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ABSTRACT Feature extraction and classification play an important role in brain–computer interface (BCI)
systems. In traditional approaches, methods in pattern recognition field are adopted to solve these problems.
Nowadays, the deep learning theory has developed so fast that researchers have employed it in many areas
like computer vision and speech recognition, which have achieved remarkable results. However, few people
introduce the deep learningmethod into the study of biomedical signals, especially EEG signals. In this paper,
a wavelet transform-based input, which combines the time-frequency images of C3, Cz, and C4 channels,
is proposed to extract the feature ofmotor imagery EEG signal. Then, a 2-Layer convolutional neural network
is built as the classifier and convolutional kernels of different sizes are validated. The performance obtained
by the proposed approach is evaluated by accuracy and Kappa value. The accuracy on dataset III from BCI
competition II reaches 90%, and the best Kappa value on dataset 2a from competition IV is greater than many
of other methods. In addition, the proposed method utilizes a resized small input, which reduces calculation
complexity, so the training period is relatively faster. The results show that the method using convolutional
neural network can be comparable or better than the other state-of-the-art approaches, and the performance
will be improved when there is sufficient data.

INDEX TERMS Brain computer interface (BCI), motor imagery (MI), wavelet transform time-frequency
image, convolutional neural network (CNN).

I. INTRODUCTION
The brain is the central nervous system and activity control
center of the human body. People rely on brain activity to con-
trol the body to respond differently to external stimulus. For
people with movement disorder, their brain consciousness is
normal but the motion intention cannot be implemented. The
brain-computer interface (BCI) system has created a pathway
which is independent of the surrounding nerves and muscles
for them [1]–[3]. The BCI system converts the electroen-
cephalogram (EEG) signal into the peripheral control signal,
which functions like ‘decoding’. It has been widely used in
the field of rehabilitation training.

When people actually perform or only imagine unilateral
limb movements (such as left or right hands), the activity
state of different parts of the brain will change. The ipsi-
lateral (relative to subjects’ unilateral limbs) and the con-
tralateral brain sensorimotor cortex will respectively show
phenomena called event-related synchronization (ERS) and
event-related desynchronization (ERD). It is manifested by
the increase of mu and beta rhythm energy of ipsilat-
eral sensory motor cortex and the decline of contralateral
mu and beta rhythm energy [4]. This is the physiolog-
ical basis for the classification of motor imagery (MI)
EEG signals.
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According to the traditional classification method of motor
imagery EEG, feature extraction and recognition are two rel-
atively independent parts. Most researchers focus on feature
extraction algorithms. At present, the feature extraction algo-
rithms mainly include adaptive auto regressive (AAR), short-
time Fourier transform (STFT), wavelet transform (WT) and
common spatial pattern (CSP) and other methods [5]–[9].
Feature recognition methods are mainly linear discriminant
analysis (LDA), support vector machine (SVM) and Bayesian
classifiers [10]–[12].

A lot of research shows that the traditional feature extrac-
tion algorithm is relatively mature, but there are still some
problems. In the abovemethods, the AARmodel is more suit-
able for analyzing stationary signals. For the STFT, the width
of the window determines the time resolution and frequency
resolution, the wider the window, the higher the frequency
resolution and the worse the time resolution. On the contrary,
the narrower the window, the worse the frequency resolu-
tion and the better the time resolution, that is to say, in
the STFT, the time resolution or the frequency resolution
cannot be obtained simultaneously, and the limited window
width will cause a certain spectrum leakage. WT is a kind of
time-frequency analysis method that can perform multi-scale
analysis. However, most researchers use statistical features
such as maximum, minimum, mean and standard deviation
of wavelet coefficients as EEG features, which need manual
screening and are based on a certain prior knowledge, while
the pattern ofmotor imagery signals is not fixed and can cause
unpredictable changes due to individuals and trails.

In recent years, deep learning theory, as an important
branch of machine learning, has been effectively applied and
enriched in computer vision, speech recognition and natural
language processing [13]–[15]. The significant characteristic
of deep learning is that the model can automatically extract
effective features, which has certain advantages in large scale
data. Furthermore, some researchers have applied deep learn-
ing theory to the study of EEG signals. In [16], the CSP
algorithm is used to extract the characteristics of the original
EEG signal, and a four-layer neural network is trained to
classify the two types of movement imagination signals. The
first and the second layer are stacked by automatic encoders,
through which they learn to input new features of data that
are more abstract. Through the comparison experiments of
several models, it is found that the calculation amount will
be greatly reduced when feature extracted by CSP is used as
the input of the network. Reference [17] uses the deep belief
network (DBN) and the implicit Markov model (HMM) to
detect emotions (positive/negative), adopting the differential
entropy of signals in five frequency bands and their sum in the
EEG signal as the feature. In comparison with the traditional
SVM and KNN models, the higher classification accuracy
is obtained. This result shows that DBN assigns different
weights to different feature components based on artificially
provided features, and filters out invalid feature components.
Reference [18] defines ERD/ERS as the percentage of signal
power rise or fall in the reference time, using this percentage

as the input as the 5-layer convolution network to complete
the classification of left and right hand motion imaging EEG,
and the accuracy improved by 5%-10% compared with tradi-
tional method [19].

These models using deep neural network as the classifier
still extract the features manually as input. However, due
to the characteristics of deep network nonlinearity, it can
learn more abstract features, and use more information than
traditional machine learning methods. Thus, there will be a
raise in identify accuracy. In addition, some researchers no
longer deal with feature extraction separately, instead, they
use deep network to learn features automatically to complete
classification. In [20], in order to improve the classifica-
tion accuracy of P300 and non-P300 signals in the auxiliary
spelling BCI system, a 5-layer convolutional neural network
was established with 64 channels of time series as input,
and CNN automatic feature learning was used to complete
the classification. However, since each channel has rich fre-
quency information, this model is less interpretable.

In order to provide a relatively general classification model
of motor imagery EEG, we propose a new input form, which
uses wavelet transform to convert multichannel EEG sig-
nals into two-dimensional time-frequency images, so as to
obtain its comprehensive information, including both the
time-frequency features and the relative position of the elec-
trodes. Additionally, convolutional neural network is utilized
as the classifier. Although reference [21] has proposed image
as input, multi-scale analysis of wavelet transform avoids
the problem of window size selection in STFT method.
Moreover, convolutional network is more suitable for image
classification than stacked automatic encoder. The presented
method is tested and evaluated on Dataset A and Dataset B.
The results are compared with those in the competition.

II. DATASETS
As shown in Table 1, our EEG data was from two sources:

(1) Dataset A was the dataset III from BCI competition
II [22]. It was recorded from a normal subject (female, 25y).
The experiment consists of 280 trials of 9s length in total,
and the break between each trail is ranging from 0.5s to 2s.
The experimental paradigm for each trial is the same, as is
illustrated in Fig. 1. The first 2s was quite, at t=2s an acoustic
stimulus indicates the beginning of the trial, and a cross ‘‘+’’
was displayed for 1s; then at t=3s, an arrow (left or right)
was displayed as the cue. Meanwhile, the subject was asked
to conduct the imagery task according to the arrow. The EEG
was sampled with 128Hz, it was filtered between 0.5 and
30Hz.

(2) Dataset B was the dataset 2a from BCI competition
ćô [23]. This dataset consists of EEG data from 9 subjects.
The cue-based BCI paradigm consisted of four different
motor imagery tasks, namely the imagination of the left
hand, right hand, both feet, and tongue. Two sessions were
recorded for each subject. Each session is comprised of 6
runs separated by short breaks. One run consists of 48 trials
(12 for each of the four possible classes), yielding a total
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TABLE 1. Datasets properties.

FIGURE 1. The experimental paradigm for each trial.

FIGURE 2. The experimental paradigm for each trial.

of 288 trials per session. The paradigm is illustrated in Fig. 2,
at the beginning of a trial (t=0s), a fixation cross appeared
on the black screen. In addition, a short acoustic warning
tone was presented. After two seconds (t=2s), a cue in the
form of an arrow pointing either to the left, right, down or up
(corresponding to one of the four classes left hand, right hand,
foot or tongue) appeared and stayed on the screen for 1.25s.
This prompted the subjects to perform the desired motor
imagery task. The signals were sampled with 250 Hz and
band-pass filtered between 0.5 Hz and 100 Hz.

III. PREPROCESSING
The preprocessing of the EEG signal is mainly to remove the
noise in the signal, to filter out the frequency components
unrelated to the motor imagery task. Some digital signals
contain low-frequency noise, which affects the analysis of
the signal. It needs to be preprocessed to eliminate the signal
baseline. By eliminating the trend from the data, the analysis
can be concentrated on the fluctuation of data. A linear trend
usually indicates a systematic increase or decrease. The non-
linear trend can be measured by wavelet analysis, and signal
is multi-scale analyzed by wavelet transform. The baseline
trend of the signal can be seen from the low-frequency coef-
ficient and it can be subtracted from the original signal.

The ERD/ERS pattern of EEG is mainly reflected in the
frequency band of 8-30Hz. Different imagery tasks are dif-
ferent in the characteristic frequency band and brain area, and
vary from person to person, even different trails of the same
person. The ERD/ERSmode generated during the task is also
different. Therefore, it is too complicated to extract the active
segment of the relevant frequency band for each task of each
person. We perform band-pass filtering on the original signal
and select the frequency band of 8-30Hz.

The EEG signal itself has a low signal-to-noise ratio, and it
greatly affects the accuracy of the final classification. There
are two main types of noise sources for EEG signals, one
is non-EEG artifacts such as myoelectric signals and eye
movement signals, the other is the frequency component
of the EEG signal that is unrelated to the motor imagery
task. The two types of signals are different in frequency
distribution from the useful components. The myoelectric
signal has a relatively wide frequency range, and the larger
amplitude portion is distributed in the frequency greater than
30 Hz; the eye movement signal is concentrated in the low
frequency range of less than 5 Hz, especially in forehead.
In this paper, we use a spatial filter to maximize the signal-to-
noise ratio. Reference [24] pointed out that common average
reference (CAR) filter emphasizes the common components
in most channels, and it removes these components from
the specified channels to increase the difference between
different channels. Conversely, if some of the components
are present in most channels but not in the interest channel,
artifacts will be produced on interest channel. The Laplacian
method has a similar effect to CAR, but uses only a small
subset of neighborhood channels. Laplacian spatial filtering
is calculated according to (1) and (2).

V LAP
I = V ER

i −
∑
j∈Si

gijV ER
j (1)

gij = 1/dij/
∑
j∈Si

dij (2)

In equation (1) and (2),V LAP
i is the value of the i-th channel

filtered by the Laplacian method; V ER
i is the potential differ-

ence between the i-th electrode and the reference electrode;
Si represents the set of neighboring electrodes of the i-th
electrode, and dij indicates the distance between the i-th and
j-th channels.

IV. INPUT DATA
The ERD/ERS phenomenon of left and right hand motor
imagery occurs in the C3 and C4 regions of the cerebral
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FIGURE 3. Wavelet time-frequency images of the C3 (a) and C4 (b)
channels when the subject performing the left-hand movement imagery
task. It can be seen that the energy of the C4 channel decreases
significantly 3 seconds after the trail begins, then recovers after a period
of time, which means the ERD phenomenon occurs. However, the energy
of the C3 channel remains at a high level instead of decreasing, which is
called the ERS phenomenon.

cortex, which means the energy change of the mu rhythm
and beta rhythm of EEG signals in these regions. Specif-
ically, when the subject performs the left hand motor
imagery, the power amplitude of the C3 channel increases
in the 8-12 Hz band, that is, the ERS phenomenon
occurs, and the power amplitude of the C4 channel in the
8-12 Hz band decreases, which means the ERD phenomenon
occurs. Conversely, when the subject imagines the right hand
movement, the ERD occurs in the C3 channel, and the ERS
appears in the C4 channel. The corresponding wavelet time-
frequency images are shown in Fig.3 and Fig.4. These images
of C3, C4, and Cz were combined as the final input images,
which are illustrated in Fig.5.

V. CONVOLUTIONAL NETWORK FRAMEWORK
A typical CNN network has the following levels: the input
layer, the convolution layer, the pooling layer, the fully con-
nected layer, and the output layer. The convolution kernel
extracts the feature of the local receptive field of the input
image, then the feature is used as the input of pooling layer.
The abstraction ability of CNN is positively correlated to the

FIGURE 4. Wavelet time-frequency images of the C3 (a) and C4 (b)
channels belonging to the trails of right hand imagery task. Obviously,
this phenomenon is opposite to that of Fig.3 (a) and (b). The C4 channel
displays ERS and the C3 channel presents ERD phenomenon.

number of layers and the parameters to be learned. The more
layers included, the stronger the abstraction ability is. Mean-
while, the model is more likely to be over-fitting while the
network is going deeper. The purpose of the pooling layer is to
reduce the data dimension. Max pooling and average pooling
are the common strategies employed in CNN, functioning as
the sub-sampling layer. We calculate the convolution layer
and pooling layer alternately, so that the size of feature map
shrinks and the number of channels increases. When it comes
to the fully connected layer, the previously obtained features
are flattened, and the classification results are finally achieved
through the feedforward network.

Throughout the development of deep learning, the structure
of the model is the priority in researches. With the beginning
of LeNet-5, several classic CNN models emerged, such as
AlexNet, VGG, GoogleNet and ResNet. Before the emer-
gence of GoogleNet, the breakthrough of the mainstream
network structure is to roughly increase the layers of network
and the width of each layer. To handle the problem how to
choose the kernel size and whether to use the pooling layer,
the researchers has proposed the inception blocks, and the
inception network works remarkably well. However, many
of the mature networks are huge and not appropriate for our
small size training set.
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FIGURE 5. Final combined input image of 2 channels (C3 and C4) (a) and
that of 3 channels (C3, Cz, and C4) (b).

FIGURE 6. Structure of the 2-Layer convolutional network.

The amount of the data in BCI datasets is not sufficient
for the classic models mentioned above, because they are
difficult to train and more likely to be over fitting. A 2-Layer
convolution network is proposed for the small dataset. Addi-
tionally, the input images are uniformly resized to 64∗64, and
the kernel size is adjusted accordingly. Two types of kernels
is adopted in this paper, one is the 2D kernel, and the other
is 1D kernel. The structure of the 2-Layer network is shown
in Fig. 6.

The nonlinear characteristics of the neural network are
largely derived from the nonlinear excitation function of the
neuron. The sigmoid function used in the perceptron is also
called the logistics function. The mathematical expression is
shown in Eq. (3), which can map a real number in the interval

FIGURE 7. The curve of sigmoid function (a) and the derivative curve of
sigmoid function (b).

of (0, 1). Nevertheless, when performing back propagation,
derivative of the activation function needs to be calculated.
The derivative of sigmoid is shown in Eq. (4). The curve of
sigmoid function and its derivative are shown in Fig.7. It can
be seen that the gradient starts from 0 and returns to 0, and
its maximum is only 0.25, so the gradient disappears after
chain-based derivation calculation, which is called gradient
vanishing problem. As a result, relu function is chosen, its
derivative is always equal to 1 if the input is greater than zero.
Using relu in the deep network can avoid the above problem.
The function representation and derivative of relu is shown in
Eq. (5)-(6).

f (x) =
1

1+ exp(−x)
(3)

f ′ (x) = f (x) (1− f (x)) (4)

f (x) = max (0, x) (5)

f ′ (x) =

{
1, x > 0
0, x ≤ 0

(6)

In the training of neural network, the gradient descent
algorithm is used iteratively. Gradient descent algorithm has
3 derivatives according to the size of samples included in the
calculation of the loss function in each iteration: full-scale
gradient descent (all samples are included), batch gradient
descent (a batch of samples are included) and stochastic gra-
dient descent (one sample is randomly selected to calculate
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TABLE 2. Classification results using different channels and mother wavelets.

the loss). Usually, the mini-batch gradient descent is used to
ensure convergence to a better global optimal solution when
the loss function is a convex function, but the learning rate is
a fixed value, and it directly affects the quality of the final
solution. If learning rate is set too small, the convergence
will be very slow, and setting it too large will cause the
oscillation to converge. Moreover, the same learning rate is
not applicable to the updating of all parameters. For non-
convex problems, it can only converge to the local optimal
solution using gradient descent, which cannot get rid of the
local minimum and saddle points. Therefore, we utilize Adam
algorithm to obtain the adaptive learning rate for each param-
eter [25].

In practical applications, compared with other adaptive
optimization algorithms, Adam converges faster, and can
avoid problems in other optimization algorithms, such as
uniform learning rate, slow convergence and high variance
in parameters updating, which cause obvious fluctuations
in the loss function. Adam is essentially an RMSprop with
a momentum term, which dynamically adjusts the learning
rate of each parameter using the first-order moment estimate
and the second-order moment estimate of the gradient. The
main advantage of Adam is that after the offset correction,
the learning rate in each iteration has a certain range, which
makes the parameters relatively stable. The Adam adjusts its
parameter according to Eq. (7)-(11).

mt = µ ∗ mt−1 + (1− µ) ∗ gt (7)

nt = v ∗ nt−1 + (1− v) ∗ g2t (8)

m̂ =
mt

1− µt
(9)

n̂ =
nt

1− vt
(10)

1θt = −
m̂t√
n̂t + ε

∗ η (11)

Among the equations, mt is the first moment estimation
and nt is the second moment estimation of the gradient.
Respectively, m̂ and n̂ are the corrections to them.

VI. RESULTS AND DISCUSSION
A. PERFORMANCE VALIDATION ON DATASET A
In order to obtain a stable and reliable model, cross-validation
is adopted to evaluate the performance of the classifier.

Cross-validation, also known as loop estimation, captures
as much information as possible when the training set is
not large enough, and to some extent, can avoid the model
from over-fitting. In this paper, the K-fold cross-validation is
employed. K is set to be 5, and the average of these 5 models’
results are calculated as the final result.

Reference [26] and other research papers show that the
ERD/ERSmode during the right and left hand motor imagery
occurs in the sensory motor cortex on the corresponding left
and right sides, the regions beneath the electrodes C3 and
C4. We compare the results of including Cz channel in the
input image and those of not including it. The comparison is
shown in Table 2. It can be seen that EEG signals of C3 and
C4 channels are enough to classify different imagery tasks.
Instead of improving the classification accuracy, it seems to
introduce some noise while the Cz channel is included.

In addition, in the selection of the mother wavelet, it is
generally desirable to obtain a smooth continuous wavelet
amplitude when analyzing the time series, and thus the non-
orthogonal wave function is suitable. The Morlet wavelet
is not only non-orthogonal but also an exponential complex
wavelet modified by Gaussian. In this paper, different mother
wavelets are selected for comparison and the results are
shown in Table 2. It can be seen that the classification results
based on Morlet wavelet transform are relatively better. The
time-frequency images of the signals after these wavelet
transformation are demonstrated in Fig. 8. After the Mortlet
wavelet transformation, the energy is more concentrated. The
Daubechies wavelets, which usually called ‘dbN’ for short,
have different vanishing moments. The letter N in ‘dbN’
represents the order of vanishing moment. The wavelet with
higher-order vanishing moment has a better resolution in
frequency domain, but the compact support in time domain
is weakened, and there is an increase in calculation. The
Symlets wavelet system was proposed by Daubechies, and its
approximate symmetric wavelet function is an improvement
of the Daubechies function. It is obvious to see from the
Fig. 8 that the images after ‘db4’ and ‘sym4’ wavelet trans-
formation are similar. In addition, Haar wavelet is a special
case in Daubechies wavelets when its support length equals
to 1.

As we can see from Table 2, wavelet transform based on
‘cmor3-3’ gets the highest accuracy on both types of input.
Specifically, 92.75% for two channels input and 83.50% for
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FIGURE 8. Transformed images using mother wavelet: db4 (a), sym4 (b), cmor3-3 (c) and haar (d).

TABLE 3. Results of different time duration.

three channels input. From Fig. 8, it can also be observed
that the transform based on ‘cmor3-3’ wavelet (Fig. 8c) is
more concentrated in frequency, while the transform based
on ‘haar’ wavelet is the least concentrated one in Fig. 8(d).
According to the images Fig. 8(a) and Fig. 8(b), it can be
assumed that the result based on ‘db4’ is similar to ’sym4’,
and the result in Table 2 verifies this assumption. What’s
more, the accuracy of 3 channels is mostly lower than that
of 2 channels, we can come to the conclusion that the effective
components are mostly included in C3 and C4.

The experimental paradigm, as shown in Fig. 1, shows that
the cue appears at 3rd s, and then the corresponding imagery
task starts, so the time period selected in this paper is the
data after 3rd s. However, if the whole period from 3 to
9 seconds are adopted, it is bound to introduce noise unrelated
to the task. At the same time, considering the subject has a
certain delay after seeing the arrow at the beginning of the
imagination task, the sliding window is proposed to select the
most appropriate time period. Our method starts from the 3rd

s, with 0.25s as the sliding step and 3s as the window width,
sliding to the 4th s.

According to the Table 3, the results demonstrate that the
classification performance based on the 3.25-6.25s period is
the best. It means there is indeed a delay when people perform
motor imagery according to the cue. A smaller sliding step
and different window width can be employed to precisely
find the active segment. However, the active segment for
each subject is different, and the effective duration where
ERD/ERS mode occurs is uncertain, so the selection of time
period is quite a difficult problem need to be settled.

B. PERFORMANCE VALIDATION ON DATASET B
Since Dataset B contains data from 9 subjects, we train
the model separately for each subject, and test the two
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TABLE 4. Results of 2D and 1D kernel on Dataset B.

TABLE 5. Comparison of best Kappa values.

convolution kernelsmentioned above, then record the training
time, as demonstrated in Table 4. It can be seen from the
table that the results based on one-dimensional convolution
kernel and the two-dimensional convolution kernel are not
much different from each other, and could always achieve a
similar performance by adjusting parameters. Nevertheless,
the model with the two-dimensional convolution kernel has
more parameters to be learned and requiresmore time to train.
Furthermore, no matter which convolution kernel is used,
the time is quite saved due to the small size of the network.
The 2D kernel size in the proposed approach is 4∗4 for the
first convolution layer and 2∗2 for the second convolution
layer. The 1D kernel size is 1∗5 and 1∗3. The number of
kernels in the first and second convolution layer is 8 and 16
separately.

The best Kappa values of the proposedmodel are compared
with themethods in the other literature, as is shown in Table 5.
From this table, we can see that 2-layer convolution network

presented in this paper performs better on several subjects.
Meanwhile, the quality of the motor imagery EEG signals
from each subject are different, resulting in a big difference
in the accuracy of prediction.

VII. CONCLUSION
In this study, a wavelet transform time-frequency image and
convolutional network based approach is proposed to classify
motor imagery (MI) EEG signals, here MI tasks are left
and right hand movement imagery. Dataset III from BCI
competition ćò and dataset 2a from BCI competition IV are
used to train and test the proposed model.

In the proposed method, wavelet transform is introduced
to generate the input images of model. Wavelet transform is
the priority option, because of its multi-scale analysis ability,
avoiding selecting the window size in STFT method. The
input in the form of image also retains the relative position
between the channels. Taking the form of image as input,
the abstraction ability of convolution network is utilized,
which provides a new means for EEG signal classification.
Experiments show that themethod using convolutional neural
network can achieve better results than traditional methods.
The choice of neural network is based on the scale of train-
ing data and a two-layer convolution network is established.
Furthermore, the image is re-sized to reduce the amount of
parameters, thereby shortening the training time and reducing
the risk of over-fitting.

It can be seen from the comparison of the above results that
the proposedmethod can achieve the best accuracy of 92.75%
in Dataset A, which is higher than 90% in [20]. And its
best Kappa values among 9 subjects on Dataset B are mostly
greater than those of other methods, which can be interpreted
as the stronger ability of feature extracting. As the results
show, the proposed method is efficient, especially using the
1D kernel, with less parameters to learn.

Obviously, there are two main factors affecting the per-
formance of classification of motor imagery signals, one is
the quality of the signal itself, such as the effective duration
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and intensity of the ERD/ERS mode, and the other is the
amount of examples. The larger scale of training data means
the smaller proportion of noise, so the model can learn more
useful information. As the training data of EEG signals is
augmented, the performance will be improved accordingly.
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