);
update coefficients βp according to (19);
update weights of kernels ωp by solving (21);
update dissimilar measurement D2

ij according to (22);
update membership matrix U according to (14);

until t > tmax or ‖U t
− U t−1

‖ < ε.
return U

IV. EXPERIMENTS
In this section, a variety of experiments are conducted on UCI
machine learning data [40], face image data and some noisy
data. For comparison, the proposed method MKFC-URFK-
MR and several typical algorithms, including Kmeans [41],
FCM [3], KFCM [8] with different kernels, MKFC [14]
with Gaussian kernels, termed as MKFC-G, MKFC [14]
with Gaussian and Polynomial kernels, termed as MKFC,
a composite kernel is predetermined by the first stage of
RMKL [21] with Gaussian and Polynomial kernels, termed
as RMKL, are all tested on these data. For multiple kernel
based methods, the value of each kernel function is normal-
ized to the range of [0.0001,1]. The used UCI datasets are
summarized in Table 1, and the face image data contains Yale
and ORL datasets [42]. For all experiments, the fuzzification
degree is set to α = 1.08; the number of clusters C equals
to the ground truth of dataset; the stop threshold is given as
ε = 0.0001. Due to clustering methods depending on the
initialization, each experiment runs 50 times and reports the
average results. All algorithms are implemented inMATLAB
on a computer with 3.5 GHz CPU and 64 GB RAM.

A. PERFORMANCE INDEXES
To evaluate the performance of clustering, two performance
measures are calculated by comparing generated clusters and
ground truth. The first performance measure is the clustering
accuracy (ACC) which reveals the overlapping between the
resulting clusters and ground truth. Let s be the total number
of data points. For a data point xi, Ci is the clustering result
and Gi is the ground truth. The ACC is computed as follows:

ACC =
1
s

s∑
i=1

δ(Gi,map(Ci)) (23)

where δ(s1, s2) equals 1 if s1 = s2 and δ(s1, s2) equals 0
otherwise. The mapping function map(·) is used to find the
best match of generated clusters and ground truth. The Kuhn-
Munkres [43] method is widely used here. If the value of
ACC is closer to 1, it means that the clustering performance
is better.

Another evaluation metric is the normalized mutual infor-
mation (NMI). Let s be the total number of data samples.
Cluster i has si data samples. Cluster j has sj data samples. si,j
means data samples in both cluster i and j. NMI is computed
as follows:

NMI =

∑i,j si,jlog(
s·si,j
si·sj

)√
(
∑

i silog
si
s )(
∑

j log
sj
s )

(24)

The greater clustering NMI means the better clustering per-
formance.

B. SELECTION OF BASE KERNELS
In fuzzy clustering using multiple kernels, the distances
between the data points and cluster centers are evaluated by
base kernel functions. To determine the optimal distance, a set
of predefined general kernels frequently used by kernel meth-
ods and the proposed URFK are selected for our experiments.
In this paper, we select seven Gaussian kernels for MKFC-G.
An additional Polynomial kernel is added for both MKFC
and RMKL. To include more data-specific information, five
URFKs are added to buildMKFC-URFK andMKFC-URFK-
MR. For these URFKs, the number of trees T is set to 200,
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TABLE 2. Description of the basic kernels.

400, 600, 800, and 1000 respectively. For the Polynomial
kernel, the parameters are set to ϑ = 1 and p = 2. For the
Gaussian kernels, the parameters ν are set to {0.1, 0.05, 0.01,
0.005, 0.001, 0.0005, 0.0001}. Details are listed in Table 2.

C. EXPERIMENTS ON UCI DATASETS
The comparison of results obtained by different algorithms on
UCI machine learning data are presented in Table 3-6. ACC
andNMI are used to evaluate the clustering results of different
algorithms. Bold numbers denote the best results.

1) EXPERIMENTS ON URFK
The ACC comparison results of KFCM with different base
kernels are illustrated in Table 3. For each dataset, there are
two results produced by each algorithm, and they are the
value of mean and standard deviation of ACC, respectively.
The numbers in parentheses are the rankings of different

algorithms. For example, the first element in the table 0.547,
and 0.000 are the mean and standard deviation of ACC of
KFCM with basic kernel K1, ranking the 12th among all
algorithms. It is noticed that the last two rows in the table
show the average ACC (mACC) and the average ranking
(mRank) on all the 11 UCI datasets for each algorithm.

In general, KFCM with URFK namely K9-K13 perform
better than those with predefined general kernels including
K1-K8. It could be seen from Table 3 that the mACC of
K9-K13 rank the 4th, 2th, 2th, 1th and 3th respectively, while
that of K1-K8 are the 6th, 7th, 8th, 9th, 10th, 11th, 12th
and 5th respectively. Especially, the best clustering result is
generated by URFK K12, mACC and mRANK of which are
both in the first place among all the kernels.

Furthermore, URFKs are more stable than predefined gen-
eral kernels. Specifically, the rankings of KFCM-K11 on
S6 and S11 are 1th and 6th, respectively, showing the maxi-
mum ranking range is from 1 to 6. However, that of KFCM-
K1 is from 1 to 12. The comparison shows that as URFK
is a data-dependent kernel, KFCM with URFK has a stable
and good performance when the dataset is changed. Simi-
larly, the observation can be found between KFCM-K5 and
KFCM-K12.

A similar conclusion can be drawn in terms of NMI from
Table 4. To be more intuitive, mACC and mNMI of KFCM
with different basic kernels are plotted in Fig. 2. It can be
shown that mACC and mNMI of K9-K13 are stable showing
similar heights. Besides, mACC and mNMI of K9-K13 are
larger than that of K1-K8. That is, in general, KFCM with
URFK namely K9-K13 perform better than those with pre-
defined general kernels including K1-K8.

As a short summary, URFK is a type of data-dependent
kernel, so it can perform relative well on all data. On the other

TABLE 3. ACC comparison results of KFCM with different kind of single kernel on UCI datasets.
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TABLE 4. NMI comparison results of KFCM with different kind of single kernel on UCI datasets.

TABLE 5. ACC comparison results of different MKFC-based clustering algorithms on UCI datasets.

hand, some predefined kernels such as K1 and K8, obtain
better results only on certain data such as S6 and S11. This
inspires us to combineURFKs and predefined general kernels
in MKFC to further improve the performance of clustering.
The superiority of these improved MKFCs are demonstrated
in the next subsection.

2) EXPERIMENTAL RESULTS OF DIFFERENT MKFCS
The ACC comparison results of different MKFC-based algo-
rithms on UCI datasets are illustrated in Table 5. For com-
pleteness, the results of FCM and Kmeans are also included.

Firstly, comparing the rankings of mACC and mRANK of
MKFC and MKFC-G, we can find that both the two rankings
go up from seventh to the sixth. Hence, the introduction of
a Polynomial kernel improves the clustering performance.
Secondly, RMKL performs better than Kmeans, MKFC-G
and MKFC, showing its mACC and mRANK rankings are
both forth. It should be noticed that RMKL is inferior to FCM,
mainly because RMKL is a two-stage method which only
considers the diversity and non-redundance of predefined
general kernels independently of the clustering. Interestingly,
the mACC and mRANK of MKFC are both only in the
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TABLE 6. NMI comparison results of different MKFC-based clustering algorithms on UCI datasets.

FIGURE 2. Performance of KFCM with different basic kernels.

sixth place in Table 5. This poor result is mainly due to
the existence of a few poor-performed predefined general
kernels inMKFC, i.e. K5, K6 and K7, the mRANKs of which
are the bottom three in Table 3 and Table 4. There is no
regularization inMKFC to attenuate the impact of these poor-
performed predefined general kernels. However, with the help
of URFKs, performance of MKFC-URFK has been greatly
improved, proving the effectiveness of URFK in clustering.

Moreover, both themACC andmRANKofMKFC-URFK-
MR go up to the first place among all the algorithms on
most datasets with the help of the introduced regulariza-
tion adjusting the weights of kernels in MKFC-URFK. For
instance, the ACC and RANK ofMKFC-URFK on S1 dataset
are 0.558 and 3th, respectively. MKFC-URFK-MR goes
up to the first place among all the algorithms as its ACC
increases to 0.617. What’s more, the changes of mACC
and mRANK between MKFC-URFK and MKFC-URFK-
MR clearly demonstrate the effectiveness of matrix-induced
regularization.

In addition, the NMI comparison results of different clus-
tering algorithms on UCI datasets are illustrated in Table 6.
Again, we can draw similar conclusions in terms of NMI. The
effectiveness of URFK and matrix-induced regularization
makes that the MKFC-URFK-MR performs best on average.

D. EXPERIMENTS ON FACE IMAGE DATASETS
We also evaluated the algorithms with the face image clus-
tering problem. Yale and ORL datasets [42], the two most
commonly used face image datasets, are adopted herein.
Fig. 3 and Fig. 4 give sample images of a subject from
Yale and ORL datasets, respectively. All images of these two
datasets are normalized and cropped to 32× 32 pixels.

FIGURE 3. Sample images of a subject from Yale dataset.

FIGURE 4. Sample images of a subject from ORL dataset.

Yale contains 165 grayscale images of 15 individuals which
means each subject has 11 different images. Facial expres-
sion or configuration of different person is illustrated on per
image.
ORL contains 400 images of 40 individuals which

means each subject has 10 different images. Facial details,
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facial expressions or the change of photographing time and
light are illustrated on per image.

The experimental results on face image datasets, namely
ACC, NMI and computational time of each algorithm, are
tabulated in Table 7 for comparison. In Table 7, the parameter
settings of K1-K13 are the same as the ones in UCI experi-
ment. First, it can be seen that the ACCs of these predefined
general kernels on Yale dataset are about 0.45. Especially,
ACC of kernel method based on K8 is only 0.177. The results
of predefined general kernels in Table 7 are poor. This can be
attributed to the fact that the parameter settings of kernels are
fixed, while the datasets are now in a different domain. This
illustrates the poor adaptability of predefined general kernels
to different datasets.

TABLE 7. ACC, NMI and computational time comparison results of
different clustering on face datasets.

On the contrary, the URFKs in Table 7, i.e K9-K13, could
achieve much better performance as their ACC and NMI of
Yale and ORL datasets reach about 0.65 and 0.66, 0.57 and
0.78 respectively. These experimental results show that when
URFKs are applied to different datasets, it still could achieve
relative good results, showing the advantage of using a data-
dependent kernel.

Then, when matrix-induced regularization is added into
MKFC-URFK, MKFC-URFK-MR could achieve the best
results among all these algorithms, as shown in the last row
of Table 7, proving the effectiveness of matrix-induced regu-
larization.

Besides, Table 7 also shows the total computational time
in seconds over 50 runs of different clustering on Yale and
ORL datasets. It can be observed that KFCM with URFKs,
i.e. K9-K13 require more time than that with predefined ker-
nels, i.e. K1-K8. Specifically, computational time of KFCM
with predefined general kernels is about 6 seconds while that
of KFCMwith URFKs is in the interval [20 73]. Furthermore,
as the increase of trees of random forests, the computa-
tional time increase linearly. Clearly, MKFC-URFK and

MKFC-URFK-MR cost more time than other algorithms
since there are five URFKs in their candidate kernels.

E. EXPERIMENTS ON NOISY DATASET
In this section, experiments are conducted on noisy datasets
to test the efficiency of the different algorithms. In the exper-
iment, the noise is introduced to Wine dataset. The noise
meets the uniformly distribution of a certain interval [−τ ,τ ],
where τ takes values between 0 and 1 with interval of 0.2.
The efficiency of the algorithms against the increasing noisy
datasets is shown in Fig. 5 and Fig. 6, which represent the
ACC and NMI performance results, respectively.

FIGURE 5. ACC performance of clustering algorithms on noisy data.

FIGURE 6. NMI performance of clustering algorithms on noisy data.

It can be observed from Fig. 5 and Fig. 6, both ACC
and NMI of each algorithm decrease when the amount of
noise added to data increases, showing that the clustering
quality of algorithms degrades. Nonetheless, the performance
of the proposed URFK based methods, i.e. MKFC-URFK
and MKFC-URFK-MR always perform better than the other
algorithms without URFK. What’s more, MKFC-URFK-MR
could achieve the best performance among these algorithms.
For example, in Fig. 5, ACC of MKFC-URFK-MR, shown
in pink line, varies from about 0.985 to 0.955 while that
of MKFC varies from about 0.975 to 0.955, when τ takes
value from 0 to 1. MKFC-URFK-MR achieves better results
at each point in the figure. The similar phenomenon could be
observed from Fig. 6, demonstrating the efficiency of URFK
and the effectiveness of matrix-induced regularization.
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F. HYPER-PARAMETER SELECTION
The proposed MKFC-URFK-MR introduces a hyper-
parameter γ to balance the contributions of MKFC and the
matrix-induced regularization. As a sensitivity analysis of the
hyper-parameter, ACC andNMI of the proposed algorithm on
UCI Breast tissue data are plotted in Fig. 7 by varying the γ
from 2−30 to 240. As observed, ACC and NMI have similar
trend that both of them first increase to its highest value and
then decrease to a certain value with the increasing of γ .
Besides, the proposed MKFC-URFK-MR performs stably in
a certain range of hyper-parameter. Similar to most authors’
approach in the clustering area [31], [44], the regularization
parameter γ of the proposedmodel in this paper is tuned from
a wide range [2−30, 2−18, ..., 240] by grid search.

FIGURE 7. The effect of the hyper-parameter γ to the proposed
MKFC-URFK-MR algorithm.

G. CONVERGENCE AND COMPUTATIONAL COMPLEXITY
With the updating of membership matrix U and kernel
weight W , the objective function (11) is minimized inter-
actively. In other words, in the ith iteration where partial
minimization is achieved, the following relationship holds

J (U i+1,W i+1) ≤ J (U i+1,W i) ≤ J (U i,W i) (25)

It implies that J (U ,W ) is a decreasing function with
respect to the iteration number i. Therefore, the proposed
MKFC-URFK-MR converges to either a saddle point of the
objective function or a local optimal solution.

Fig. 8 shows the objective value of our proposed algorithm
at each iteration on face image datasets. From the figure,

FIGURE 8. The objective value of MKFC-URFK-MR algorithm at each
iteration on face image datasets.

we can observe that the objective value decreases mono-
tonically. Usually, the algorithm converges in around fifty
iterations.

The computational complexity of MKFC-URFK-MR per
iteration is O(N 2L). To store the kernel matrices, kernel
weight matrix and the partition matrix, the space required by
the algorithm is O(N 2L), O(L) and O(NC), respectively.

V. CONCLUSION
In this paper, a data-dependent kernel, URFK, is intro-
duced by transforming the supervised random forests into an
unsupervised one. Unlike the traditional predefined general
kernels, such as Gaussian and Polynomial ones, URFK is
constructed based on inherent features of datasets. As a result,
URFK shows good adaptability to various datasets. By comb-
ing URFK, Gaussian and Polynomial kernels, MKFC-URFK
is formed and matrix-induced regularization is introduced
to reduce redundancy between kernels in MKFC-URFK.
Finally, the proposed novel algorithm, MKFC-URFK-MR,
shows advantages in adaptability, performance and efficiency
in clustering, which have been demonstrated by experiments
on UCI data, face image data and some noisy datasets.

In the future, the study would focus on experiments on
large datasets and incomplete datasets. Kernel-basedmethods
tend to be unattainable to large datasets [45]. To solve the
problem, kernel-based methods in an approximated kernel
space [46] can be considered. For incomplete datasets [47],
to obtain important features, feature selection [48], [49]meth-
ods in approximated kernel space could be taken into account.
In other words, it is worthy studying the influence of feature
weights in approximated kernel space.
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