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ABSTRACT Data reduction has become greatly significant prior to applying instance-based machine
learning algorithms in the Big Data era. Data reduction is used to reduce the size of data sets while
retaining representative data. Existing algorithms, however, suffer from heavy computational cost and in
having tradeoff in size reduction rate and learning accuracy. In this paper, we propose a fast data reduction
approach by using granular computing to label important instances, i.e., instances with higher contributions
to the learning task. The original data set is first granulated into K granules by applying K -means to a
mapped lower-dimension space. Then, the importance of each instance in every granule is labeled based on
its Hausdorff distance. Those instances whose importance values are lower than an experimentally tuned
threshold are eliminated. The presented algorithm is applied to kNN classification tasks with eighteen
different sizes of data sets from the UCI repository, and its outstanding performance in classification
accuracy, size reduction rate, and runtime is illustrated by comparing with seven data reduction methods.
The experimental results demonstrate that the proposed algorithm can greatly reduce the computational
cost and achieve a higher classification accuracy when the reduction size is the same for all the compared
algorithms.

INDEX TERMS Data reduction, granular computing, data importance label, kNN.

I. INTRODUCTION
With the explosive growth of data volume in industry and
scientific domains, Big Data has attracted great attention
from various applications due to its enormous potential value.
However, the processing capacity of popular machine learn-
ing is struggling under this growth [1], [2]. Besides, stor-
ing large scale of instances can result in a great memory
cost and a slow execution speed for instance-based learning
algorithms. One alternative for tackling the problem is to
perform data reduction as a preprocessing step of machine
learning [3]. Data reduction is to remove the unimportant
instances, e.g., noisy, redundant or less related ones, from the
original datasets without greatly deteriorating the learners’
performance. It is expected to enhance the performance of
instance-based learning algorithms with smaller computa-
tional and storage cost [4].

Similar to the feature selection [5], [6], data reduction
methods can be divided into wrapper and filter [7]. Awrapper
method is usually carried out for classification tasks and
performed based on the classification accuracy, i.e., instances
with less contribution to the accuracy will be removed from

the initial training set [8]. The filter algorithms of data
reduction use a defined selection metric, e.g., clustering cen-
ters or marginal points of a cluster measured by distances
variations before and after instances selection, for data reduc-
tion rather than the classification results. These existing data
reduction methods can reduce the data size and improve the
efficiency in data storing and mining, however, it is difficult
to reach a tradeoff among classification accuracy, reduction
ratio and lower computational cost. It is expected to make
a great improvement by combining the wrapper and filter,
i.e., both accuracy and filter distance metrics are concerned
to label the important instances. As for the distance calcu-
lation, in the traditional filter methods, the instances of an
entire dataset are usually compared and which will bring
great computational cost when the size of a dataset is great.
A ‘‘divide and conquer’’ strategy should be more efficient in
such scenarios.

As is well known, in the field of feature selection, Granular
Computing (GrC) methods have been successfully devel-
oped to obtain the important features based on the definition
of information granules [9]–[11]. Its basic idea is to solve
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problems at different levels of granularity, and establish an
effective and user-centric concept to simplify people’s cog-
nition of the physical world. Such methods have good flex-
ibility [12], and can improve efficiency and reduce costs.
As we addressed before, the core of data reduction is to
find the important or representative data from the origi-
nal datasets with an acceptable performance maintaining on
the instance-based learning and relative lower computational
cost [13], [14]. However, Grc has not been sufficiently devel-
oped in the field of data reduction. It is feasible to introduce
GrC into the data reduction by defining instances importance
based on the data granules instead of traditional wrapper and
filter who must be carried out by first applying classifica-
tion on the entire dataset. Accordingly, the computational
cost can be reduced. As in the filter-based methods, calcu-
lation on distances usually cannot be avoided in defining
important instances, e.g., instances on the margin are more
important than those in the internal of a class. Therefore,
appropriate distance metric must be well developed in the
data reduction based on the GrC granules. The Hausdorff
distance defined for measuring the similarity between two
datasets is the best choice for comparing the granules
here.

Motivated by this, we here present a fast data reduction
method, named as FDR-GIIL (Fast Data Reduction with
Granulation based Instances Importance Labeling). It looks
for important instances based on GrC and the Hausdorff
distance on condition of less deteriorating the learner’s per-
formance. The GrC and K -means are first conducted to
get the granules with different granularities, i.e., the entire
dataset to be reduced is separated into K clusters. And
then, the Hausdorff distance is adopted to label the impor-
tance of instances in each granule. Instances with smaller
contributions are defined as unimportant ones and removed
from its granule. This process is repeated until the reduc-
tion ratio is reached. Compared with traditional instance
selection whose instances are deleted or selected by com-
paring all the instances in the entire datasets, the proposed
FDR-GIIL algorithm adopts the ‘‘divide and conquer’’ strat-
egy in this paper, which is expected to greatly reduce the
computational cost and improve the performance of data
reduction.

To summarize, our main contributions are as follows:
(1) An improved GrC with lower computational cost is pre-
sented and applied to obtain the granules for first dividing
the reduced datasets with different granularities. (2) The
Hausdoff distance is introduced here to calculate the similar-
ity between two granules with and without deleting instances,
larger Hausdorff distance means greater importance of the
selected instance to be deleted. (3) Besides, a crowd-
ing degree is defined for further selecting instances with
same or similar Hausdoff distances. A data reduction metric
is presented based on the Hausdoff distance and crowding
degree. (4) The extensive experiments on Benchmark datasets
demonstrate that the computational cost is greatly reduced
with even improving the classification accuracy.

The rest of the paper is organized as follows. In Section 2,
a survey of data reduction algorithms is presented. The pro-
posed algorithm and related theoretical analysis, including
data granulating and definition of data importance are pre-
sented in Section 3. The experiments and results are demon-
strated and discussed in Section 4. The conclusions are finally
followed.

II. RELATED WORK
A. WRAPPER ALGORITHMS
Wrapper algorithms are usually developed for classifica-
tion problems, and the basis metric in most wrapper algo-
rithms is the variation of the classification accuracy before
and after data reduction. The Condensed Nearest Neigh-
bor (CNN) proposed by Hart [15] is powerful for select-
ing instances by using the k-nearest neighbor. CNN picked
out a consistent subset, i.e., a subset can correctly classify
all instances from the original dataset, however, it cannot
promise to find the smallest consistent subset and its per-
formance is data sequence-dependent. Then some improved
CNN algorithmswere developed, e.g., generalized condensed
nearest neighbor (GCNN) which selected an instance when
differences between the instance distances to its nearest
neighbors and its nearest enemies are higher than a given
threshold [16]. Wilson [17] proposed edited nearest neigh-
bor ENN) algorithm to deal with noisy instances by removing
an instance p from the original dataset when the class of p
was not consistent with the majority of its k nearest neigh-
bors. In [18], the decremental reduction optimization pro-
cedures algorithms (DROPs) including DROP1, DROP2,. . . ,
DROP5 were further proposed by Wilson. The DROPs
deleted the instance p when the instances in the reduced
set can still be correctly classified without p. The provided
experiments showed that the performance of DROP3 and
DROP5 were optimal in the DROPs and also outperformed
ENN and CNN. The local set-based smoother (LSSm) was
proposed for removing the instances with a harmfulness
greater than their usefulness [19]. The experiment result was
excellent in accuracy, but lower in reduction rate. The com-
bination of feature extraction and instance selection could
reduce the large amount of computational time in training
the classifiers. In [20], the Cuttlefish optimization algorithm
was used for instance selection, while principal component
analysis was used for feature extraction in [20]. The optimal
extracted subset of data points and reduced feature space
provided promising detection rate, accuracy rate, however,
the fitness calculation was time consuming.

B. FILTER ALGORITHMS
The filter algorithms of data reduction use a defined selection
function for data reduction rather than the classification
results. Lumini and Nanni [21] proposed a data reduction
algorithm based on clustering (CLU). The algorithm divided
the original dataset into clusters, then selected the center point
of each cluster as the representative instance, and obtained
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the final reduction dataset. The Prototype Selection Based
Clustering (PSC) algorithm in [22] differed from the CLU
algorithm in that the PSC deleted some internal instances
in the class and retained class boundary instances. PSC
retained not only the border instances but also some internal
ones. Vallejo and Ortega [23] proposed an instance selec-
tion based on ranking (ISR). The ISR algorithm calculated
the correlation of the instances in the training set, and then
processed the instances in descending order according to
their correlation. In [24], instance rank based borders for
instance selection (IRB) algorithm was proposed. The algo-
rithm used the ENN to denoise the dataset, and then sorted
those instances locating on the classifier’s boundary accord-
ing to the defined sorting function. At the same time, the intra-
class data was retained according to a certain proportion, and
the reduced dataset was obtained. The experiments showed
that the method achieved a tradeoff between classification
accuracy and execution time, and had obvious advantages for
processing large-scale datasets. In [25], local density-based
instance selection (LDIS) was proposed. The algorithm eval-
uated the instances of each class separately and only kept the
densest instances in a given neighborhood. This ensured a
reasonably low time complexity.

The existing data reduction algorithms can reduce data
size either based on the iterated classification or by defining
instance selection functions, most of them are time con-
suming. For Big Data, such algorithms are difficult to be
performed. Therefore, developing fast data reduction method
is significant for keeping the pace of data increasing. Moti-
vated by these, a fast data reduction (FDR-GIIL) by labeling
important instances based on GrC and Hausdorff distance is
designed here for effectively finding useful data since GrC
has shown its power in feature selection.

III. IMPORTANT INSTANCES LABELING AND SELECTION
The ‘‘division and conquer’’ strategy is a good choice for
large size data reduction, i.e., the dataset is first separated
into smaller ones, and the data reduction is conducted in
the relatively smaller size space. The computational cost is
expected to be reduced with such a strategy. What’s more,
another purpose of our work is to give a more generalized
method for the data size reduction without considering any
priori information of the dataset (no matter for clustering,
classification or regression tasks). Therefore, the latent rela-
tionships or distributions of the instances should be first
discovered, and the important instances are then labeled and
selected in this paper.

A. DATA GRANULATION
The granular computing is adopted here to perform the divi-
sion due to its advantage in exploring the relationships among
data features. The computational cost of the granulating pro-
cess is expected to be greatly reduced for Big Data with large
number of features. Accordingly, we here present a mapping
based granulation, i.e., the instances with higher dimensional
features are first mapped into a lower dimensional feature

space and then granulated.
The dataset to be analyzed is denoted as X =

{x1, x2, . . . , xn}, where xi =
(
xi1 , xi2 , . . . , xic , yi

)
with xij

being the j-th (j = 1, 2, . . . , c) attribute value of the i-th (i =
1, 2, . . . , n) instance and yi being the decision attribute (class
label) of X. The mapping function defined in [26] is applied
here:

τ (xi) =

√√√√ c∑
j=1

x2ij (1)

Clearly, with such a mapping, the original instance xi with c-
dimension features is mapped into a one dimensional feature
space scaled by τ (xi). The scope of τ (xi) varies in the range
of [0, r], and

r =

√√√√ c∑
j=1

(
max
1≤i≤n

∣∣xij ∣∣)2

(2)

In the mapped space, we then can use the clustering methods
to fulfill the granulating according to the instances’ similar-
ities. Whether the mapping can well keep the similarities in
the mapped space as that in the initial one should be further
analyzed. Otherwise, the feasibility of the clustering based
granulating cannot be guaranteed.

For two instances xp and xq in the original dataset X their
distance dpq can be calculated as follows :

dpq =

√√√√ c∑
j=1

(
xpj − xqj

)
2

=

√√√√ c∑
j=1

x2pj +
c∑
j=1

x2qj − 2
c∑
j=1

xpj · xqj (3)

With the mapping, xp and xq are mapped to τ (xp) and τ (xq).
The distance between τ (xp) and τ (xq) is

d ′pq = τ (xp)− τ (xq)

=

√√√√ c∑
j=1

x2pj −

√√√√ c∑
j=1

x2qj (4)

The difference between dpq and d ′pq can be obtained as in
Eq. (5):

dpq − d ′pq =
2τ (xp)τ (xq)(1− cosθ )

dpq + d ′pq
(5)

where θ represents the angle between xp and xq in the initial
dataset space. It can be seen from Eq. (5) that the distance
difference of two instances in the different spaces is slight
unless these two instances are quite different. In such sce-
nario, they actually belong to two distinct clusters, and can
also be correctly clustered in the mapped space.

Accordingly, the mapping can well keep the similarity
measure and the granulating in the space can be performed by
using a clustering method. Here, the K -means clustering [28]
is applied to separate the space into K granules due to its
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simplicity and lower computational cost. The procedure of
K -means can be found in [28].

In summary, the granulation here is divided into two
steps: (1) Granular mapping: mapping instances with
high-dimension features into one-dimension granulation
space using the granular mapping function refer to Eq. (1).
(2) Clustering granulating: the data in the granulation space
are clustered into K granules by using K -means clustering.
In this granulating procedure, three advantages can be

achieved: (1) Separating a large scale dataset into K smaller
ones without greatly deteriorating the original distributions
due to the granulating operators. (2) Reducing the amount
of data. From Eq. (1), it can be discovered that points on a
sphere or a circle will be mapped into one point in the gran-
ulation space. Therefore, such points are naturally reduced.
(3) Benefiting for reducing the calculation complexity due to
the mapping and granulating, i.e., the computational cost of
K -means in the granulation space will be greatly decreased
compared with that in the initial one. Furthermore, within
the smaller granules, the instance importance labeling can
also be time saving. Therefore, the computational cost can
be reduced comparing with non-granulating.

B. IMPORTANT INSTANCES LABELING
If the similarity of the dataset X and X/xi (instance xi is
removed fromX ) is high enough, it is reasonable to conclude
that the instance xi is unimportant. A similarity metric is
important for implementing this observation. In this paper,
the Hausdorff distance [28] presented to measure how far
two subsets of a metric space are from each other is chosen
to measure the similarity of two datasets. For improving the
computational efficient, the similarity of XK and XK/xi of
each granule XK obtained in subsection III.A is calculated to
discover the important instances of this granule. And the data
size can be reduced by removing those unimportant instances.

Given two compared datasets X and X/xi, their Hausdorff
distance is calculated according to the following equations:

H (X,X/xi) = max(h(X,X/xi), h(X/xi,X)) (6)

h(X,X/xi) = maxmin
xp∈X,xq∈X/xi

∥∥xp − xq
∥∥ (7)

h(X/xi,X) = maxmin
xp∈X/xi,xq∈X

∥∥xp − xq
∥∥ (8)

Where
∥∥xp − xq

∥∥ is the distance norm between two vectors
xp and xq, h(X,X/xi) represents the directional Hausdorff
distance from granuleX toX/xi, and h(X/xi,X) is the inverse
Hausdorff distance from granuleX/xi toX. The more similar
X andX/xi are, the smaller the Hausdorff distance betweenX
and X/xi is. Motivated by this, we here present the following
method to label the importance of instances.

For an randomly selected instance xi, supposing it is
removed from the granulated dataset X, and we can have
X/xi, the importance of xi is defined as follows :

sig(xi) = H (X,X/xi) (9)

If two instances in the dataset are closer or similar, the Haus-

dorff distance between X and X/xi is small, i.e., the removed
instance xi has smaller influence on the distributions of X,
indicating that the contour features of the original dataset
X can be well maintained after deleting the xi, thus the
importance of xi is small. Conversely, the importance of the
reduced instance is larger. Therefore, the Hausdorff distance
is feasible for labeling the importance of the instances.

It seems that the calculation of H (X,X/xi) is time con-
suming since all instances should be compared according
to Eq. (6). In fact, after mapping and granulation, the cal-
culation cost is greatly reduced when labeling data impor-
tance. For our importance labeling, we only need to calculate∑K

g=1
1
2ng

(
ng − 1

)
elements (ng is the number of instances

in the g-th granule) for obtaining the distance of each pair
of instances and get a symmetric distance matrix with zero
diagonal of the dataset X. Then, the minimum value of col-
umn (row) i is the importance of xi. It is clear that such a
labeling is obtained without any clustering or classification
based iteration, therefore, the computational cost is further
reduced.

Those instances whose importance are smaller than a given
threshold µ will be removed from the original dataset, and
we save these instances to be deleted in set Xµ. It is possible
that more than one instances may have the same importance
and can all be removed. To avoid such a case, a crowding
degree is further used here to filter out more crowded ones
from the same important instances. The crowding degree is
defined in Eq. (10):

cd (xi) =
1∑

xj∈Xµ

∥∥xi − xj
∥∥ , Xµ = {xi |sig(xi) ≤ µ } (10)

The larger value of cd(xi) indicates that many instances inXµ
are very closer to xi and xi should be deleted.
An example of importance labeling and instances remov-

ing of X = {x1, x2, x3, x4} is shown in Fig. 1 (x1(1, 2),
x2(1.5, 2), x3(1.5, 2.5) and x4(2, 0.5)). The data importance
and its crowding degree are labeled beside each point of X
in Fig.1. When the data importance threshold µ is set in the
range of (0.5, 1.581), x1, x2 and x3 will be discarded at the
same time if the crowding degree is ignored, which will lead

FIGURE 1. Instance importance labeling of X =
{
x1, x2, x3, x4

}
.
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Algorithm 1 Fast Data Reduction With Granulation Based
Instances Importance Labeling (FDR-GIIL)
Input: the original dataset X.
Output: the reduced datdaset X′.
1: Normalize X, and map it into the granulation space,

denoted as GX with Eq.(1).
2: Use K -Means to granulate the τ (xi) in the granulation

space GX and obtain K granules
{
X1,X2, . . . ,XK

}
.

3: Calculate the importance of τ (xi) based on the granule
Xg (g = 1, 2, . . . ,K ) and Xg′

= Xg
− {τ (xi)} according

to Eq. (9).
4: Deduplicate the instances inX that mapped into one τ (xi)

(instances distributed on a circle or a sphere).
5: Judgewhether the data importance of τ (xi) is greater than

the thresholdµ, if yes, execute step (6), otherwise τ (xi) ∈
Xµ and go to step(7).

6: Retain the instances.
7: Calculate the crowding degree of instances with the same

data importance in Xµ, and delete the instances with
larger crowding degree from Xµ.

8: Count the ratio of reduction.
9: Output X′ until the ratio meets the requirment.

to an obvious distribution change inX. When considering the
crowding, x2 with larger crowding degree is first removed
from X, then x1 is removed if necessary, until the data reduc-
tion ratio is satisfied.

C. PSEUDO OF THE PROPOSED ALGORITHM
IV. EXPERIMENTS
A. DATASETS
Eighteen datasets selected from the UCI Repository [29] with
different sizes are reduced to demonstrate the effectiveness
of the proposed algorithm. Among these datasets, there are
eight small and medium ones including five Numeric (Glass,
Iris, Liver, Vehicle, Wine) and three Mixed (Echocardio-
gram, Hepatitis, Zoo) datasets, and the specific attributes are
listed in TABLE 1. The other Ten large datasets including
four Numeric (Segmentation, Magic, Letter, Shuttle) and six
Mixed (Chess, Poker 90k, Covertype, Census Income, Poker
350k, KDD Cup 800k) datasets are chosen and shown in
TABLE 2.

TABLE 1. Attributes of small and medium datasets.

TABLE 2. Attributes of large datasets.

Four groups of experiments are conducted: (1) effective-
ness of mapping-based granulation: the K -means cluster-
ing differences before and after mapping are compared to
demonstrate the corresponding performance, (2) visualizing
the data reduction to intuitively illustrate the performance of
the presented algorithm, (3) experimental results on small
and medium datasets and (4) experimental results on large
datasets. The state-of-the-art data reductionmethods are com-
pared here.

B. PARAMETER SETTINGS
Three parameters are required for the proposed FDR-GIIL
algorithms, that is, the number of granulesK , data importance
threshold µ and the reduction ratio. In this paper, K granules
are obtained by K -means clustering, and K is set as the
number of categories in the original dataset. In order to keep
the same reduction ratio with other compared algorithms,
the reduction ratio of each dataset is maintained at around
59% in this paper. Data importance threshold determines the
reduction ratio of datasets. We here perform a series of exper-
iments on each dataset to construct cubic spline interpolation
function between data importance and data reduction ratio.
Therefore, data importance can be estimated according to
specific reduction ratio.

FIGURE 2. The approximated curve between data importance threshold
and data reduction ratio of Iris.

An example of data importance threshold determining
is presented as follows. The relationship between the data
importance threshold and data reduction ratio of Iris is
approximated by a spline interpolation and the curve is shown
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in Fig.2. Given the data reduction rate 59% of Iris, data
importance can be determined as 4.06× 10−3.
Moreover, in order to validate the efficiency of FDR-GIIL

algorithm, two indicators are used in the experiments:
relative classification accuracy and the algorithm runtime
(in seconds).

The relative classification accuracy demonstrates the abil-
ity of the data reduction algorithms to maintain the classifi-
cation performance of the datasets. It indicates that the data
reduction algorithm can improve the classification ability of
the dataset if relative classification accuracy is greater than
0. The runtime of the algorithm can reflect the efficiency of
the algorithm reduction. A smaller value indicates a smaller
computational cost of the data reduction algorithm.

C. EFFECTIVENESS OF MAPPING-BASED
DATA GRANULATION
The purpose of mapping-based granulation is to reduce the
computational cost with possibly maintaining the distribution
of the instances of the original dataset. To show the variations
on the instances’ distributions of the mapped granules and the
original datasets, the Iris (sepal length, petal length) is used to
perform the experiments. The original dataset and the dataset
after granular mapping are respectively performed to obtain
K (K=3) granule sets by clustering granulation. Fig.3 shows
the instances distributions of the original dataset, the results
of clustering on the original dataset and the mapping based
granulated dataset are shown in Fig.4 and Fig.5, respectively.

FIGURE 3. The class distribution of original dataset.

As can be seen that the differences of clustering between
the original and the granulated dataset is small for the Iris
dataset (the eight points of clustering variations due to gran-
ular mapping are marked with small red circle in Fig.5 ).
Furthermore, an indicator Rand Index (RI) [28], [30] of clus-
tering on the granulatedmapping dataset is calculated accord-
ing to Eq. (11) to sufficiently and numerically demonstrate
the effectiveness of the granulation. Supposing that λ and λ∗

are the cluster labels of granular mapped dataset and origi-
nal dataset, respectively, n is the number of instances in X,
we pair the samples of X as (xp, xq), and define a = |SS|,
b = |DD|, where SS =

{
(xp, xq)|λp = λq, λ∗p = λ

∗
q, p < q

}
,

FIGURE 4. The clustering results on original dataset.

FIGURE 5. The clustering results on granular mapped dataset.

DD =
{
(xp, xq)|λp 6= λq, λ∗p 6= λ

∗
q, p < q

}
.

RI =
2(a+ b)
n(n− 1)

(11)

The larger the value of RI is, the smaller the variation of the
instances’ distribution is. The RI values for all the 18 com-
pared datasets are calculated and listed in TABLE 3 (small to
medium size datasets) and TABLE 4 (large scale datasets).

TABLE 3. The rand index (RI) of small and medium datasets after
granular mapping.

The following conclusions can be observed from
Figures 3 to 5, and TABLE 3 to 4: (1) The RI of Iris, Wine,
and Zoo is close to 1, indicating that the distribution of
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TABLE 4. The rand index (RI) of large datasets after granular mapping.

the datasets is well maintained after the granular mapping.
(2) The RI values of Glass, Hepatitis and Shuttle (large scale)
are relatively smaller, indicating that the original instances
distributions of these dataset may be changed by using the
mapping based granulation, however, such a change may be
helpful for improving the classification or analysis of the orig-
inal dataset, which can be further proved by the results shown
in TABLE 5 in that the classification accuracy is improved
after reducing number of instances of some granules. (3) For
the large scale datasets, the total distributions of the selected
datasets also can be well maintained, illustrating that the
presented granulation may be more beneficial to the Big Data
scenarios.

TABLE 5. Classification accuracy of small and medium datasets for
FDR-GIIL with kNN(k = 3).

In summary, the distributions or features of the most of the
selected datasets are well maintained by using the mapping
based granulation, and for those changed ones, the change
is helpful for removing some unimportant instances and
improve the classification accuracy (combining with the anal-
ysis of the results in TABLE 6 and 8).

D. VISUALIZATION OF DATA REDUCTION
For intuitively demonstrating the data reduction of the pro-
posed algorithm, the Iris is further used to visually show the
results of the data reduction. After data granulation of the Iris
(Sepal Length, Petal Length) in Section IV.C, the instance
importance is labeled in the granulation space, and the data
size is reduced based on the labeled importance. We here set
the removing threshold value asµ = 0.019, and reserve about

FIGURE 6. Result of data reduction for Iris.

half size of instances by further considering the crowding
degree. The experimental result is shown in Fig.6. The points
‘×’ in Fig.6 are the removed unimportant instances whose
importance labels are less than µ. The reduction rate is 46%
by further employing the crowding degree for those distances
with the same importance.

It can be seen from Fig.6 that the boundary points of each
class are well preserved, which is conducive to maintain the
classification performance of the original dataset. After data
reduction, kNN (k = 3) is used to classify the original and
reduced datasets respectively, and the classification accuracy
of the reduced dataset is 94.82% which is larger than that of
the original one 94.6%, indicating that the data reduction of
our algorithm is helpful for improving the classification by
removing unimportant instances.

E. EFFICIENCY OF DATA REDUCTION
Two groups of experiments are further conducted here by
comparing our proposed algorithm (FDR-GIIL) with other
popular data reduction methods on small-medium datasets
and large scale ones, respectively. In these experiments,
the compared algorithms usually remove 59% instances from
the original datasets, accordingly, we here also set the reduc-
tion rate as 59% for our method.

1) EXPERIMENTS ON SMALL AND MEDIUM DATASETS
The datasets with relatively small size are reduced and
then classified using kNN. (1) The classification accuracy
on the original datasets and the reduced ones by using
our FDR-GIIL are compared. In this experiment, we apply
10-fold cross validation over each dataset. The experimental
results are shown in TABLE 5.

The ‘Orig’ and ‘FDR-GIIL’ represent the kNN classi-
fication accuracy obtained on the original dataset and the
reduced ones respectively. ‘↑’ and ‘↓’ are labeled to illus-
trate the increase and decrease in the classification accuracy.
(2) Other seven data reduction methods, IRB, ISR-k-nn, ISR,
DROP3, DROP5, CLU, and PSC are further compared to
show the performance of the proposed algorithm in TABLE 6.
The reason of selecting these algorithms here is that IRB,
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TABLE 6. Relative classification accuracy of small and medium-sized datasets for the compared algorithms, using kNN(k=3).

ISR-k-nn and ISR are effective methods that achieve a bet-
ter tradeoff between the classification accuracy and reduc-
tion rate, the DROPs outperform other instance selection
algorithms in accuracy, and CLU and PSC are two of the
fastest instance selection algorithms. The relative variations
on the classification accuracy defined in Eq. (12) of each
algorithm on the original and reduced datasets are calculated
and recorded.

relativeaccuracy =
reducedacc− originalacc

originalacc
(12)

In Eq. (12), ‘originalacc’ and ‘reducedacc’ represent the
kNN classification accuracy of the original dataset and the
reduced dataset. If the relative classification accuracy is
greater than 0, it indicates that the data reduction is conducive
to improve the classification performance of the datasets, oth-
erwise, the instance reduction will reduce the classification
of the datasets. The classification variations of our algorithm
are listed in TABLE 5. The experimental results of all the
compared algorithms on the relative accuracy are given in
TABLE 6.

From TABLE 5, we can conclude that the classification
accuracy of five datasets among the eight ones are improved
by reducing the data size with the proposed algorithm, espe-
cially for the Glass, whose classification accuracy is greatly
enhanced even its instances distributions are changed by
granulation. The accuracy of Zoo is reduced after data reduc-
tion even its instances distributions are well maintained by
granulation. The results indicate that the granulation and
importance based data reduction is feasible but should be
finely designed.

For the compared algorithms, the non-parametric
Wilcoxon Signed test with a confidence level α = 0.05 is
conducted to show the statistical performance. The symbol
‘*’ is marked on the results if FDR-GIIL significantly outper-
forms the others. The highest relative classification accuracy
of each dataset is also bolded. From TABLE 6, it can be
observed that the relative classification accuracy obtained by
FDR-GIIL algorithm is higher than the compared algorithms.
The relative classification accuracy of IRB is lower than
FDR-GIIL, then followed byDROP3 andDROP5 algorithms.
The ISR-k-nn algorithm has the lowest relative classification
accuracy. To sum up, our proposed FDR-GIIL outperforms

TABLE 7. Classification accuracy of large datasets for FDR-GIIL with
kNN(k = 3).

the compared algorithms in most cases by improving the
classification accuracy.

2) EXPERIMENTS ON LARGE DATASETS
The similar experiments of absolute accuracy and rela-
tive accuracy variations on large scale datasets are further
conducted. Besides, the executed time of the compared
algorithms for the large scale datasets is added to show
the computational cost of the proposed algorithm. In this
section, we compare our approach with IRB since IRB has a
great compromise between runtime and accuracy. DROP3 is
selected due to its high classification accuracy. CLU and PSC
are also included because they are fast instance selection algo-
rithms. However, ISR is not included in this experiment due
to its high space requirements for obtaining the large datasets
ranking, it is unfeasible for large datasets. The corresponding
results are recorded in TABLE 7, 8 and 9.

It can be concluded from TABLE 7 that the absolute accu-
racy of eight datasets decreases by using our algorithm, and
that of the other two datasets (Chess and Census Income)
improves.

In TABLE 8, we show the number of instances and
attributes of each dataset. The ‘−’ sign indicates that
the execution time of the algorithm is more than 100 h
(360,000 seconds). The results show that DROP3 is the slow-
est algorithm. On the other hand, CLU and PSC execute
fast, but slower when the dataset is a mixed one or its size
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TABLE 8. Relative classification accuracy of large datasets for the comparison algorithm.

TABLE 9. Executing time of large datasets (seconds).

is greater than 58,000. The DROP3, CLU and PSC cannot
work on some datasets with big size due to their expensive
computational cost. IRB is feasible to reduce the large scale
dataset, but its runtime is far longer than our algorithm.
And the runtime of IRB is more than 100 h when dataset
size is 800,000. The computational cost of our algorithm is
reduced about half of the fastest runtime of the compared
algorithms. The execution time of our algorithm is much
smaller than the compared algorithms, the computational cost
of FDR-GIIL is further greatly reduced when the size of
the datasets increases, indicating that FDR-GIIL is fast for
dealing with large scale datasets as we addressed before.

The relative accuracy obtained by different data reduction
algorithms for the large datasets is shown in TABLE 8.
The average relative accuracy is also computed for each
algorithm. DROP3 obtains the second best relative accuracy
in average, but cannot work for the four largest datasets.
PSC and CLU are worse than the other algorithms, and
they are also unfeasible for the four largest datasets. The
non-parametric Wilcoxon Signed test with a confidence level
α = 0.05 is also used to evaluate the statistical significance
of FDR-GIIL, and the significant values are marked with ‘*’
in TABLE 8. It can be concluded that our algorithm outper-
forms the most compared algorithms in the relative accuracy,
i.e., the decreased absolute accuracy of the reduced datasets
of our algorithm is smaller than the compared ones; for some

datasets, e.g., Chess and Census Income, our algorithm has
a distinct improvement on the classification accuracy after
removing about 59% instances.

In addition, one large dataset is used to show the runtime
rising tendency of each algorithm with the growth of the data
size. The experiment is performed with the Covertype dataset
(54 features, 7 classes, 250,000 instances), and 10 training
sets are constructed (from 10,000 instances to 100,000 instac-
nes). The runtime results for the Covertype dataset are pre-
sented in TABLE 10 and Fig.7.

TABLE 10. Runtimes (sec) spent by each algorithm over different training
sets size from the covertype dataset.

From TABLE 10 and Fig.7, we can conclude that
DROP3 runtime grows the most, the runtime growth rates
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FIGURE 7. The runtime rising tendency of each algorithm with the growth
of the data size.

of CLU and PSC are similar to DROP3, and all of them are
unfeasible when the data size is larger than 40,000. As the
dataset size increases, the runtime of IRB is growing more
slowly than DROP3, CLU and PSC, but faster than our
algorithm. The proposed algorithm FDR-GIIL is clearly the
fastest data reduction algorithm.

To sum up, these experimental results show that the pro-
posed data reduction method outperforms the current popular
algorithms in smaller computational cost, and higher classi-
fication accuracy under the same reduction rate by using the
mapping based granulation and importance labeling.

V. CONCLUSIONS
Data reduction is important for instance based learning onBig
Data. Such reduction can enhance the efficiency of classifica-
tion and reduce the storage requirement. In this paper, a fast
data reduction with granulation based instances importance
labeling is proposed. First, we granulate the original dataset
based on a simple mapping and K -means, then label the
instance importance in each granule based on the calculation
of Hausdorff distance, and finally filter unimportant instances
according to the importance and crowding degree to reduce
the original data size. The superior performance of the pro-
posed algorithm in maintaining the instances distribution,
fast computing and keeping higher classification accuracy is
experimentally demonstrated by using it to 18 datasets. Espe-
cially, the proposed algorithm is outstanding for removing
unimportant instances of large scale datasets. In the future,
feature reductionwill be combinedwith the instance selection
for improving the efficiency of classification.
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