
Received November 1, 2018, accepted November 25, 2018, date of publication December 21, 2018,
date of current version January 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2889110

Circuit Aware Approximate System Design With
Case Studies in Image Processing and
Neural Networks
TUBA AYHAN , (Member, IEEE), AND MUSTAFA ALTUN
Electronics and Communication Engineering Department, Faculty of Electrical and Electronics Engineering, Istanbul Technical University, 34469 Istanbul, Turkey

Corresponding author: Tuba Ayhan (tuba.ayhan@itu.edu.tr)

This work was supported in part by TUBITAK under Grant 117E078 and in part by the European Union’s Horizon 2020 Research and
Innovation Program through the Marie Skłodowska-Curie Grant under Grant 691178.

ABSTRACT This paper aims to exploit approximate computing units in image processing systems and
artificial neural networks. For this purpose, a general design methodology is introduced, and approximation-
oriented architectures are developed for different applications. This paper proposes a method to compromise
power/area efficiency of circuit-level design with accuracy supervision of system-level design. The proposed
method selects approximate computational units that minimize the total computation cost, yet maintaining
the ultimate performance. This is accomplished by formulating a linear programming problem, which can
be solved by conventional linear programming solvers. Approximate computing units, such as multipliers,
neurons, and convolution kernels, which are proposed by this paper, are suitable for power/area reduction
through accuracy scaling. The formulation is demonstrated on applications in image processing, digital
filters, and artificial neural networks. This way, the proposed technique and architectures are tested with
different approximate computing units, as well as system-level requirement metrics, such as PSNR and
classification performance.

INDEX TERMS Approximate computing, artificial neural networks, field programmable gate arrays,
high-level synthesis, image processing.

I. INTRODUCTION
Approximate computing is an ever-growing approach in com-
putation and it recently gained an importance in power/area
efficient electronics. Research is mainly focused on these
two areas: design and modeling of approximate computing
circuits, and analysis of system components for their error
resilience.

From circuit design point of view, in the past decade,
there is a rapid acceleration in approximate circuit synthesis
methods, ranging from logic circuits to arithmetic units such
as adders and multipliers [1]–[3]. Moreover, a Verilog based
framework calledAxilog [4] is also presented enabling design
and reuse of approximate circuits in language abstraction
level. Innovations on approximate circuits empowers system
designers to promote these circuits in their error resilient
applications. More complex computation units such as gen-
eral purpose approximate computing machines [5], and vec-
tor processors [6], [7] are also available. However, a system
level study is not performed by the circuit design methods so

they do not provide a system level optimization exploiting the
area and power benefits of these circuits.

From system analysis point of view, a systematic
framework for analysis and characterization of inherent appli-
cation resilience gives an understanding on error character-
istics of 12 widely used benchmarks [8]. Work by Chippa
et al. clearly shows approximate computing is appropri-
ate for a wide variety of applications. However, analysis
of benchmarks do not particularly answer the question of
building a system satisfying a certain quality, yet using the
most efficient approximate circuits. Although approximation
algorithms for many signal processing applications can be
derived, there is a need for high level approximate system
design for area or power reduction. High level systematic
methods that can automatically derive approximate circuit
based on the behavioral description of the system are needed.
Some of the high-level synthesis methods for approximate
computing are present in the literature are SALSA [2],
SASIMI [9], and ABACUS [10]. These models require

4726
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-1447-0770
https://orcid.org/0000-0002-3103-1809


T. Ayhan, M. Altun: Circuit-Aware Approximate System Design With Case Studies in Image Processing and Neural Networks

eliminating costly system designs, by examining signal pairs
such as in SASIMI or using an iterative stochastic greedy
algorithm on a tree generated from the input behavioral
description such as in ABACUS. Evaluating the entire design
space would be costly, but by not evaluating the best design
may be missed by these design methods. In order to cover a
larger piece of the design space, search-based algorithms such
as evolutionary methods are also employed in digital circuit
design. By evolutionary approximation methods [11]–[14],
an exact system is used to generate candidate approximations
by the help of generic operators. Conventional methods trying
to prune computations in the system may bring additional
error due to pruning. On the other hand, complexity of search-
based algorithms increase with the system size.

As an alternative to these two approaches, the overall
system can be profiled for error resiliency before introduc-
ing approximate circuits in. However, profiling is costly
for large systems. By appropriate error metric conversions,
the ultimate system error can be modeled as a linear pro-
gram together with circuit cost. In order to achieve a balance
between the system quality, circuit efficiency, and pro-
filing burden, we should investigate the circuit and sys-
tem level considerations together. In this work, we aim
to embody the approximate circuit design methods and
system analysis by the help of a generalized optimizer.
An overview on approximate circuit design methods and case
studies are given in Section II, followed by the proposed
system-to-circuit approximate design method in Section III.
We demonstrated our optimizer in Sobel edge detector,
JPEG compression, multiple Convolution Kernels (CKs)
and Fully Connected Networks (FCNs), all implemented
on Xilinx SPARTAN6 FPGA in Section IV. Verilog imple-
mentations of approximate computation units are provided
at github.com/tubaayhan/approximatesystems. Finally the
paper is concluded with future work discussions in Section V.

II. BACKGROUND
A. APPROXIMATE COMPUTING CIRCUITS
In order to obtain different levels of approximation, two main
approaches are followed. The first approach include voltage
over-scaling methods such as [15] where over-scaling can
vastly decrease quality by its impact on MSB. The second
approach propose transistor level or gate level design and
implementation methods. These methods include varying the
bit precision of addition and multiplication, reducing the
size of carry chain, and employing look up tables for pre-
computed value integration etc.

Connecting the approximate computing units with differ-
ent levels of precision to each other would require additional
shift operation and control circuity. In order to avoid this
overhead and be able to implement an approximate version of
a system by just replacing the computing circuits, truncation
is not considered. An approximate adder design method is to
implement approximate Full Adders (FAs) either in transistor
level, such as done by IMPACT [16], or gate level as [17].

Multi-bit adders built using these approximate FAs consume
less power and area when compared to exact adders. More-
over, word length of the sum is not changed when approxi-
mation level of FAs are changed.

A similar approach can be followed in approximate multi-
plier design. Multiplication is interpreted as simplified shift
and add operation in [18], so that which is approximate in
nature. Furthermore, if one of the multiplicands is a con-
stant, then multiplication process can be converted to sum of
smaller multiplications. Omitting one or more small multi-
plications or using an approximate adder make the process
approximate. In short, all approximate circuits which do not
alter the word length of the sum or product can be used in this
work, such as the ones given in the library of 8-bit approxi-
mate adders and multipliers available online [3]. In the case
studies, examples of approximate adders, approximate multi-
pliers and approximate constant-multipliers will be shown.

B. OVERVIEW ON CASE STUDIES
In this work, a Sobel edge detector, a Discrete Cosine Trans-
form (DCT) module for a JPEG encoder/decoder, multiple
convolutional kernels for Convolutional Neural Networks
(ConvNets) and an artificial neuron for FCNs are investi-
gated. Here, a background on these applications are briefly
given.

Firstly, A classical Sobel operator [19] is considered for
edge detection. The image I is convolved with two 3 × 3
kernels,

Gx =

1 0 − 1
2 0 − 2

1 0 − 1
1
6

∗I and Gy =

 1 2 1
0 0 0

−1 − 2 − 1
1
6

∗I .
(1)

Norm betweenGx andGy returns the edges. Non-zero coeffi-
cients of the kernels do not require amultiplier; logic shift and
sign change operations are used. However, the edge detector
involves 10 2-input adder for Gx and Gy calculations and one
adder for norm calculation.

Secondly, JPEG encoding is based on DCT, which con-
verts the image in spatial domain into the frequency domain.
Important frequency components, whose number is R, are
then used to generate the JPEG code. Therefore, by increas-
ing R, image quality increases and the compression ratio
decreases. In JPEG encoding, multiplierless DCT such as
the one in [20] is preferred because the lossy compression
supports inaccurate computations. A multiplierless 8-point
DCT contains 16 adders. These 16 adders do not have to
execute with the same accuracy, because the high frequency
components are less important than the low frequency ones.

Finally, we investigate ConvNets. ConvNets are gaining
importance due to their capabilities in classification and
regression of big sized data, but they are computationally
expensive due to having millions of parameters [21]. Training
of these networks with classical CMOS ICs (CPU and GPU)
lasts for days. In order to cope with these time and area

VOLUME 7, 2019 4727



T. Ayhan, M. Altun: Circuit-Aware Approximate System Design With Case Studies in Image Processing and Neural Networks

FIGURE 1. Illustration of our design methodology on ConvNets.

related problems, advanced technologies based on neuromor-
phic architectures and [22] and in-memory computing [23]
are proposed. Moreover, high level synthesis methods such
as [24] provide resource optimized convolutional neural
network designs. When these methods are combined with
approximate design methodologies, the logic utilization of
the system can be minimized for the target system perfor-
mance. So that, we applied the proposed approximate system
design technique on ConvNets which are composed of two
main computational parts. The first part is responsible for fea-
ture extraction with its convolution layers and the second part
contains fully connected layers. Fully connected layers use
artificial neurons, which as basic computation units. An arti-
ficial neuron calculates the weighted sum of its inputs and
applies a nonlinear function to the sum. Although, both these
weights and the coefficients in the convolution layers are
trainable, training the complete ConvNet is not favored [26].
An alternative approach so called transfer learning is efficient
both in accuracy and training time. In transfer learning, con-
volutional filter layers of a pre-trained ConvNet is adopted
then fully connected layers are adapted for the target applica-
tion and re-trained. In implementation, convolutional layers
is more efficient to be hard-wired and fully connected layers
is built in a flexible manner in order to support re-training.
Therefore, a power efficient yet re-trainable ConvNet con-
sisting of pre-trained CKs and a flexible FCN is achieved.

III. SYSTEM-TO-CIRCUIT APPROXIMATE
DESIGN METHOD
The designmethod follows two reverse procedures: top-down
analysis and bottom-up construction as illustrated in Figure 1
for ConvNets. Assume a system has N computational units,
each having an error score denoted by Xi. Regardless of
the ultimate performance, which can vary as PSNR, SNR,

error rate etc., total computation cost of the system can be
minimized by using an optimizer, which is given in Figure 2.

FIGURE 2. Optimization algorithm.

The optimization algorithm is meant to be run before
implementing the system. It is assumed that error scores of
single computation units (Xi) are available. The algorithm
selects the optimum set of computation units among the
availables. The optimizer is not embedded into the hard-
ware implementation. Since the algorithm is a part of design
methodology, it does not bring any area or time overhead
during run time.

The variables and functions in the algorithm are explained
on an accumulator example, in Figure 3. The system has
one input which is denoted with S1 and an output, So. The
input S1 may be noisy, with an additive white Gaussian noise
identified by N (µ1, σ1). Then, the SNR at the output can be
calculated as a function of µ1 and σ1. Accumulator output is
So =

∑M
m=1 S1(m). If the adder circuit in the accumulator

FIGURE 3. A simple accumulator example explaining the approximate
design method.

4728 VOLUME 7, 2019



T. Ayhan, M. Altun: Circuit-Aware Approximate System Design With Case Studies in Image Processing and Neural Networks

block is an exact adder, the SNR at the output is

SNRo =
Mµ1
√
Mσ1

=
√
M × SNR1. (2)

The difference between the outputs of an exact and approx-
imate accumulator is the noise added by the approximate
adder. Let’s model the additive noise from the adder by a nor-
mal distribution: N (µa, σa). In order to obtain an unbiased
output, the mean of the adder noise, µa, has to be 0. Then,
using an approximate adder the output SNR is found as

SNRo =
√
M

µ1√
σ 2
1 + σ

2
a

. (3)

If the input SNR is known, the approximation level of the
adder can be calculated for a target output SNR, which is
denoted as SNRt .
The optimizer’s objective function is dominated by the

circuit requirements. The cost of a computational unit in a
particular realization is a function of its error score as inP(Xi).
In our example, total arithmetic power consumption of the
accumulator is equal to the power consumption of the adder:
P1. On exact and 6 different approximate adders of 8-bit each
are implemented on FPGA and their power consumption is
analyzed in Figure 4. Each approximate adder has a different
error score, represented by its precision, σi. Therefore, they
each have a different power consumption as shown by black
dots in the figure. Mean error of each approximate adder is
0, since signed addition is considered in this example. Exact
adder in this implementation setting consumes 2.1µW and
has an error score of 0. The function P(·) determines the rela-
tionship between the accuracy and the cost of the arithmetic
block. This function can give power consumption, transistor
count, LUT count etc. and it has to be estimated within the
circuit conditions. The objective function is derived using
fitting these 3 types of curves to the data points: 1. linear,
2. second order polynomial and 3. rational with nominator
and denominator degrees of 0 and 1. Objective function is
related with the error score as

FIGURE 4. Power consumption of an exact and 6 approximate adders are
plotted versus their error scores.

1) P(i) = −0.1886×σi+1.621 with a curve fitting RMSE
of 0.3136,

2) P(i) = 0.041×σ 2
i +−0.4892×σi+1.847 with a curve

fitting RMSE of 0.2247,
3) P(i) = 3.443/(σi + 1.686) with a curve fitting RMSE

of 0.07845.
The main optimizer constraint is derived from the contri-

bution of each computational unit to the ultimate score. In the
constraint BX≤ b, b and B denote the maximum amount
of tolerable error and the projection of error scores to the
ultimate error, respectively. The variables l and u represent
the lower and upper bound for error scores of the computa-
tional units. For the accumulator example, the constraint can
be derived from (3). The constants M , σ1, and µ1 forms the
matrix B. Moreover, b will become 1/SNRt , so that SNRo ≤
SNRt .

In order to clearly see the effect of objective function
on this algorithm, assume the white noise contribution is

discarded from the system, so SNRo becomes

√
M
σa

. After the

algorithm is run, an optimum σa value is found. The adder
to be implemented is selected as the one with the closest
precision. In this example, all objective functions return the
same approximate adder for the same target SNR. For a
different application where the computation units are not very
far from each other in terms of accuracy, selecting a non-
linear objective function may improve the overall circuit cost
reduction.

The optimization goal is tominimize the circuit cost, which
can be power consumption, area or any other asset. Moreover,
ultimate system performance such as MSE, SNR, PSNR,
classification error etc. determines the optimizer constraint.
Above explained optimization algorithm can be applied to
many systems, when the circuit cost metric and ultimate sys-
tem performance metric are translated into objective function
and constraint, respectively. The link between objective and
constraint is built through the computational circuits which
allow trading off system performance with circuit cost. In the
following section, case studies with different cost and perfor-
mance metrics are investigated. In the showcases, a Matlab
solver with dual-simplex algorithm is used. Runtime varies
with the complexity of the circuit. In the case studies given
in the following section, runtime of the solver on Matlab is
under a second.

IV. CASE STUDIES
In the rest of the paper, we demonstrate our algorithm on
three different case studies summarized in Table 1. In the opti-
mizer, the objective function and the constraints are driven
by circuit cost and the target performance of the system,
respectively. Sobel edge detection and JPEG encoding cases
use multiplierless convolutions and additions, so that the
computational units are multiple adders for these cases. The
system performance, PSNR in these cases, has to be written in
terms of adder accuracies. Power consumption and area uti-
lization of approximate adders increase with their accuracy.

VOLUME 7, 2019 4729



T. Ayhan, M. Altun: Circuit-Aware Approximate System Design With Case Studies in Image Processing and Neural Networks

TABLE 1. Summary of case studies.

Therefore, power consumption is also derived in terms of
adder accuracy. To minimize the total power consumption,
we find the best combination of approximate adders as
explained in [25]. For the third case study, we investigate
ConvNets under two parts. Firstly, we implement multiple
convolution kernels with approximate coefficients in mini-
mum area, yet achieving a target Mean Square Error (MSE).
Secondly, we minimize area of a FCN using our optimizer
and approximate neurons.

A. SOBEL EDGE DETECTOR
We first derive the objective function then the constraints.
Firstly, error score of an adder i is εi, which is defined as
the mean of error distance between the actual and expected
sums of the approximate adder. The adders are represented
with X = [X1,X2, . . .X11]T , such that each adder is one of
the four different types: Xi ∈ ε0, ε1, ε2, ε3. The adder with
ε0 is an exact adder and it covers the largest area as well
as it consumes the most power among other approximate
adders. Power consumption of adders are denoted by pi.
A relationship, pi = mεi + n, between ε = [εi] and p = [pi]
is estimated with Least Mean Squares algorithm. As a result,
the objective function is a linear function of adder errors.

The system output is an image with an ultimate perfor-
mance expectation of certain PSNR which is a function of
MSE, thus each pixel has equally important contribution to
PSNR. Therefore, the optimizer’s constraint is formed with b
being the target MSE and B = [1/S1, 1/S2, . . . 1/S11], where
Si is the output size of the adder Xi. The method is tested for
35 dB PSNR and 40 dB PSNR targets. The system is built and
tested with famous images: Lena, Baboon, Cameraman and
Barbara. Actual average PSNR versus logic power consump-
tion is plotted in Figure 5. Since the edge detector requires
11 adders, and there are 4 different types of adders, there
are 411 possible implementations. Instead of comparing more
than 4million implementations, we compared our optimizer’s
solutions with standard implementations. On the blue line of
Figure 5, we see the systems where all 11 adders are identical,
either exact or one of the 3 approximate adders. Fully exact
implementation is spotted on the upper-right corner of the
figure, where both PSNR and power consumption are at their
maximum. The blue line forms a border, any implementation
that falls under this line is more power efficient. When the
adders are selected with our optimizer, the performance of the
system remains below this line. That means, our optimized

FIGURE 5. Six different approximate implementations of Sobel edge
detector.

power saving systems provide higher PSNR for the same
amount of power in comparison to nonoptimal systems.

B. JPEG ENCODING AND DECODING
Unlike the previous case study for Sobel edge detector, each
output of the approximate DCT unevenly contributes to the
ultimate performance criteria, PSNR. The objective function
is to minimize the total computational power consumption of
the DCTmodule in a JPEG encoder. Moreover, the constraint
b changes with the target compression ratio, or number of
encoded frequency components, R. Therefore, computations
to find the high frequency components are assigned a lower
weight while writing the constraint equation.

In Figure 6, performance of approximate DCTs is com-
pared with an exact DCT. In the approximate designs, max-
imum 1 dB PSNR loss is allowed, after decoding. In other
words, quality constraint for this application is 1 dB PSNR
tolerance. Since PSNR is also a function of R, the optimizer
is run to find the most power efficient implementation. Exact
implementation is not changed with R, so that its power
consumption is stable at 17 mW, which is the maximum
value in the figure. On the other hand, power consumption
is decreased by approximate implementation, as shown by

FIGURE 6. Power (red on the right axis) and PSNR (blue on the left axis)
of an approximate DCT is compared with an exact DCT.

4730 VOLUME 7, 2019



T. Ayhan, M. Altun: Circuit-Aware Approximate System Design With Case Studies in Image Processing and Neural Networks

FIGURE 7. M n × n convolution kernels are implemented as n2 M-tab multiplier blocks.

with the red lines. With the given quality constraint, power
consumption can be reduced by 15.8% to 25.12%. PSNR of
exact and approximate implementations are given with blue
lines.

C. CONVOLUTIONAL NEURAL NETWORK
We investigate convolutional kernels and fully connected
network separately.

1) CK - IMPLEMENTING MULTIPLE CONVOLUTION KERNELS
WITH DIFFERENT ACCURACIES
The weights of pre-trained CKs are not changed, thus they
can be hardwired. As a simplified case study, we implement
multiple convolution kernels processing the same image,
as illustrated in Figure 7. As the frame slides over the input
image, one pixel has to be multiplied with kernel coefficients
of Gaussian, Sharpening, and Edge filters at position (x, y),
denoted as WG

(x,y), W
S
(x,y), and W

E
(x,y), respectively. For each

coefficient, we have a multiplier block (MB) where the only
input is a pixel value and the output are this pixel multiplied
by different constants. If we can approximate the convolution
coefficients, we can minimize the total MB area. To do so,
we modify multiple coefficient multiplication (MCM) opti-
mization [27] to assign different amount of error on every
coefficient in the MB.

We use same size (5 × 5) filters with the characteristics
of Gaussian, Sharpening, and Edge filters. If we synthesize
2 different filters with 8-bit coefficients from each group,

we need 2424 LUTs on a Spartan6 FPGA. In order to reduce
the LUT count, approximate MBs are generated. There are n2

MBs in Figure 7. Each of them has three constant multipliers,
in this example. The proposed MBs are biased, because all
input and coefficients are non-negative numbers. So that,
the optimization algorithm’s constraint is a function of MB
mean error and the target system performance is used as
filtered image mean error. In generation process, we let the
filter coefficients deviate as 1Wx,y, where 1Wx,y is in ±e.
Then, assuming the mean of the image and coefficient devi-
ation are Î , and ˆ1W , respectively, the mean of the additive
error a pixel is p̂ = 9 × Î × ˆ1W for convolution kernels
with 9 non-zero coefficients. With the above assumption,
mean error on filtered image, t is equal to mean error on a
pixel. The optimization algorithm selects error margins eG,
eS , and eE for the Gaussian, Sharpening, and Edge filter coef-
ficients. In the optimization algorithm’s constraint, BX ≤ b,
becomes[
9× Î , 9× Î , 9× Î

]T
·

[
ˆ1WG, ˆ1W S , ˆ1WE

]
≤

[
tG, tS , tE

]T
(4)

The circuit cost is derived as a function of ˆ1W , by using con-
stant multiplier implementation results. In order to generate
data to plot Figure 8, 8-bit constant multipliers (CMs) with
coefficients c ∈ [0255] are implemented. Logic utilization of
each implementation is recorded as Costc. An approximate
CM for original coefficient corig is the CM implementation

VOLUME 7, 2019 4731



T. Ayhan, M. Altun: Circuit-Aware Approximate System Design With Case Studies in Image Processing and Neural Networks

FIGURE 8. Mean area utilization of an approximate 8-bit constant
multiplier with a sweep on error margin.

with minimum cost in its neighborhood. Thus:

capprox = argminc([Costc]), c ∈ [c− e, c+ e] (5)

For error margin e ∈ [0 100], average of CM cost over all
possible coefficients (0-255) is plotter in Figure 8. Therefore,
error margin e is calculated using the optimization algorithm.
Then, we runMCMoptimization using SettingsA-Dwith dif-
ferent error margins on the coefficients and reported the cor-
responding mean error between the approximate filter image
and the desired image per filter group in Table 2. Settings A-C
assign same amount of coefficient error to different filter
groups, whereas in setting D the coefficients corresponding
to coefficient errors are grouped according to the filter type.
We gain 60.15% to 80.87% area saving in CK implemen-
tation, as given in Figure 9. Moreover, we can reduce the
area consumption without aggressively changing the filter
characteristics. This is possible due to grouping the multi-
plicands according to their maximum tolerable error. As a
result, MCM optimization with grouped errors allows us to
reduce the area of convolutional layers, proving the idea that
the convolutional filters are better to be grouped [28], [29].

TABLE 2. 4 settings with different error margin (e) on coefficients are
tested. Performance of the system is given on each filter group as well as
the overall system, per setting. error margin on settings A,B, and C are 2,4,
and 8 respectively. On setting D, error margins are 2,4, and 8 for
Gaussian, Sharpening, and Edge filters, respectively.

2) FCN - ESTIMATING ERROR SCORES FROM TARGET
CLASSIFICATION RATE
In this work, the neurons with 8-bit inputs, I , and 8-bit
weights, W , are designed to be configured for 3 approx-
imation grades: i. approximate adder + approximate mul-
tiplier, ii. exact adder + approximate multiplier, iii. full

FIGURE 9. Area and error results of multiple CK implementation
optimized with 4 different settings.

exact implementation. Since a multiplier consumes more
power and area than adder circuits, we do not consider
using exact multipliers with approximate adders. We use
the same approximate adders as the ones in the previous
cases. We use shift-add approach for multiplication in [18].
Shift-add approach depends on decomposition of products.
In Figure 10, W is decomposed into two parts which are
denoted by LSB and MSB. Each decomposition is carried
on MultLevel1 block, where I is shifted by an amount that
is determined by LSB or MSB part of W. MSB product is
shifted by the bit length of the LSB part and the decomposed
products are summed. In order to balance the computation
time of FCNs with CKs as well as to provide more area for
CKs, we prefer an accumulator at the output of the multiplier.
The accumulator output is passed through nonlinear ReLu
function as in AlexNet ; ReLu does not require any arithmetic
block. We start with a restriction that each layer is composed
of only one type of neuron. Therefore, the objective function
is to minimize the cost of total FCN defined as

∑L
i=1 NiP(Ai),

where L is the number of layers in FCN. The layer i has Ni
neurons with an approximation error modeled by Ai. Cost of a
neuron is P(·). Neurons with different amount of approxima-
tion introduced above are implemented on FPGA and power
consumptions are measured by XPA tool. This way, a linear
objective function is obtained.

In order to write the constraints, classification performance
has to be converted into computation noise. The constraint is
to keep the difference between classification error of an exact
network, eb and the ultimate classification error rate, et , after
approximate implementation within a certain limit. In binary
classification, a correct classification occurs if one output is
above a certain threshold and the other output is below, ideally
1 and -1, respectively. Therefore, if the output of the neu-
rons are close to the threshold, computation error may cause
classification error. In other words, the decision boundary is
based on the output distributions of neurons. Distribution of
a perfectly functioning output neuron does not intersect with
the distribution of others. Size of this intersection region is
correlated with the error rate. We let the intersection region

4732 VOLUME 7, 2019



T. Ayhan, M. Altun: Circuit-Aware Approximate System Design With Case Studies in Image Processing and Neural Networks

FIGURE 10. Master multiplier architecture is combined with an accumulator.

FIGURE 11. Approximate FCN optimization results: (a) 2 class Iris dataset, (b) 2-10 class
MNIST dataset.

grow by adding computation noise to the neurons. A neu-
ron in a hidden or output layer i, receives erroneous inputs,
and calculate their weighted sum with a computation error.
Assuming the computation error is normally distributed, total
noise at the input of a neuron is averaged out by the number
of its inputs. Therefore,Hi+1, error contribution of layer i+1,
depends on the neuron type of layers i and i+1, as given with

Hi+1 = Ai+1 +
Ai
√
2Ni

. (6)

Error contribution of the output layer and eb constitutes the
classification error rate, et. Approximation error can vary
between eb and et . If the approximation error model is stan-
dard deviation, as further be used in this work, then the
constraint of the model optimizer is formed as

Hi+1 ≤
1
nc
‖
√
et − eb‖. (7)

Tolerated error region is scaled inversely proportional to the
number of classes, nc. We demonstrate optimized FCN in two
famous datasets: Iris and MNIST [30]. Two classes of Iris
is used to train a network with 5 and 20 neurons in hidden
layers.We run our optimizer varying the target error rate from
1% to 30%. Cost of an exact network is normalized to 1.
The normalized cost of the proposed networks are plotted
in Figure 11.a. Our optimized results occupy 8% to 37% less
area than the exact network. We compared our results to brute
force search results, in red line. Brute force search compares
the area costs of 64 different implementations, which takes
5 hours to implement only (without testing or verification)
on FPGA using Xilinx ISE tools. According to the brute-
force search, 31% to 40% area reduction is possible with

approximate implementation. It should be noted that our
optimized networks always achieve the target classification
performance.

A network with 10 and 20 neurons in hidden layers is
trained for 2-10 classes in MNIST dataset. Their baseline
error changes between 1.2% and 7.8%. For each network,
the optimizer is run with a maximum 10% classification error
constraint as well as a brute force search is done to find the
most area efficient network satisfying the same constraints.
As shown in Figure 11.b, our proposed FCN provides cost
reduction, yet error rate is still smaller than the target. If the
proposed optimization method is combined with a high level
synthesis method in [24], resource utilization can be opti-
mized in terms of both memory and logic.

V. CONCLUSION
In summary, we bring approximate circuit design methods
and system analysis techniques together to implement quality
scalable yet cost efficient systems. To successfully employ
approximate circuits in systems of different scales, the trade-
offs between circuit costs and system’s output quality are
modeled as a linear program. Moreover, architectures that
efficiently use approximate circuits are proposed for different
applications. These applications include image processing
and artificial neural networks. The formulation is tested with
systems used in edge detection, image compression, and Con-
vNets, showing the widespread applicability of the proposed
technique. As a future work, a circuit aware approximate
system framework assisted automated circuit synthesis would
highly increase system design efficiency. Therefore, com-
bining this method with circuit design tools is a substantial

VOLUME 7, 2019 4733



T. Ayhan, M. Altun: Circuit-Aware Approximate System Design With Case Studies in Image Processing and Neural Networks

step on approximate design automation area.Moreover, many
systems include various components with different cost con-
siderations. For example, RF components of a system is
usually the most power consuming part whereas the digital
processor is the most area consuming one. These cost defi-
nitions should be incorporated within the optimizer to satisfy
multiple design constraints on approximate SoC or NoC sys-
tems, as another future work.

REFERENCES
[1] D. Shin and S. K. Gupta, ‘‘Approximate logic synthesis for error tolerant

applications,’’ in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE)
Dresden, Germany, 2010, pp. 957–960.

[2] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan,
‘‘SALSA: Systematic logic synthesis of approximate circuits,’’ in Proc.
DAC Design Autom. Conf., San Francisco, CA, USA, 2012, pp. 796–801,
doi: 10.1145/2228360.2228504.

[3] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, ‘‘EvoApproxSb:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhibit. (DATE), Lausanne, Switzerland, 2017, pp. 258–261,
doi: 10.23919/DATE.2017.7926993.

[4] D. Mahajan et al., ‘‘Axilog: Abstractions for approximate hardware design
and reuse,’’ IEEE Micro, vol. 35, no. 5, pp. 16–30, Sep./Oct. 2015.

[5] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, ‘‘Neural acceler-
ation for general-purpose approximate programs,’’ IEEE Micro, vol. 33,
no. 3, pp. 16–27, May 2013, doi: 10.1109/MM.2013.28.

[6] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghu-
nathan, ‘‘Quality programmable vector processors for approximate com-
puting,’’ in Proc. 46th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO),
Davis, CA, USA, Dec. 2013, pp. 1–12.

[7] H. Jia and N. Verma, ‘‘Exploiting approximate feature extraction via
genetic programming for hardware acceleration in a heterogeneous micro-
processor,’’ IEEE J. Solid-State Circuits, vol. 53, no. 4, pp. 1016–1027,
Apr. 2018, doi: 10.1109/JSSC.2017.2787762.

[8] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, ‘‘Analysis
and characterization of inherent application resilience for approximate
computing,’’ in Proc. 50th ACM/EDAC/IEEE Design Autom. Conf. (DAC),
Austin, TX, USA, May/Jun. 2013, pp. 1–9.

[9] S. Venkataramani, K. Roy, and A. Raghunathan, ‘‘Substitute-and-simplify:
A unified design paradigm for approximate and quality configurable cir-
cuits,’’ in Proc. Design, Autom. Test Eur. Conf. (DATE), Grenoble, France,
2013, pp. 1367–1372, doi: 10.7873/DATE.2013.280.

[10] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, ‘‘ABACUS: A technique for
automated behavioral synthesis of approximate computing circuits,’’ in
Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), Dresden, Germany,
2014, pp. 1–6, doi: 10.7873/DATE.2014.374.

[11] Z. Vasicek and L. Sekanina, ‘‘Evolutionary Approach to approximate
digital circuits design,’’ IEEE Trans. Evol. Comput., vol. 19, no. 3,
pp. 432–444, Jun. 2015, doi: 10.1109/TEVC.2014.2336175.

[12] Z. Vasicek and L. Sekanina, ‘‘Evolutionary design of complex approximate
combinational circuits,’’ Genet. Program. Evolvable Mach., vol. 17, no. 2,
pp. 169–192, Jun. 2016, doi: 10.1007/s10710-015-9257-1.

[13] R. Hrbacek, ‘‘Parallel multi-objective evolutionary design of
approximate circuits,’’Âİ in Proc. Genet. Evol. Comput. Conf., 17th
Genet. Evol. Comput. Conf. (GECCO), Jul. 2015, pp. 687–694,
doi: 10.1145/2739480.2754785.

[14] H. Norouzi and M. E. Salehi, ‘‘Evolutionary design for energy-efficient
approximate digital circuits,’’ Microprocessors Microsyst., vol. 57,
pp. 52–64, Mar. 2018, doi: 10.1016/j.micpro.2018.01.002.

[15] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, ‘‘DVAFS:
Trading computational accuracy for energy through dynamic-voltage-
accuracy-frequency-scaling,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhibit. (DATE), Lausanne, Switzerland, 2017, pp. 488–493,
doi: 10.23919/DATE.2017.7927038.

[16] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
‘‘IMPACT: IMPrecise adders for low-power approximate computing,’’ in
Proc. IEEE/ACM Int. Symp. Low Power Electron. Design, Fukuoka, Japan,
Aug. 2011, pp. 409–414, doi: 10.1109/ISLPED.2011.5993675.

[17] S. Dutt, H. Patel, S. Nandi, and G. Trivedi, ‘‘Exploring approximate
computing for yield improvement via re-design of adders for error-
resilient applications,’’ in Proc. 29th Int. Conf. VLSI Design, 15th Int.
Conf. Embedded Syst. (VLSID), Kolkata, India, 2016, pp. 134–139,
doi: 10.1109/VLSID.2016.101.

[18] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy, ‘‘Multiplier-
less artificial neurons exploiting error resiliency for energy-efficient neural
computing,’’ in Proc. Design, Autom. Test Eur. Conf. (DATE), Dresden,
Germany, 2016, pp. 145–150.

[19] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
Hoboken, NJ, USA: Wiley, 1973, pp. 271–272.

[20] J. Liang and T. D. Tran, ‘‘Fast multiplierless approximations of the DCT
with the lifting scheme,’’ IEEE Trans. Signal Process., vol. 49, no. 12,
pp. 3032–3044, Dec. 2001, doi: 10.1109/78.969511.

[21] X.-W. Chen and X. Lin ‘‘Big data deep learning: Challenges and per-
spectives,’’ IEEE Access, vol. 2, pp. 514–525, 2014, doi: 10.1109/
ACCESS.2014.2325029.

[22] Y. Wang, R. Chen, R. Mao, and Z. Shao, ‘‘Optimally removing synchro-
nization overhead for CNNs in three-dimensional neuromorphic archi-
tecture,’’ IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8973–8981,
Nov. 2018, doi: 10.1109/TIE.2018.2813959.

[23] Y. Wang, W. Chen, J. Yang, and T. Li, ‘‘Towards memory-efficient alloca-
tion of CNNs on processing-in-memory architecture,’’ IEEE Trans. Paral-
lel Distrib. Syst., vol. 29, no. 6, pp. 1428–1441, Jun. 2018, doi: 10.1109/
TPDS.2018.2791440.

[24] D. H. Noronha, B. Salehpour, and S. J. E. Wilton, ‘‘LeFlow: Enabling
flexible FPGA high-level synthesis of tensorflow deep neural networks,’’
in Proc. 5th Int. Workshop FPGAs Softw. Programmers FSP Workshop,
Dublin, Ireland, 2018, pp. 1–8.

[25] T. Ayhan, F. Kula, and M. Altun, ‘‘A power efficient system design
methodology employing approximate arithmetic units,’’ in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), Bochum, Germany, Jul. 2017,
pp. 243–248, doi: 10.1109/ISVLSI.2017.50.

[26] K. Bong, S. Choi, C. Kim, and H.-J. Yoo, ‘‘Low-power convolutional neu-
ral network processor for a face-recognition system,’’ IEEEMicro, vol. 37,
no. 6, pp. 30–38, Nov./Dec. 2017, doi: 10.1109/MM.2017.4241350.

[27] L. Aksoy, P. Flores, and J. Monteiro, ‘‘Approximation of multiple con-
stant multiplications using minimum look-up tables on FPGA,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2015, pp. 2884–2887,
doi: 10.1109/ISCAS.2015.7169289.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-
tion with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), vol. 25, Dec. 2012, pp. 1097–1105.

[29] Y. Ioannou, D. Robertson, R. Cipolla, and A. Criminisi. (2016). ‘‘Deep
roots: ImprovingCNN efficiencywith hierarchical filter groups.’’ [Online].
Available: https://arxiv.org/abs/1605.06489

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.

TUBA AYHAN (M’16) received the Ph.D.
degree in electrical engineering from KU Leuven,
Belgium, in 2016. She is currently a Researcher
with the ECC Laboratory, Istanbul Technical Uni-
versity. Her research interests include embedded
system design and power-efficient digital circuit
implementation.

MUSTAFA ALTUN received the Ph.D. degree in
electrical engineering with a minor in mathemat-
ics from the University of Minnesota, in 2012.
Since 2013, he has been an Assistant Professor
of electrical engineering with Istanbul Technical
University, where he runs the Emerging Circuits
and Computation Group. He has authored more
than 50 peer-reviewed papers. He was a recipient
of the TUBITAK Success, TUBITAK Career, and
Werner von Siemens Excellence Awards.

4734 VOLUME 7, 2019

http://dx.doi.org/10.1145/2228360.2228504
http://dx.doi.org/10.23919/DATE.2017.7926993
http://dx.doi.org/10.1109/MM.2013.28
http://dx.doi.org/10.1109/JSSC.2017.2787762
http://dx.doi.org/10.7873/DATE.2013.280
http://dx.doi.org/10.7873/DATE.2014.374
http://dx.doi.org/10.1109/TEVC.2014.2336175
http://dx.doi.org/10.1007/s10710-015-9257-1
http://dx.doi.org/10.1145/2739480.2754785
http://dx.doi.org/10.1016/j.micpro.2018.01.002
http://dx.doi.org/10.23919/DATE.2017.7927038
http://dx.doi.org/10.1109/ISLPED.2011.5993675
http://dx.doi.org/10.1109/VLSID.2016.101
http://dx.doi.org/10.1109/78.969511
http://dx.doi.org/10.1109/ACCESS.2014.2325029
http://dx.doi.org/10.1109/ACCESS.2014.2325029
http://dx.doi.org/10.1109/TIE.2018.2813959
http://dx.doi.org/10.1109/TPDS.2018.2791440
http://dx.doi.org/10.1109/TPDS.2018.2791440
http://dx.doi.org/10.1109/ISVLSI.2017.50
http://dx.doi.org/10.1109/MM.2017.4241350
http://dx.doi.org/10.1109/ISCAS.2015.7169289
http://dx.doi.org/10.1109/5.726791

	INTRODUCTION
	BACKGROUND
	APPROXIMATE COMPUTING CIRCUITS
	OVERVIEW ON CASE STUDIES

	SYSTEM-TO-CIRCUIT APPROXIMATE DESIGN METHOD
	CASE STUDIES
	SOBEL EDGE DETECTOR
	JPEG ENCODING AND DECODING
	CONVOLUTIONAL NEURAL NETWORK 
	CK - IMPLEMENTING MULTIPLE CONVOLUTION KERNELS WITH DIFFERENT ACCURACIES
	FCN - ESTIMATING ERROR SCORES FROM TARGET CLASSIFICATION RATE


	CONCLUSION
	REFERENCES
	Biographies
	TUBA AYHAN
	MUSTAFA ALTUN


