
Received November 16, 2018, accepted December 9, 2018, date of publication December 21, 2018,
date of current version January 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2889061

Siamese Dense Neural Network for Software
Defect Prediction With Small Data
LINCHANG ZHAO 1, (Student Member, IEEE), ZHAOWEI SHANG1, (Member, IEEE),
LING ZHAO2, (Member, IEEE), ANYONG QIN1, (Student Member, IEEE),
AND YUAN YAN TANG3, (Fellow, IEEE)
1College of Computer Science, Chongqing University, Chongqing 400030, China
2United Imaging (Guizhou) Healthcare Co., Ltd, Guiyang 550002, China
3Faculty of Science and Technology, University of Macau, Macau 999078, China

Corresponding author: Zhaowei Shang (szw@cqu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 91118005, in part by the Macao Special
Project of the State Ministry of Science and Technology under Grant 2015DFM10020, and in part by the Graduate Research and
Innovation Foundation of Chongqing, China, under Grant CYS18006.

ABSTRACT Software defect prediction (SDP) exerts a major role in software development, concerning
reducing software costs and ensuring software quality. However, developing an accurate SDP model is still
a severe and challenging task with the lack of training data. Fortunately, Siamese networks are powerful for
learning a few samples and have been perfectly used in other fields. This paper explores the advantages of
Siamese networks to propose a novel SDPmodel, Siamese dense neural networks (SDNNs), which integrates
similarity feature learning and distance metric learning into a unified approach. It mainly includes two
phases: model building and training. To bemore specific, it means building the novel SDNN for capturing the
highest-level similarity features and training the model to realize prediction through the designed contrast
loss function with cosine proximity. Importantly, we extensively compared the SDNN approach with the
state-of-the-art SDP approaches utilizing 10 software defect datasets. The experimental results show that
our SDNN is a competitive approach and is able to improve the prediction performance more significantly
compared with the benchmarked approaches.

INDEX TERMS Siamese dense neural networks, deep learning, metric learning, few-shot learning, software
defect prediction.

I. INTRODUCTION
Software defect prediction (SDP) is utilized to classify soft-
ware defect modules into defect or non-defect [1], which
can be regarded as a binary classification issue. This is a
significant task in the process of software maintenance that
can be utilized to improve the quality and reliability of soft-
ware. However, SDP is an extremely costly task that has
traditionally been executed manually by development team
members [2]. In recent years, deep learning methods have
been applied to develop a classification model according to
historical data (trainset), and utilized this model to recognize
on test data (testset).

However a conventional deep learning method generally
requires that there is enough training data for establishing a
prediction model. For a software project with limited data
(also known as small data), we may not be able to build
an effective SDP model [3]. Especially in the early stages
of software testing, there were usually not enough software
defect data for defect detection.

In order to build a reliable SDP model with limited
data, Chen et al. [4] use a double transfer boosting (DTB)
algorithm to extract the most alike samples from cross-
company data as train-set. Their methodsmay bring new sam-
ple redundancy to the training data. After that, Yu et al. [1]
use feature matching algorithm to improve the accuracy
of AUC value by converting the heterogeneous features
into the matched features. Although these methods are
very ingenious and well thought, their limited effectiveness
makes it difficult to meet the growth needs of software
business.

This paper considers this to be a few-shot learning prob-
lem about the limited defect data, for more details of the
few-shot learning readers can refer to [5] and [6]. In 1993,
Bromley et al. [7] designed the Siamese networks based on
human beings who are good at the observation and compara-
tive learning from similar objects. AndKoch [5] andNeculoiu
et al. [8] verified that this Siamese networks are suitable for
few-shot learning where a little data is available.

VOLUME 7, 2019
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7663

https://orcid.org/0000-0002-6502-587X

L. Zhao et al.: SDNN for SDP With Small Data

Inspired by the framework of Siamese networks, for a
software project with limited data, this paper proposes a novel
SDP model, called Siamese Dense neural networks (SDNN),
which integrates similarity feature learning and distance met-
ric learning into a unified approach. The designed metering
function is used to learn the distance metrics between the
highest-level similarity features. And the contrastive loss
function with cosine-proximity is proposed to train this net-
work in an end-to-end manner to guarantee the compatibility
between learning features and distance measures [9].

To summarize the work of this paper, the key contributions
are three-folds:

(1) A novel SDP model called Siamese Dense neural net-
works (SDNN) is proposed to recognize the defects of a soft-
ware project with limited data, which classifies the software
defects through learning similar or dissimilar information
between sample pairs.

(2) A metering function is introduced to learn the distance
between the highest-level similarity features and an end-to-
end SDNN prediction is developed successfully according to
the designed contrastive loss function with cosine-proximity.

(3) We compared the performance of our SDNN method
with the state-of-the-art SDP methods on 10 releases of soft-
ware defect datasets, and the results indicate that SDNN is an
effective SDP model on the lack of sufficient software defect
data.

The remainder of this paper is designed as: Section 2 is
expressed the related work. Next, the proposed methodology
is elaborated in detail. Section 4 gives the experiments and
results. Section 5 depicts the discussion. Section 6 illustrates
conclusion.

II. RELATED WORK
A. SOFTWARE DEFECT PREDICTION
SDP as a sort of technology which can expose the possi-
bility whether a software system includes defects through
analyzing themetric data of software [1]. To bemore specific,
the relationship between metric data and software defects is
constructed through SDP. Besides, more and more software
metrics are being introduced into SDP [3].

McCabe [10] used method-level metrics for SDP; change
information metrics [11]; package modularization met-
rics [12]; lines of comment metrics [12]; code size and com-
plexity metrics [13] and deep representations metrics [3] are
some of the software metrics used for SDP.

According to literature [14], a typical SDP process usually
consists of four steps. The first step is to collect entities
from software modules and tag them as defect or non-defect.
The second step is to extract features based on previous ones
of the software metrics used for SDP. The third step is to use
the extracted data to train a predictive classifier by various
machine learning algorithms. Finally, new instances are fed
into the trained classifier, which can predict whether the
instances are defects or non-defects. Moreover, an accuracy
SDP model is developed to help manager to obtain more
information about software defects.

B. FEW-SHOT LEARNING
Deep learning is one of the most popular research fields at
present, and it has been widely used in many domains of
science and proved to be very effective, especially in the
predictions and classifications of objects [15], [16]. However,
conventional deep learning methods need a large number of
labeled data and lots of iterations to train their great quantity
parameters [17], [18]. This limits their scalability to new cat-
egories owing to exegeses cost, but more basically limits their
availability to rare classes where large amounts of annotated
data may not exist at all [19], [20]. Thus, these methods fail
to work well on one or few examples [21], [22].

In contrast, humans are very good at identifying objects
with little direct supervision or none at all, called few-shot
learning [23], [24]. For example, children can sum up the
concept of ‘‘cat’’ from a single painting in a book without
any problem, or by hearing its depictions as looking like a
cat [25]. Due to the inspiration from the few-shot learning
ability of humans, there has been the renewed interest in
machine few-shot learning recently and the Siamese networks
for few-shot learning where a little data is available were
proposed [7], [23], [24].

Few-shot learning aims to discriminate novel visual classes
from very few tagged examples, which often resolves train-
ing into an assistant meta learning step where transferrable
knowledge is achieved in the form of good initial strategies
[26], [27]. The goal of few-shot learning is then learned
by fine-tuning with the learned optimization strategy. And
Siamese networks as a representative method of few-shot
learning has been applied in many fields [8], [28].

C. SIAMESE NETWORKS
Siamese networks were primary proposed by
Bromley et al. [7] in the 1990s to confirm signature con-
firmation as an image comparative learning problem. This
neural network is a structure for non-linear metric learning
which naturally learns expressions by two identical sub-
networks. More clearly, the two sub-networks can naturally
learn and extract the representation of input pairs through
similarity and dissimilarity information [29].

Koch [5] and Neculoiu et al. [8] gave a detailed introduc-
tion to the structure and properties of the Siamese networks,
and pointed out that this network is a kind of twin framework
with containing two or more identical subnetworks. Every
subnetwork has the same parameters andweights. The param-
eters of Siamese networks are updated by jointly performed
on all subnetworks. Moreover, they have confirmed that the
Siamese networks are good at learning with a little data is
available [5], [8], [28].

Such as Neculoiu et al. [8] used Siamese Recurrent neural
networks to learn the text similarity; Siamesed fully con-
volutional networks for road detection [28]; and Siamese
LSTM networks were used to investigate text categoriza-
tion [30]. These networks not only have the powerful ability
of learning with less samples, but also score the similarity

7664 VOLUME 7, 2019

L. Zhao et al.: SDNN for SDP With Small Data

FIGURE 1. The flowchart of the proposed SDNN for SDP.

of inputting pairs according to the similarity learning. In this
study, we investigated the advantage of the Siamese networks
to design a novel SDP model for a software project with
limited data.

III. METHODOLOGY
A. OVERALL ARCHITECTURE
According to literature [31], the NASA repository has been
most popularly utilized for SDP. The paper implements
experimentations on ten different baselined datasets extracted
from NASA repository. However, these datasets are limited
historical data, duplicated instances, the class-unbalanced
distribution, and metrics of every entity having global con-
nections. Therefore, Shepperd et al. [32] have pointed out the
quality issues of these datasets. Inspired by their proposal to
solve those problems, the data preprocessing is presented in
the section B.

Meanwhile we also analyzed the structure of deep-learning
models, such as RNN, CNNs, LSTM, and Dense neural
network (DenseNN). CNNs is good at multi-dimensional
data analysis and local feature extraction [33]. LSTM and
RNN are good at sequential data with changing over time
[33]. DenseNN has very high global efficiency because it
combines all local features into the highest-level features and
its predictor uses features of all complexity levels to calculate
the score for every class [34].

For the software project with small data, the SDNN model
by twin Dense neural networks is proposed on the basis of

combining with the characteristics of experimental data and
models. Also, some other networks such as RNN, CNNs, and
LSTM are used in experiments, but results from DenseNN
are the best. And then the framework of SDNN method is
expressed in Figure 1.

B. DATA PREPROCESSING
1) DELETION OF REPEATED ENTITIES
Repeated entities are the same software measures and class
labels in the software modules and this situation will bring
about serious negative effects on machine learners [35]. To be
more precise, if duplicate instances are normally divided into
a portion of the test data, they will generate over-optimistic
performances; otherwise, over-pessimistic [36].

2) REPLACEMENT OF MISSING VALUES
Every entity in the dataset is composed of the multiple soft-
ware metrics. If there is one or more missing values in an
entity, this instance cannot fulfill the input requirement of
our method. We must deal with these missing values. In this
paper, the average of corresponding metric is used to sub-
stitute for a missing value, and this approach is introduced
detailedly in [37].

3) DATA NORMALIZATION
Owing to the fact that most software metrics have different
orders of magnitude, we normalize the experimental data
for convenience of experiment and operation. In this study,

VOLUME 7, 2019 7665

L. Zhao et al.: SDNN for SDP With Small Data

FIGURE 2. A simple 3 hidden layers Siamese networks for binary
classification with metering function.

we normalize the data using the most common minimum-
maximum normalization method. This approach is described
in detail [38].

4) DATA OVERSAMPLING
Software defect datasets are often composed of a few defect
modules and most defect-free modules, and this unbalanced
distribution brings difficulties for machine learning [4]. For-
tunately, this problem has been settled at data level or algo-
rithm level. In this study, we use the Synthetic Minority
Oversampling Technique with Tomek-links (SMOTETomek)
proposed by Batista et al. [39] to process the class imbal-
ance distribution at data level. This method can not only
synthetically generate new artificial minority class instances
according to feature similarities, but also remove noise data
and delete redundant information based on the regional data.
Also, some other resampling techniques such as random
oversampling and undersampling are used in experiments, but
results from SMOTETomek are the best.

C. MODEL BUILDING PHASE
1) THE SDNN MODEL
This study proposes SDNNmodel consisting of two identical
fully-connected networks which respectively process batch-
size the instances in given pairs. This model accepts distinct
inputs and it is joined by a metering function at the top.
This metering function measures the distance di between
the highest-level similarity features h1 and h2 on each side.
Figure 2 shows a simple three hidden layers Siamese net-
works for binary classification with a metering function
s =

∑n
i=1 di, n is the number of attributes.

This SDNN has a total of 4 layers, including three hidden
layers and a distance layer. The h1,l represents the hidden
vectors in layer l for the first Siamese, and h2,l expresses the
same for the second Siamese. The distance layer at the top
contains the metering function on the learned feature space
and scores the similarity between the two feature vectors.

Figure 3 shows the SDNN is learning the highest-level
similar features of software metrics in the training procedure.
Figure 3(a) represents the first layer training procedure. This

research uses inputs of a pair of data and obtains the com-
parison values of similarity features. If the input xi,n and xj,n
belong to the same class of data, the value is low, otherwise
high. Furthermore, we can adjust the network parameters to
get the best values of features. Then we echo this procedure
via layer-by-layer training and acquire all the comparison val-
ues of similarity features of the three layers. Figure 3(a)-(c)
express these procedures. Finally, we can obtain all trained
parameters and use these information to predict the software
defected by comparing similarities or dissimilarities between
pairs of data. This procedure is known as end-to-end learning,
and the highest-level similarity features are obtained automat-
ically. Figure 3 shows the entire fine-tuning process.

In addition, we also tried to expand or reduce the number
of hidden layers in the lab, and we get the best results from
3 hidden layers, which is the best model through experi-
ments. Moreover, this model is symmetric so that whenever
we enter the pairs of data from different category into the
twin networks, the top conjoining layer will calculate the
distant metric. More importantly, the Siamese architectures
are tied weights, which means that all parameters between the
Siamese networks are shared. Weight tying ensures that the
pairs of data could not possibly be mapped to very different
locations in feature space by their respective network using
the same function [40].

2) METERING FUNCTION OF THE SDNN
The SDNN top is a distance layer with a metering function.
When input to the Siamese networks are pairs of data and
labels, these data are processed by the sub-networks, and
producing the outputs through the metering function [41].
If the value of s is smaller than 0.5, it is assumed that a pair
of data is of the same class; otherwise, inhomogeneity. The
metering function is defined in detail below.

3) EUCLIDEAN DISTANCE
If X1 and X2 are a couple of input vectors expressed to
the learning, w represents shared parameter vector, and the
mapping of X1 and X2 in the feature space is represented
by Hw(X1) and Hw(X2). Then the Siamese Dense neural net-
works can be regarded as a scalar metric functionDw(X1,X2)
to measure the compatibility between X1, X2, and the distance
learning is defined as (1):

Dw(X1,X2) = ||Hw(X1)− Hw(X2)||2 (1)

where Dw(X1,X2) represents the Euclidean distance to learn
the distance metric of similarity features from input pairs of
data.

4) SIMILARITY METRIC
Since the Euclidean distance mainly estimates the distance
metric of samples, the intra-pairing changes of the sam-
ples are ignored. This paper introduces a similarity mea-
sure function expressed by cosine-proximity function [42] to
strengthen the discriminative power of the learned similarity

7666 VOLUME 7, 2019

L. Zhao et al.: SDNN for SDP With Small Data

FIGURE 3. Plots of the features learn process for the SDNN.

features. Also, some other measure function such as maxi-
mum likelihood function [9] and Manhattan function [40] are
used in experiments, but results from cosine-proximity are the
best.

The similarity metric function is defined as follow(2):

Li(w, y,X1,X2) =

∑N
i=1 y

(i)
∗ Dw(X1,X2)(i)√∑N

i=1(y(i))2 ∗
√∑N

i=1(Dw(X1,X2)(i))2

(2)

The Li(w, y,X1,X2) ranges between [-1, 1]. If the value
of Li(w, y,X1,X2) is closer to 1, designating that the sim-
ilarity between two features is higher. But, in this study,
to strengthen the distinguishable power of the learned sim-
ilarity features, the opposite value of Li(w, y,X1,X2) is
used. By applying a scalar metric function with the cosine-
proximity, the final metering function of the distance learning
is assigned to(3):

Lend = −αLi(w, y,X1,X2)+ Dw(X1,X2) (3)

where α is chosen to multiply Li(w, y,X1,X2) to a more
suitable scale.

D. MODEL TRAINING PHASE
1) CONTRAST LOSS FUNCTION USED FOR TRAINING
Let y is a binary label, y = 0 if a pair of data(X1,X2) belongs
to the same class and y = 1 if it is deemed inhomogeneity.
Since the SDNN model adopts pairs of data as input in the
forward propagation, we impose a contrastive loss function
with cosine-proximity on the binary classifier of the follow-
ing form(4):

Lcontr (w, y,X1,X2) =
1
N

N∑
i=1

{(1− yi) ∗ (L
(i)
end)

2

+ yi ∗ (max(m− L
(i)
end , 0))

2
} (4)

where m > 0 as a pre-set threshold, Lend is composed of the
distance metric learning by Euclidean formula and similarity
penalty learning by cosine-proximity, it should be devised
in such a manner that the minimum of Lcontr (w, y,X1,X2)

will decrease Lend when pairs of data come from same
character class and increase Lend when pairs of data come
from different class. More concisely, the minimization of
Lcontr (w, y,X1,X2) would emerge in low values of Lend for
similar pairs and high values of Lend for dissimilar pairs.

2) PARAMETER FINE-TUNING
a: OPTIMIZATION
The SDNN model has 64 cell units in each hidden layer,
and applies a rectified linear (ReLU) activation function to
each layer. During training, dropout and other methods are
used to prevent overfitting of the model. The parameter opti-
mization of the SDNN model is done by using the Adam
algorithm proposed byKingma et al. [43]. This algorithm has
the advantages of both the first-moment and second-moment
gradients.

b: WEIGHT INITIALIZATION
This paper uses a normal distribution with zero-mean and
a standard deviation of 10−2 to initialize all neural network
weights, and this normal distribution is also used to initialize
the value of biases. All parameters of network are corrected
by fixing a mini-batch size of 32 during iterative training.

c: LEARNING RATE
We have unified the learning rate of the SDNN model in the
initial training stage. A callback function is used to control the
learning rate when the evaluating indicator is not improving
with increasing number of iteration. More precisely, when the
performance of the SDNN model is not improved, the call-
back function will be used to slowly attenuate the learning
rate.

IV. EXPERIMENTS AND RESULTS
A. DATASETS
NASA MDP repository is commonly used as the bench-
marked datasets for SDP. These software projects were devel-
oped for satellite flight control, zero gravity test software,
spacecraft instrumentation, white-goods product and storage
management for ground data. Ten of the most used datasets

VOLUME 7, 2019 7667

L. Zhao et al.: SDNN for SDP With Small Data

TABLE 1. The 10 different benchmarked datasets sorted in order of the
name.(Imbalanced rate: downward integer of ratio between non-defects
and defects.)

TABLE 2. Defect prediction confusion matrix.

from this repository are used in this study, they are AR1, AR4,
AR6, CM1, KC1, KC2, MW1, PC1, PC3, and PC4.

Our selection criteria for these ten experimental datasets
are as follows:

(1) The datasets are available from public sources so that
the application or validation of model can be simpler.

(2) Each selected dataset has the same metrics, namely
21 most commonly used method-level metrics, so it can be
applied easily without losing any metrics information.

Note that the instances in each database are limited,
the maximum number of instances is 2032, and the minimum
number of instances is 87. Conventional deep learning meth-
ods are difficult to extract highest-level similarity features
effectively in such limited data. And each instance in the
datasets is composed of independent code attributes and the
label. The code attributes are on the basis of the count of
statement lines, total number of branch count, etc. The more
detailed illustration is supplied in [3]. Similar to [32], we pre-
prosseed the data from each dataset and the characteristics of
these datasets after pre-processing are shown in Table 1.

B. PERFORMANCE INDEXES
The predictive model performance for binary classifier is
usually evaluated by using a confusion matrix, the defect
instances are regarded as positive (true) and non-defect
instances as negative (false) [44]. Where FP shows the false
positives number, TN represents the true negatives number,
TP expresses the true positives number, and FN indicates the
false negatives number. More details demonstrates in Table 2.

In this paper, four performance indexes according to the
confusion matrix are utilized, which are introduced in detail
as follows:

(1) Probability of detection (PD) is the percent of defects
accurately classified in the defect class, which is a measure
of integrity. The high value of PD for a good performance of
model.

(2) Probability of false (PF) expresses the percent of
non-defect entities which are incorrectly classified in the
defect-free classes. The low value of PF usually shows good
performance for a model.

(3) F-measure is a trade-off metric of balancing the perfor-
mances of PD and precision. Both PD and precision of a good
predictor should be high, and result in the high F-measure
value.

(4) Matthews Correlation Coefficient (MCC) is whole
measurement of binary classification, which incorporates all
positives and negatives into the measure. Its value changes
in the closed interval [−1, 1]. The large value of MCC for
a perfect prediction and the low value of MCC for a poor
prediction.

As known, AUC is another performance indicator for
imbalanced datasets, that is statistically more discriminating
than accuracy for unbalanced datasets. An excellent predictor
with high-PD and low-PF, so that a high AUC value.

C. RESEARCH PROGRAMME
The proposed SDNN uses the two identical fully-connected
networks to learn the highest-level similarity features and the
metering function as the distance measure for between the
highest-level features. And a binary classifier can be built
through the designed contrastive loss function with cosine-
proximity.

To comprehensively demonstrate the validity of proposed
method, this study designs the following research ques-
tions (RQ) and answers them. These experimentations are
performed in tensorflow, keras and matlab environments.
To reduce the influence of the initialization and sampling-
method on the performance of experimentations, every
method is repeated 30 times in every dataset, and the results
take the average of repeated experiments.

1) RQ1:CAN THE SDNN METHOD PERFORM BETTER THAN
OTHER METHODS?
a: MOTIVATION
The primary goal of this paper is to improve the performance
of SDP, thus, we analyze whether our SDNN can outstrip the
benchmarked methods on small data.

b: APPROACH
The paper compares proposed method with several bench-
marked methods, including DNN [45], LSTM [46],
DBN [47], LR [16], BAG [48] and three models from [4],
such as naive bayes (NB), transfer naive bayes (TNB) and
double transfer boosting (DTB). To verify the effect of adding
a cosine-proximity function, we construct a basic model by
the contrastive loss function without cosine-proximity, its
metering function is only composed of Euclidean formula as
the distance metric, which denotes SDNN−.
Furthermore, to certify the significant superiority of our

SDNN compared with benchmarked methods, the Wilcoxon
RankSum test [49] with 5% significance level is performed

7668 VOLUME 7, 2019

L. Zhao et al.: SDNN for SDP With Small Data

TABLE 3. Comparative results for effect of sample size: averages of PD and PF on ten sub-datasets of MW1. First line appears the logograms of ten
methods and Total Avg. is the overview average of every method on ten sub-datasets. The best performances are signed in boldface. #NI denotes the
number of instances.

to calculate p-value. And the Hedges,g [50] is utilized to
testify the effect size. If the Hedges,g is 0.5, it expresses
that two methods are equivalent and a balanced design. If the
Hedges,g > 0.5, it represents that our approach is better than
the control method. If the Hedges,g < 0.5, it means that our
approach is worse than the comparative method.

The MW1 dataset is selected randomly from ten exper-
imental datasets for illustration, and the selected dataset is
divided into ten sub-datasets with the same imbalanced-rate
(10%). Finally, the performance of SDP model trained on
each of the sub-dataset is evaluated.

Besides the MW1 dataset, we also use the remaining
datasets to do experiments, the results are presented in
Appendix A.

c: RESULTS
Table 3 expresses results of PD and PF on ten sub-datasets of
MW1. Figure 4 presents these results in a scatter plots. If a
SDP method has the higher value of PD and fewer value of
PF, it has more points distributed at bottom right.

From Table 3 and the figure 4, the SDNN has more
points distributed at lower right and obtained the best PD
(overall average is 0.867) and PF (overall average is 0.155).
Although the SDNN− has the same Siamese architecture as
the SDNN, after adding the cosine-proximity in metering
function, the SDNN acquired a 10% reduction over SDNN−

in term of PF on mean, and the PD of total average increased
nearly 10% compared to previous SDNN−.
Compared with the SDNN, the DNN, LSTM and DBN

have not achieved superior results in terms of PD on average
and PF on average, which proves that the Siamese architec-
ture is more effective than the single-branch network in the
performance of SDP.Moreover, the classical NB, LR and Bag
have also not gained better results than the SDNN in terms
of PD and PF. And these results are same as the Manjula,s
study [45] and GAN,s research [47] utilized to other datasets.
The TNB acquires the second only result of the SDNN in

terms of PD on average, but also gets the worst PF (overall
average is 0.407). A predictor with high-PD and high-PF is
valuable in some pivotal industrial conditions [51]. However,

FIGURE 4. Scatter plots of ten methods on ten sub-datasets of MW1.

a high PF (PF of TNB is 40.7%, and NB is 40.3%) indicates
that there is no need to allocate more attention to check the
software defect modules. Besides, Menzies et al. [51] rec-
ommended high-PD and low-PF as the more stable perfor-
mance indicators for predictive models trained on unbalanced
datasets. Although the TNB method has already obtained the
PD on average that is very close to the SDNN,s, its PF is
more than twice of the SDNN. Therefore, the SDNN method
gains low-PF and high-PD, which can save time and cost to
expedite SDP.

Table 4 shows the results of two balanced indicators with
F-measure andMCC. The p-value is implemented to analyses
the significant difference between SDNN and the bench-
marked methods. The summary results are expressed in the
bottom row of table, which notes howmany datasets operated
through the SDNN are observably different (win or lose) or no
different (tie) from baselined methods.

With respect to F1, the SDNNmethod significantly outper-
forms the last five methods including DNN, LSTM, DBN,
NB and LR, as it wins 10, 10, 10, 10, and 10 datasets,
respectively, and loses 0 dataset; compared with the SDNN−,
TNB and Bag, the SDNN wins 9 datasets, ties in 1 dataset;
compared with the DTB, the SDNN wins 8 datasets, ties in 1
dataset, and only loses 1 dataset. Similar observations can be
gained for MCC, the only difference is that the failed dataset
number is zero compared with the DTB.

VOLUME 7, 2019 7669

L. Zhao et al.: SDNN for SDP With Small Data

TABLE 4. Comparative results for effect of sample size: averages of F-measure and MCC on ten sub-datasets of MW1. First line indicates the logograms of
ten methods and Total Avg. is the overview average of every method on ten sub-datasets. Last line is a sum-up of p-value for SDNN compared with other
methods. The best performances are signed in boldface. #NI denotes the number of instances.

TABLE 5. Overview of comparison results for effect of sample size:
comparing the performance of SDNN with benchmarked methods overall
ten sub-datasets of MW1 with p-value and Hedges,g. The boldface
represents the significant better results of the SDNN with p-value
<0.05 and Hedges,g >0.5, F1 stands for the F-measure.

Moreover, overview performances of SDNN method with
including 10 sub-datasets of MW1 are compared with
benchmarked methods on the basis of p-value<0.05 and
Hedges,g [50], the summary of comparison results is shown
in Table 5.

In regard to F1, SDNN is significant better than the bench-
marked methods (p-values are not more than 0.05). And the
Hedges,g for the last five methods are not less than 1.0
(Hedges,g = 1.604, 1.786, 1.510, 1.104 and 1.109, respec-
tively), which is explicated as a great improvement. As to
the SDNN−, TNB, DTB and Bag methods, the Hedges,g =
0.704, 0.688, 0.522, 0.743, respectively, which is viewed as a
medium-size effect (0.50 < Hedges,g < 1.0).
In terms of MCC, SDNN keeps on maintaining a great

advantage in comparison with DNN, LSTM, DBN, NB and
LR methods by a great improvement (Hedges,g = 1.297,
1.483, 1.312, 1.140 and 1.143, respectively), and is com-
parable to SDNN−, TNB and Bag, as see the Hedges,g =
0.528, 0.716 and 0.745, respectively, which is also regarded
as a medium effect. While, the DTB,s p-value = 0.051 and
Hedges,g = 0.484.

2) RQ2:HOW MUCH TIME DOES IT TAKE FOR USING SDNN?
a: MOTIVATION
We have examined the effectiveness of the proposed SDNN.
Time efficiency of an approach is also a crucial indicator to
evaluate whether the approach is good enough or not.

b: APPROACH
To investigate SDNN,s the time efficiency, for each dataset,
we run SDNN 20 times and measured the average model
training time and testing time on each baselined dataset.
Model training time relates to the time taken from data
preprocessing to obtaining a strong classifier. The testing
time is the time taken from preprocessing testing data until
the class labels are predicted. We compare the training and
testing time of SDNN with the benchmarked methods used
in RQ1.

c: RESULTS
Tables 6 presents the model training and testing time (in sec-
onds) respectively on each baselined dataset. From Table 6,
we note that SDNNmethod spends the second largest average
training time, i.e., 13.176 s, and the main reason why SDNN
takes so much training time is that amount of time is taken in
training phase to select the best parameters.

Meanwhile, we can see that the average testing time across
all baselined datasets of our SDNN method and the bench-
marked datasets, i.e., SDNN−, DNN, LSTM, DBN, NB,
TNB, DTB, LR, and Bag, are 0.029 s, 0.026 s, 0.027 s,
0.042 s, 0.023 s, 0.016 s, 0.017 s, 0.015 s, 0.018 s, and 0.020 s,
respectively. Although SDNN also spends the second amount
of average testing time, we believe it is still acceptable.
Furthermore, we can use many technologies, e.g., parallel
computing, to speed up the training of SDNN in the future.

3) RQ3:DOSE THE UNBALANCED RATE AFFECT THE
PERFORMANCE OF SDNN?
a: MOTIVATION
To evaluate the stabilization of our SDNN, this paper com-
pares the stable performance of SDP methods developing
with different class-unbalanced datasets.

b: APPROACH
First, we divided each dataset into some new databases
with increasing class-unbalanced rate; and then we calcu-
lated the average(µ) and standard deviation(σ) of AUC for

7670 VOLUME 7, 2019

L. Zhao et al.: SDNN for SDP With Small Data

TABLE 6. Time (in seconds).

TABLE 7. Mean and standard deviation of each method, and the best performance is noted in boldface.

TABLE 8. The CV of performance of each SDP method.

each method. But, the average performance of AUC is dif-
ferent on a same dataset, we cannot directly use the stan-
dard deviation to measure the dispersion of performance
of each prediction model. So we use the ratio of between
standard deviation and mean, namely coefficient of vari-
ation (CV) [52] to evaluate the stabilization of capability
of each SDP model. The computation of CV is shown in
formula(5).

CV =
σ

µ
∗ 100% (5)

where σ is the standard deviations of AUC, and µ is the
averages of AUC. The higher the CV is, the more unstable
the performance of the method is; in other words, the greater
impact of class imbalance on the performance of a SDP
method.

c: RESULTS
With different class-unbalanced rates, the performance
changes of each method are shown in Figure 5. On most
datasets, it can be seen that the performances of the three
methods(LSTM, DBN and DNN) decrease significantly
with increasing class-unbalanced rate, indicating that these
three methods are more sensitive to the problem of class-
unbalanced distribution. While, we can also conclude that
the performances of two methods(SDNN and DTB) remain
relatively stable. If only from the performance level, the per-
formance of the SDNN is significantly higher than other
methods.

Table 7 presents the average (µ) and standard deviation (σ)
of each method with different class-unbalanced rates, it can
be seen that the average of method is different. To eliminate
the influence of different averages on the comparison of
performance stability, the coefficient of variation (CV) is used
to evaluate the stabilization of capability of each method,
and the results are shown in Table 7. The boldface is used
to mark data whose coefficient of variation(CV) is greater
than 5%.

Table 8 shows that the CV values of LSTM, DBN
and DNN are relatively high on most datasets, indi-
cating that the performance of these three methods are
highly susceptible to the class-unbalanced distribution, while
the performances of the SDNN and DTB remain rela-
tively stable, which is consistent with the results described
in Figure 5.

VOLUME 7, 2019 7671

L. Zhao et al.: SDNN for SDP With Small Data

FIGURE 5. Comparison of the performance changes of each method with different unbalanced rates.

In addition, the performance of the same method on the
specific dataset may be different from that its performance on
other dataset. Such as SDNN−, TNB and Bag methods show

only slightly instability on the PC1 dataset (CV = 5.021%,
5.843% and 5.608%, respectively), the NB and LR methods
exhibit instability on both AR1 and PC1 datasets. This reason

7672 VOLUME 7, 2019

L. Zhao et al.: SDNN for SDP With Small Data

TABLE 9. Comparative results for effect of sample size: averages of PD and PF on ten sub-datasets of CM1. First line shows the logograms of ten methods
and Total Avg. is the overview average of every method on ten sub-datasets. The best performances are signed in boldface. #NI denotes the number of
instances.

TABLE 10. Comparative results for effect of sample size: averages of F-measure and MCC on ten sub-datasets of CM1. First line indicates the logograms
of ten methods and Total Avg. is the overview average of every method on ten sub-datasets. Last line is a sum-up of p-value for SDNN compared with
other methods. The best performances are signed in boldface. #NI denotes the number of instances.

TABLE 11. Overview of comparison results for effect of sample size:
comparing the performance of SDNN with benchmarked methods overall
ten sub-datasets of CM1 with p-value and Hedges,g. The boldface
represents the significant better results of the SDNN method with p-value
<0.05 and Hedges,g >0.5, F1 stands for the F-measure.

is that the non-defect instances is much more than that of
defect entities, which seriously affects the stabilization of a
SDP method.

V. DISCUSSION
A. EFFECTIVE ANALYSIS OF SDNN MODEL
The proposed SDNN approach explores the advantage of
Siamese networks for learning a few samples. Compared with
the benchmarked SDP methods, our proposed SDNN is more
excellent for main three reasons that are summarized below.

(1) Base learner. This paper proposes the SDNN method
to implement the SDP by using two identical fully-connected

FIGURE 6. Scatter plots of ten methods on ten sub-datasets of CM1.

networks, and the twin networks have been shown to be
more powerful when it comes to learning a few samples.
Furthermore, the experimental results have been proved that
this Siamese architecture is more effective than the single-
branch network for SDP.

(2) This study proposes a metering function that composed
of the Euclidean and cosine-proximity functions. Where the
Euclidean function is used to learn the distance between
samples, and the cosine-proximity function is utilized to

VOLUME 7, 2019 7673

L. Zhao et al.: SDNN for SDP With Small Data

FIGURE 7. Scatter plots of ten methods on remaining datasets.

calculate the distance of intra-pairing samples. Moreover,
the SDNN has a better result than the SDNN− due to the
cosine-proximity in metering function.

(3) Many performance indexes. Such as PD, PF,
F-measure, MCC and AUC, which have been used to
assess the performance of our SDNN. Moreover, the p-value

7674 VOLUME 7, 2019

L. Zhao et al.: SDNN for SDP With Small Data

TABLE 12. Overview of comparison results for effect of sample size:
comparing the performance of SDNN with benchmarked methods
remaining datasets with p-value and Hedges,g. The boldface represents
the significant better results of the SDNN with p-value <0.05 and
Hedges,g >0.5, F1 stands for the F-measure.

<0.05 is used for the win-tie-loss analysis, the Hedges,g is
utilized to evaluate the effect size, and the coefficient of vari-
ation (CV) is used for assessing the stabilization capability of
the SDNN. All the results indicate that SDNN is an effective
SDP approach for a software project with limited data.

B. VALIDITY THREATS
As with each empirical experiment, our results typically
include a discussion of three different types of threats to
validity, which will be analyzed below.

The threat to internal validity involves the influence of
some uncertain factors on the experimental results, such as
the initialization of model parameters and the quality of base-
line datasets [53]. Although we have ensured the rationality
of the experiments, there may still be some mistakes.

External validity is related to the summary of our research
results. This paper validated the SDNN method on open
datasets from NASA repository, and gained some meaningful
and valuable finds. However, we still cannot suppose that
these finds can be expanded to practical applications owing
to insufficient empirical research. Empirical study will be
conducted on more defect datasets in future work to alleviate
the threats to external validity.

In relation to construct validity, the performance indexes
considered for our study, this paper cannot generalize the
results to other types of defect metrics just by using sev-
eral performance metrics. Moreover, there is no consen-
sus on metrics for assessing the predictive performance of
unbalanced data. Considering the limited data, the limited
resources and the latest study on SDP, five metrics including
PD, PF, F-measure, MCC and AUC are employed in this
study. This may cause a few potential threats to the construct
validity.

VI. CONCLUSION
Building an effective SDP model with insufficient software
defect data may be a difficult thing. This paper proposes
the SDNN to address this issue and verifies the validity of
the proposed method. A set of experiments are executed
on 10 public software defect datasets in terms of PD, PF,
F-measure, MCC and AUC. Although the results of the dif-
ferent metrics are slightly different, statistical analysis based
on these metrics tend to support the same conclusions:

(1) SDNN shows the best overall performance among all
comparison baselined methods;

(2) SDNN performs obviously better than benchmarked
methods with limited samples;

(3) SDNN method also achieves more stable performance
than the benchmarked methods under different class imbal-
ance distribution.

Although these conclusions show that our SDNN could
be an efficient solution for SDP, we still need to do more
empirical researches onmore defect datasets and try to extend
this method to multi-categories defect prediction in future
work.

ACKNOWLEDGMENT
The authors would like to thank all reviewers for their sug-
gestions.

APPENDIX A
Table 9 presents the results of PD and PF on ten sub-datasets
of CM1. Figure 6 presents these results in a scatter plots.

Table 10 presents the results of two equilibrium indicators
with F-measure and MCC on ten sub-datasets of CM1. And
the results of p-value and Hedges,g presented in Table 11.

VOLUME 7, 2019 7675

L. Zhao et al.: SDNN for SDP With Small Data

Figure 7 shows the results of PD and PF on remaining
datasets with the scatter plots.

Table 12 presents the overview of comparison results for
effect of sample size with p-value and Hedges,g on remaining
datasets.

REFERENCES
[1] Q. Yu, S. Jiang, and Y. Zhang, ‘‘A feature matching and transfer

approach for cross-company defect prediction,’’ J. Syst. Softw., vol. 132,
pp. 366–378, Oct. 2017.

[2] J. Hernández-González, D. Rodriguez, I. Inza, R. Harrison, and
J. A. Lozano, ‘‘Learning to classify software defects from crowds: A novel
approach,’’ Appl. Soft Comput., vol. 62, pp. 1–29, Jan. 2017.

[3] H. Tong, B. Liu, and S. Wang, ‘‘Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning,’’ Inf. Softw.
Technol., vol. 96, pp. 94–111, Apr. 2018.

[4] L. Chen, B. Fang, Z. Shang, and Y. Tang, ‘‘Negative samples reduction in
cross-company software defects prediction,’’ Inf. Softw. Technol., vol. 62,
no. 1, pp. 67–77, 2015.

[5] G. Koch, R. Zemel, and R. Salakhutdinov, ‘‘Siamese neural networks for
one-shot image recognition,’’ M.S. thesis, Graduate Dept. Comput. Sci.,
Univ. Toronto, Toronto, ON, Canada, 2015.

[6] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales.
(2017). ‘‘Learning to compare: Relation network for few-shot learning.’’
[Online]. Available: https://arxiv.org/abs/1711.06025

[7] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, ‘‘ Signature
verification using a ‘siamese’ time delay neural network,’’ in Proc. Int.
Conf. Neural Inf. Process. Syst., 1993, pp. 737–744.

[8] P. Neculoiu, M. Versteegh, and M. Rotaru, ‘‘Learning text similarity with
siamese recurrent networks,’’ in Proc. Represent. Workshop ACL, 2016,
pp. 148–157.

[9] Q. Zhang, M. Pei, M. Chen, and Y. Jia, ‘‘Vehicle verification based on
deep siamese network with similarity metric,’’ in Proc. Pacific Rim Conf.
Multimedia, 2017, pp. 773–782.

[10] T. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng., vol. SE-2,
no. 4, pp. 308–320, Dec. 1976.

[11] A. Abuasad and I. M. Alsmadi, ‘‘The correlation between source code
analysis change recommendations and software metrics,’’ in Proc. Int.
Conf. Inf. Commun. Syst., 2012, pp. 1–5.

[12] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, ‘‘Lines of comments
as a noteworthy metric for analyzing fault-proneness in methods,’’ IEICE
Trans. Inf. Syst., vol. E98.D, no. 12, pp. 2218–2228, 2015.

[13] K. Yamashita et al., ‘‘Thresholds for size and complexity metrics: A case
study from the perspective of defect density,’’ in Proc. IEEE Int. Conf.
Softw. Qual., Rel. Secur., Aug. 2016, pp. 191–201.

[14] J. Li, P. He, J. Zhu, and M. R. Lyu, ‘‘Software defect prediction via
convolutional neural network,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel.
Secur., Jul. 2017, pp. 318–328.

[15] Y. LeCun, B. Yoshua, and H. Geoffrey, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[16] A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah, ‘‘Software
bug prediction using machine learning approach,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 9, no. 2, pp. 78–83, 2018.

[17] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[18] S. Zagoruyko and N. Komodakis, ‘‘Learning to compare image patches via
convolutional neural networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 4353–4361.

[19] W. Fu and T. Menzies, ‘‘Easy over hard: A case study on deep learning,’’
in Proc. Joint Meeting Found. Softw. Eng., 2017, pp. 49–60.

[20] S. Majumder, N. Balaji, K. Brey, W. Fu, and T. Menzies. (2018). ‘‘500+
times faster than deep learning (a case study exploring faster meth-
ods for text mining StackOverflow).’’ [Online]. Available: https://arxiv.
org/abs/1802.05319

[21] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[22] L. Kaiser, O. Nachum, A. Roy, and S. Bengio, ‘‘Learning to remember rare
events,’’ in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–10.

[23] L. Fei-Fei, R. Fergus, and P. Perona, ‘‘One-shot learning of object
categories,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 4,
pp. 594–611, Apr. 2006.

[24] L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and A. Vedaldi, ‘‘Learn-
ing feed-forward one-shot learners,’’ in Proc. Neural Inf. Process. Syst.,
2016, pp. 1–9.

[25] H. Edwards and A. Storkey, ‘‘Towards a neural statistician,’’ in Proc. Int.
Conf. Learn. Represent., 2016, pp. 1–13.

[26] J. Snell, K. Swersky, and R. S. Zemel, ‘‘Prototypical networks for few-shot
learning,’’ in Proc. Neural Inf. Process. Syst., 2017, pp. 1–11.

[27] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, ‘‘Zero-shot learning—
A comprehensive evaluation of the good, the bad and the ugly,’’ IEEE
Trans. Pattern Anal. Mach. Intell., to be published.

[28] Q.Wang, J. Gao, andY.Yuan, ‘‘Embedding structured contour and location
prior in siamesed fully convolutional networks for road detection,’’ IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 230–241, Jan. 2018.

[29] I. Melekhov, J. Kannala, and E. Rahtu, ‘‘Siamese network features for
imagematching,’’ in Proc. Int. Conf. Pattern Recognit., 2017, pp. 378–383.

[30] C.-H. Shih, B.-C. Yan, S.-H. Liu, and B. Chen, ‘‘Investigating Siamese
LSTM networks for text categorization,’’ in Proc. Asia–Pacific Signal Inf.
Process. Assoc. Summit Conf., 2018, pp. 641–646.

[31] D. Gray, D. Bowes, N. Davey, B. Christianson, and Y. Sun, ‘‘Reflections
on the NASAMDP data sets,’’ IET Softw., vol. 6, no. 6, pp. 549–558, 2012.

[32] M. Shepperd, Q. Song, Z. Sun, and C. Mair, ‘‘Data quality: Some com-
ments on the NASA software defect datasets,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 9, pp. 1208–1215, Sep. 2013.

[33] S. Khan and T. Yairi, ‘‘A review on the application of deep learning in
system health management,’’ Mech. Syst. Signal Process., vol. 107, no. 1,
pp. 241–265, 2018.

[34] C.-L. Zhang, J.-H. Luo, X.-S. Wei, and J. Wu, ‘‘In defense of fully con-
nected layers in visual representation transfer,’’ in Proc. Adv. Multimedia
Inf. Process. (PCM), 2017, vol. 36, no. 1007, pp. 807–817.

[35] H. Jindal, S. S. Kasana, and S. Saxena, ‘‘Underwater pipelines panoramic
image transmission and refinement using acoustic sensors,’’ Int. J.Wavelets
Multiresolution Inf. Process., vol. 16, no. 3, pp. 13–50, 2017.

[36] R. Shatnawi, ‘‘The application of ROC analysis in threshold identification,
data imbalance and metrics selection for software fault prediction,’’ Innov.
Syst. Softw. Eng., vol. 13, nos. 2–3, pp. 201–217, 2017.

[37] S. Liu, J. Zhang, Y. Xiang, and W. Zhou, ‘‘Fuzzy-based information
decomposition for incomplete and imbalanced data learning,’’ IEEE Trans.
Fuzzy Syst., vol. 25, no. 6, pp. 1476–1490, Dec. 2017.

[38] C.-S. Jung, M.-Y. Kim, and H.-G. Kang, ‘‘Normalized minimum-
redundancy and maximum-relevancy based feature selection for speaker
verification systems,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., Apr. 2009, pp. 4549–4552.

[39] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, ‘‘A study of the
behavior of several methods for balancing machine learning training data,’’
ACM SIGKDD Explor. Newslett., vol. 6, no. 1, pp. 20–29, 2004.

[40] J. Mueller and A. Thyagarajan, ‘‘Siamese recurrent architectures for learn-
ing sentence similarity,’’ in Proc. 30th AAAI Conf. Artif. Intell., 2016,
pp. 2786–2792.

[41] Y. Lecun and F. J. Huang, ‘‘Loss functions for discriminative training of
energy-based models,’’ in Proc. 10th Int. Workshop Artif. Intell. Statist.,
2005, pp. 1–8.

[42] S. Chopra, R. Hadsell, and Y. LeCun, ‘‘Learning a similarity metric
discriminatively, with application to face verification,’’ in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2005,
pp. 539–546.

[43] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
Comput. Sci., pp. 1–15, Dec. 2014.

[44] M. Shepperd, D. Bowes, and T. Hall, ‘‘Researcher bias: The use of machine
learning in software defect prediction,’’ IEEE Trans. Softw. Eng., vol. 40,
no. 6, pp. 603–616, Jun. 2014.

[45] C. Manjula and L. Florence, ‘‘Deep neural network based hybrid approach
for software defect prediction using software metrics,’’ Cluster Comput.,
vol. 3, pp. 1–17, Jan. 2018.

[46] H. K. Dam et al. (Feb. 2018). ‘‘A deep tree-based model for software defect
prediction.’’ [Online]. Available: https://arxiv.org/abs/1802.00921

[47] G. Lu, Z. Lie, and L. Hang, ‘‘Deep belief network software defect predic-
tion model,’’ Comput. Sci., vol. 44, no. 4, pp. 229–233, 2017.

[48] R. S. Wahono and N. Suryana, ‘‘Combining particle swarm optimization
based feature selection and bagging technique for software defect predic-
tion,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 7, no. 7, pp. 153–166, 2013.

7676 VOLUME 7, 2019

L. Zhao et al.: SDNN for SDP With Small Data

[49] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[50] V. B. Kampenes, T. Dybå, J. E. Hannay, andD. I. K. Sjøberg, ‘‘A systematic
review of effect size in software engineering experiments,’’ Inf. Softw.
Technol., vol. 49, nos. 11–12, pp. 1073–1086, 2007.

[51] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[52] J. Forkman, ‘‘Estimator and tests for common coefficients of variation in
normal distributions,’’ Commun. Statist.-Theory Methods, vol. 38, no. 2,
pp. 233–251, 2009.

[53] C. Tantithamthavorn, S. Mcintosh, A. E. Hassan, and K. Matsumoto,
‘‘Automated parameter optimization of classification techniques for defect
prediction models,’’ in Proc. 38th Int. Conf. Softw. Eng. (ICSE), 2016,
pp. 321–332.

LINCHANG ZHAO received the B.S. degree
from the College of Computer Science, Northeast
PetroleumUniversity, Daqing, China, in 2013, and
the master’s degree from the School of Mathe-
matics and Statistics, Qiannan Normal College for
Nationalities, Duyun, China, in 2017. He is cur-
rently pursuing the Ph.D. degree with the College
of Computer Science, Chongqing University.

His research interests include pattern recogni-
tion, computer vision, machine learning, and deep

learning. He is a Student Member of the IEEE.

ZHAOWEI SHANG received the Ph.D. degree
in electronics information from Xi’an Jiao Uni-
versity, in 2005, and the Postdoctoral station
in computer science from Chongqing University,
China, in 2010. He is currently a Professor with
the Department of Computer Science, Chongqing
University, and a Visiting Research Fellow with
the Faculty of Science and Technology, University
of Macau.

He has published extensively in the IEEE
TRANSACTIONS ON IMAGE PROCESSING, Pattern Recognition, and Neurocomput-
ing. His research interests include pattern recognition, image processing, and
machine learning. He is a member of the IEEE.

LING ZHAO received the B.S. degree from the
College of Materials Science and Technology,
Nanjing University of Aeronautics and Astro-
nautics, Nanjing, China, in 2005, and the mas-
ter’s degree from the School of Management,
Fudan University, Shanghai, China, in 2008. He
is currently the Manager of the United Imaging
(Guizhou) Healthcare Co., Ltd. His research inter-
ests include data mining, Bigdata analyzing, and
machine learning. He is a member of the IEEE.

ANYONG QIN received the B.S. degree in
information and computational science from
ChongqingUniversity, Chongqing, China, in 2012,
where he is currently pursuing the Ph.D. degree in
computer science.

His research interests include pattern recogni-
tion, image processing, hyperspectral images, and
machine learning. He is a Student Member of the
IEEE.

YUAN YAN TANG (F’04) received the B.Sc.
degree in electrical and computer engineering
from Chongqing University, Chongqing, China,
in 1966, the M.Eng. degree in electrical engi-
neering from the Beijing Institute of Posts and
Telecommunications, Beijing, China, in 1981, and
the Ph.D. degree in computer science from Con-
cordia University,Montreal, QC, Canada, in 1990.

He is currently a Chair Professor with the Fac-
ulty of Science and Technology, University of

Macau, Macau, China, and a Professor/Adjunct Professor/Honorary Pro-
fessor with several institutes, including Chongqing University, Concordia
University, andHongKong Baptist University, HongKong. He has published
over 400 academic papers and has authored/co-authored more than 25 mono-
graphs/books/book chapters. His current research interests include wavelets,
pattern recognition, and image processing.

Dr. Tang is a Fellow of IAPR.He is the Founder and the Chair of the Pattern
Recognition Committee in the IEEE International Conference on Systems,
Man, and Cybernetics. He has served as the general chair, the program chair,
and a committee member for several international conferences. He is the
Founder and the General Chair of the series International Conferences on
Wavelets Analysis and Pattern Recognition. He is the Founder and the Chair
of the Macau Branch of International Associate of Pattern Recognition. He
is the Founder and Editor-in-Chief of the International Journal on Wavelets,
Multiresolution, and Information Processing and an associate editor of sev-
eral international journals.

VOLUME 7, 2019 7677

	INTRODUCTION
	RELATED WORK
	SOFTWARE DEFECT PREDICTION
	FEW-SHOT LEARNING
	SIAMESE NETWORKS

	METHODOLOGY
	OVERALL ARCHITECTURE
	DATA PREPROCESSING
	DELETION OF REPEATED ENTITIES
	REPLACEMENT OF MISSING VALUES
	DATA NORMALIZATION
	DATA OVERSAMPLING

	MODEL BUILDING PHASE
	THE SDNN MODEL
	METERING FUNCTION OF THE SDNN
	EUCLIDEAN DISTANCE
	SIMILARITY METRIC

	MODEL TRAINING PHASE
	CONTRAST LOSS FUNCTION USED FOR TRAINING
	PARAMETER FINE-TUNING

	EXPERIMENTS AND RESULTS
	DATASETS
	PERFORMANCE INDEXES
	RESEARCH PROGRAMME
	RQ1:CAN THE SDNN METHOD PERFORM BETTER THAN OTHER METHODS?
	RQ2:HOW MUCH TIME DOES IT TAKE FOR USING SDNN?
	RQ3:DOSE THE UNBALANCED RATE AFFECT THE PERFORMANCE OF SDNN?

	DISCUSSION
	EFFECTIVE ANALYSIS OF SDNN MODEL
	VALIDITY THREATS

	CONCLUSION
	REFERENCES
	Biographies
	LINCHANG ZHAO
	ZHAOWEI SHANG
	LING ZHAO
	ANYONG QIN
	YUAN YAN TANG

