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ABSTRACT Harmful algae blooms are a growing global concern since they negatively affect the quality
of drinking water. The gold-standard process to identify and enumerate algae requires highly trained
professionals to manually observe algae under a microscope. Therefore, an automated approach to identify
and enumerate these micro-organisms is needed. This research investigates the feasibility of leveraging
machine learning and fluorescence-based spectral-morphological features to enable the identification of six
different algae types in an automated fashion. A custom multi-band fluorescence imaging microscope is
used to capture fluorescence data of water samples at six different excitation wavelengths ranging from
405 to 530 nm. Automated data processing and segmentation were performed on the captured data to
isolate different micro-organisms from the water sample. Different morphological and spectral fluorescence
features are then extracted from the isolated micro-organism imaging data and is used to train neural network
classification models. The experimental results using three different neural network classification models
(one trained on morphological features, one trained on fluorescence-based spectral features, and one trained
on fluorescence-based spectral-morphological features) showed that the use of either fluorescence-based
spectral features or fluorescence-based spectral-morphological features to train neural network classification
models led to statistically significant improvements in identification accuracy when compared to the use
of morphological features (with average identification accuracies of 95.7% ± 3.5% and 96.1% ± 1.5%,
respectively). These preliminary results are promising and illustrate the feasibility of leveraging machine
learning and fluorescence-based spectral-morphological features as a viable method for automated identifi-
cation of different algae types.

INDEX TERMS Artificial neural networks, feature extraction, fluorescence, image classification, machine
learning, multispectral imaging, optical microscopy, supervised learning, water conservation.

I. INTRODUCTION
Harmful algae blooms (HABs) are increasingly becoming a
major threat to our water bodies. An illustrative example of
the threat of HABs is an incident in the summer of 2011,
where Lake Erie experienced the largest harmful algae bloom
in recorded history [1] (see Fig. 1 for a Moderate Resolution
Imaging Spectroradiometer (MODIS) image captured by the
Aqua satellite of the incident). This bloom was primarily
Microcystis aeruginosa, one of the most lethal cyanobacteria

genera according to the Great Lakes Environmental Research
Laboratory [2].

For example, many types of cyanobacteria (a type of
algae) can be extremely dangerous for humans and ani-
mals. Swallowing Microcystis aeruginosa cyanobacteria can
have serious side effects such as abdominal pain, diarrhea,
vomiting, blistered mouths, dry coughs, and headaches [3].
In addition, Anabaena sp., another type of cyanobacte-
ria, can produce lethal neurotoxins called anatoxin-a which
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FIGURE 1. A MODIS image showing Lake Erie on October 9, 2011. The
bloom was primarily Microcystis Aeruginosa, according to the Great
Lakes Environmental Research Laboratory [2].

has been shown to cause death by progressive respiratory
paralysis [3].

In another illustrative example, a toxin produced byMicro-
cystis, called Microcystin-LR (MC-LR), is strictly regu-
lated by the World Health Organization (WHO) since it
can be lethal for humans [4]. In addition, the maximum
acceptable concentration (MAC) for the cyanobacterial toxin
Microcystin-LR (MC-LR) in drinking water is 0.0015 mg/L,
based on guidelines from the Government of Canada [5].
To better prevent toxin exposure during a bloom event, active
monitoring of water quality is critical as it enables the col-
lection of both temporal and spatial trends of bloom activ-
ity. These spatial-temporal trends can then be inspected and
analyzed via predictive analytic strategies, thus providing
key stakeholders with early warning signs that a bloom may
occur.

Commonly, the task of identification and enumeration of
algae in natural water is conducted at certificated laboratory
facilities, where highly-trained taxonomists perform man-
ual analysis on the water samples [6]. This time-consuming
process requires samples to be preserved, shipped, and then
inspected at the laboratory facilities with expensive labora-
tory equipment. As an alternative, in-situ monitoring devices
such as fluorometric meters have been used to detect specific
pigment levels, which can act as an indirect indicator for
the purpose of monitoring in practice. While this alternative
approach can be useful for rough assessments of algae dis-
tributions, it still requires further manual confirmation due to
the level of granularity in order to inform decision-makers
to take the necessary actions needed to minimize exposure
risk. Furthermore, a study presented by Culverhouse et al. [7]

show that human taxonomists have an identification accuracy
between 67% and 83%, depending on the taxonomist. It is
their conclusion is that the experts in the study are not unan-
imous in their identification, even when inspecting microor-
ganisms with very distinct morphology [7]–[10]. Therefore,
a method that could not only directly identity algae types in
an automated and cost effective manner is highly desired for
water industry.

In this study, an investigation is conducted on the feasi-
bility of leveraging machine learning and fluorescence-based
spectral-morphological features to enable the identification
of six different algae types in an automated fashion. More
specifically, this paper explores and investigates the efficacy
of a number of different morphological and spectral flu-
orescence features extracted from multi-band fluorescence
imaging data when used to train neural network classification
models designed for the purpose of identification of six algae
types in an automated manner. Artificial neural networks
have been shown to be an effective machine learning tool
to determine non-linear mappings from measured inputs to
a classification output [11]. Therefore, in this paper a feed-
forward neural network is used to explore whether it can
be used as a potential predictor of algae when trained using
fluorescence-based spectral-morphological features.

The paper is organized as follows. First, related work is
discussed in Section II. Second, the proposed methodology
for investigating the feasibility of automated identification
of algae types is presented in Section III. Third, the exper-
imental setup used in this study is presented in Section IV.
Fourth, experimental results are presented and discussed
in Section V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK
A number of computational techniques and methods have
been proposed for the purpose of automatically identification
of different algae types using imaging data. In the following
section, in chronological order, a summary of the major con-
tributions in the recent past in this area is presented.

In 2002, Walker et al. [12] leveraged fluorescence exci-
tation in their imaging protocol for automated identification
of Anabaena sp. andMicrocystis sp.. More specifically, their
protocol was able to achieve over 97% identification accu-
racy when looking for Anabaena sp. and Microcystis sp. in
natural populations found in Lake Biwa, Japan, by capturing
a single fluorescence image and a single brightfield image.
The authors claim that without the use of the fluorescence
component, the automated identification of microalgae in the
sediment saturated samples would be nearly impossible.

Similar results were found by Hence et al. [13]
in 2008 when they showed that by using epifluorescence
microscopy in combination with brightfield microscopy they
could correctly identify between 13 different phytoplankton
samples as either algae or non-algae . They accomplished this
by using three different filter sets to capture the fluorescence
data and built a hand-tuned classifier based on empirically
derived thresholds. However, the main drawback of both
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FIGURE 2. The proposed methodology of automated identification of different algae types can be broken into five main steps: First, a water sample
containing algae was imaged using a custom multi-band fluorescence imaging microscope (Section III-A). Next, this data is then processed using data
processing algorithms for background subtraction (Section III-B). Next, the processed data is segmented into background objects and micro-organism
objects, and then the individual algae are isolated (Section III-C). A number of morphological and spectral fluorescence features are then extracted
from the isolated micro-organism imaging data (Section III-D). Finally, these extracted features are used to train three different neural network models
designed for the purpose of identification of algae types given an isolated micro-organism.

these methods is they only tested classifiers with two classes,
either Anabaena sp. andMicrocystis sp. [12] or algae or non-
algae [13]. Furthermore, both of these methods leveraged
only a single fluorescence wavelength in combination with
the brightfield image.

In 2010, Hu et al. [14] utilized the fact that different
algae species have different ratios of antenna pigments,
which results in different fluorescence emission spectra.
More specifically, Hu et al. illuminated twenty different
algae from six algae divisions (Dinophyta, Bacillariophyta,
Chrysophyta, Cyanophyta, Cryptophyta, and Chlorophyta)
at four different wavelengths (440 nm, 470 nm, 530 nm,
and 580 nm), and then measured the emission spectra from
600 nm - 750 nm with a 5 nm resolution. By concatenating
these four emission spectra together and conducting a mul-
tivariate linear regression and weighted least-squares it was
found that each of the feature vectors from each phylum was
independent from the others. Although Hu et al. showed that
these feature vectors were independent, one major drawback
of the method Hu et al. proposed is that the relative ratios of
different algae can only be achieved at the phyla level when
mixing two species from different phyla.

More recently, Deglint et al. [15] conducted a comprehen-
sive spectral analysis of the fluorescence characteristics of
three algae species when excited at twelve discrete spectral
wavelengths. Their findings was that the fluorescence spectra
of the three algae species appear quite distinctive, and thus
the use ofmulti-band fluorescence imagingmicroscopy could
be a promising direction to explore. However, that study is
highly preliminary as the number of algae species studied was
very limited and a more comprehensive quantitative investi-
gation on how best to leverage such spectral information was
not well explored for the purpose of automated identification
of algae types.

Motivated by the findings of Deglint et al. [15], this
research aims to go a major step further by investigat-
ing and exploring the utilization of machine learning and
fluorescence-based spectral-morphological features derived

from multi-band fluorescence imaging microscopy data at
different excitation wavelengths (between 405 nm - 530 nm)
and a larger number of algae types (six different algae types
in total).

III. METHODOLOGY
The proposed methodology used in this study to explore the
feasibility of automated identification of different algae types
using machine learning and fluorescence-based spectral-
morphological features can be broken into five main steps
(see Fig. 2). First, a water sample containing algae was
imaged using a custom multi-band fluorescence imaging
microscope to capture fluorescence imaging data at a num-
ber of different excitation wavelengths (Section III-A).
The captured fluorescence imaging data are then processed
using data processing algorithms for background subtraction
(Section III-B). Next, the processed fluorescence imaging
data is first segmented into background objects and micro-
organism objects, and the individual algae are isolated and
extracted to produce isolated micro-organism imaging data
(Section III-C). A number of morphological and spectral flu-
orescence features are then extracted from the isolated micro-
organism imaging data, and used to train three different neural
network models designed for the purpose of identification of
algae types given an isolatedmicro-organism. (Section III-D).
More specifically, three different neural network models
trained: i) using only the fluorescence-based morphological
features (Model 1), ii) using only the fluorescence-based
spectral features (Model 2), and iii) using fluorescence-based
spectral-morphological features (Model 3).

A. DATA ACQUISITION
The custom multi-band fluorescence imaging microscope
used in this study for capturing fluorescence imaging data
is composed of five main elements, as seen in Fig. 3. First,
a light source at a particular excitation wavelength (Fig. 3A)
(blue arrow) is used to illuminate a water sample placed on a
blank slide (Fig. 3B), thus effectively exciting the algae in the
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FIGURE 3. Image acquisition is performed using a custom multi-band
fluorescence imaging microscope, which is composed of five main
elements: a light source at a particular excitation wavelength (A),
a water sample placed on a blank slide (B), a magnification lens (C),
a highpass filter (D), and a monochromatic sensor (E).

water sample. The algae in the water sample then fluoresce
and emit light at a lower energy (red arrows) and (Fig. 3C)
the emitted light is focused using an magnification lens. This
focused light passes through (Fig. 3D) a highpass filter before
hitting (Fig. 3E) a monochromatic sensor.

Given that multiple wavelengths can be used to excite the
algae, let λ1, λ2, to λm be the individual fluorescence images
captured using different excitation wavelengths of a given
water sample. Therefore, we define the entire multi-band
fluorescence image 3raw as

3raw =
[
λ1 λ2 · · · λi · · · λm

]
. (1)

B. DATA PROCESSING
To improve the quality of the captured fluorescence imag-
ing data obtained from the custom multi-band fluorescence
imagingmicroscope for subsequent micro-organism isolation
and neural network classification modeling steps, a set of
automated data processing algorithms are first performed
to compensate for some of the issues associated with the
captured data. First, to compensate for the fact that the illumi-
nation source in the imaging microscope does not illuminate
the imaging field of view in a perfectly homogenous manner,
iterative background subtraction is performed on each λi
in 3raw. This background subtraction can be expressed as,

3corrected = 3raw −3background (2)

where3corrected and3background denotes the illumination cor-
rected imaging data and the background image, respectively.
To approximate the background image 3background , a Gaus-
sian low-pass filter was first applied to3raw to perform noise
suppression. Next, to suppress features in 3raw at different
scales to better approximate 3background , an iterative multi-
scale morphological opening was performed on the Gaussian
low-pass filtered image, where the size of a disk structuring
element is changed at each iteration.

C. IMAGE SEGMENTATION AND MICRO-ORGANISM
EXTRACTION
Given the corrected multi-band fluorescence imaging data,
3corrected , the next step is to now segment the background
from the micro-organism objects, as well as isolate each
micro-organism in the captured data. This will allow features
to be extracted from each segmented organism, which is
vital when training and testing a given classification model.
To achieve segmentation of background from the micro-
organism objects in the captured data, a binary background-
foreground classifier was used to classify each pixel as either
the foreground Cf or the background Cb. The advantage of
using fluorescent images when segmenting is that there is a
large contrast between the foreground and the background,
allowing a single decision boundary to be found that can
separate the organisms from the background. To learn the
decision boundary, θ , of this binary background-foreground
classifier, the within class variance was minimized, as orig-
inally proposed by Otsu et al. [16]. Therefore, the binary
background-foreground classifier can be expressed as,

Li(x) =

{
Cf if fi(x) > θ

Cb otherwise
(3)

where fi(x) is the pixel intensity at pixel x for a given wave-
length image λi, where i ∈ [1,m].

Given the segmented foreground-background information,
a connected-connected analysis strategy was used to group
neighboring pixels in the foreground class together to isolate
individual micro-organisms. Each isolated micro-organism in
the water sample can be defined as φj, where j ∈ [1, n], where
n is the total number of micro-organisms in the segmented
image set 8.

D. FLUORESCENCE-DRIVEN SPECTRAL-MORPHOLOGICAL
FEATURE EXTRACTION AND NEURAL NETWORK
CLASSIFICATION MODELING
Having isolated the micro-organisms in the imaging data,
the goal is then to learn a classification model for identifying
between the different types of algae in an automated manner.
To achieve this, a set of fluorescence-based morphological
and spectral features for characterizing individual micro-
organisms were first extracted. The motivation for the pro-
posed fluorescence-based morphological and spectral feature
set is that, by leveraging not only features for characteriz-
ing the morphology of a micro-organism but also a greater
number of spectral features gained from the custom-built
fluorescence imaging microscope, a more complete profile
can be constructed around the micro-organism to enable
better discrimination between different types of algae than
can be achieved using previous approaches. In the proposed
fluorescence-based spectral-morphological feature set, five
morphological features were chosen, as proposed in [17],
which can be described as follows:
1) Area: The total number of pixels in an isolated micro-

organism.
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2) Convex Area: The total number of pixels of the convex
hull of an isolated micro-organism.

3) Eccentricity: The eccentricity of an isolated micro-
organism is the ratio of the distance between the foci of
the ellipse and its major axis, and is bounded between
zero and one.

4) Equivalent Diameter: The diameter of a circle with the
same area as an isolated micro-organism.

5) Extent: The ratio of pixels of an isolated micro-
organism to the bounding box that contains that isolated
micro-organism.

These five spatial features were chosen as a base represen-
tative set to describe the general shape and physical charac-
teristics of a specimen and are commonly used to describe
a given shape of an object in an image [18]. The area and
equivalent diameter both embed the relative scale of different
organisms since the relative scale between different species
can be useful when classifying different types of algae. The
convex area and extent are twomeasures how compact a given
organisms is. The eccentricity encapsulates both the major
and minor axis length and gives an idea of how elongated an
organism is, which is known to vary among different algae
types. The pose and orientation of a given algae were not
measured since the exact location and position of a given
sample does not affect its classification.

Furthermore, a set of spectral features for characterizing
the mean of the fluorescence intensities in an isolated micro-
organism are incorporated at each of the different captured
excitation wavelengths. In this study, since six different exci-
tation wavelengths are captured, the set of spectral features
can be described as follows:
1) Emission Signal 1: The mean fluorescence intensity for

an isolated micro-organism when excited at 405 nm.
2) Emission Signal 2: The mean fluorescence intensity for

an isolated micro-organism when excited at 420 nm.
3) Emission Signal 3: The mean fluorescence intensity for

an isolated micro-organism when excited at 450 nm.
4) Emission Signal 4: The mean fluorescence intensity for

an isolated micro-organism when excited at 470 nm.
5) Emission Signal 5: The mean fluorescence intensity for

an isolated micro-organism when excited at 500 nm.
6) Emission Signal 6: The mean fluorescence intensity for

an isolated micro-organism when excited at 530 nm.
These six different excitation wavelengths were chosen to

cover the part of the electro-magnetic visible spectrum which
consists of higher energy, since fluorescence is caused when
an electron is excited by high energy light and is then later
emitted by a lower energy photon. The six chosen high-power
LEDs cover the excitation wavelength of the major pigments
found in algae such as Chlorophyll a and Chlorophyll b as
well as β-Carotene, phycoerythrin and phycocyanin [6], [19].

Finally, given the fluorescence-based morphological and
spectral feature vectors extracted from the isolated microor-
ganisms, a classification model must be learned to predict
the associated output class (algae type) given on these input
feature vectors for the purpose of automated identification

of algae types. A number of machine learning approaches
can be leveraged to learn the relationship between the input
fluorescence-based morphological and spectral and the asso-
ciated algae type, ranging from support vector machines [20]
to decision trees [21] and Naive Bayes [22].
In this study, the classification models used are feedfor-

ward neural networks, or also known as multi-layer percep-
tron networks, which is an artificial neural network where
information moves from the input layer, through a given
amount of hidden layers, and then to the output layer.
An advantage in leveraging a feedforward neural network for
the classificationmodel is that a feedfoward neural network is
an universal approximator [23], [24]. As such, a feedforward
neural network has the ability to approximate any continuous
function with a finite number of neurons, and thus well-suited
for learning a good approximation of a function that maps
the fluorescence-based morphological and spectral features
to the corresponding algae type. Each layer of the network
consists of multiple neurons that take a weighted sum of the
inputs, xk and bias, b and transform them with a non-linear
activation function, f (z). This non-linear function takes as
input

z =
n∑

k=1

xkwk + b (4)

where wk is a given weight for n inputs [25].
Using these extracted morphological and spectral features

in tandem with a feedforward neural network, three dif-
ferent neural network classification models are trained and
evaluated.
• Model 1: Uses only the morphological features.
• Model 2: Uses only the spectral features.
• Model 3: Uses spectral-morphological features.
Model 1 is trained and tested using only the five extracted

morphological features. This model is used as a baseline
to determine how well classification can be achieved when
only looking at the size and shape characteristics of the
algae. Next, Model 2 is trained and tested using only the
six extracted spectral features. By only using these spec-
tral features a comparison of the relative performance of
Model 1 and Model 2 can be done. Finally, Model 3 is
trained and tested using all the fluorescence-based spectral-
morphological features. This model will closely mimic what
human taxonomists use when classifying different types of
algae since it incorporates both the color as well as the shape
and size of the algae.

IV. EXPERIMENTAL SETUP
To investigate and explore the feasibility of leverag-
ing machine learning and fluorescence-based spectral-
morphological features to enable the identification of differ-
ent algae types in an automated fashion, a number of experi-
ments were designed and tested. First, the algae types selected
for the proposed experiments are presented (Section IV-A)
and then a discussion of the hardware implementation to
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FIGURE 4. The six algae under investigation in this study are Scenedesmus obliquus (CPCC 005), Scenedesmus quadricauda (CPCC 158),
Ankistrodesmus falcatus (CPCC 366), Anabaena flos-aquae (CPCC 067), Pseudanabaena tremula (CPCC 471), and Euglena gracilis (CPCC 095). These
algae are from three different phyla classes (Chlorophyta, Cyanophyta, and Euglenozoa) and two samples are from the same genus (Scenedesmus).

collect data follows (Section IV-B). Finally, a full descrip-
tion of the three model architectures will be presented
(Section IV-C).

A. TYPES OF ALGAE
Six different types of algae from the Canadian Phycological
Culture Centre (CPCC) were chosen to explore the iden-
tification accuracy of the learned neural network models.
As seen in Fig. 4, these six algae types, with their respective
CPCC number, are broken into there respective phyla. These
algae types along with the corresponding number of micro-
organism samples for each type are described as follows:

I. Chlorophyta (green algae)
1. Scenedesmus obliquus (CPCC 005): 751 samples
2. Scenedesmus quadricauda (CPCC 158):

382 samples
3. Ankistrodesmus falcatus (CPCC 366): 500 samples

II. Cyanophyta (blue-green algae or cyanobacteria)
4. Anabaena flos-aquae (CPCC 067): 548 samples
5. Pseudanabaena tremula (CPCC 471): 299 samples

III. Euglenozoa
6. Euglena gracilis (CPCC 095): 131 samples

To build up this dataset, pure samples of each of the six
types of algae were imaged with the custom-built fluores-
cence imaging microscope, which will be described in the
next section. A cropped section of the brightfield images can
be seen in Fig. 4. This was captured by placing a white light
source under the microscope slide and capturing an image
with the custom-built fluorescence imaging microscope.
These samples were strategically chosen to be a broad

representation of algae, given that three different phyla
classes are present. However, special attention was given to
blue-green and green algae since they are the most com-
mon toxin producers in our waters. Furthermore, in the
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Cyanophyta class, two very similar filamentous algae were
chosen (Anabaena flos-aquae and Pseudanabaena tremula)
to see how far the proposed classification could differen-
tiate between two similar filamentous algae. Finally, two
species from the Scenedesmus genus were also chosen to
determine how well a neural network classifier model driven
by fluorescence-based spectral-morphological features can
identify between two algae with very similar morphology.

B. HARDWARE CONFIGURATION
The custom-built fluorescence imaging microscope contains
six high power LEDs that emits light at six different spectral
wavelengths (405 nm, 420 nm, 450 nm, 470 nm, 500 nm, and
530 nm). These high-powered LEDs are placed orthogonal to
a 3’’× 1’’ microscope slide which had a pure algae sample on
it as well as a standard cover slip. The excited algae samples
then emitted fluoresced light, which was focused by a 20×,
passing through a 600 nm highpass filter and onto a 4.1 MP
camera. The spatial resolution of this system is 1.2 µm /
pixel, as determined using the 1951 US Air Force (USAF)
glass slide resolution target. A sample image of each type of
algae fluorescing at each excitation wavelength can be seen
in Fig. 5. The value of having this spectral information comes
into play especially when the morphology between certain
algae types are very similar in nature, such as in Anabaena
flos-aquae (CPCC 067) and Pseudanabaena tremula
(CPCC 471).

C. MODEL ARCHITECTURES
As previously discussed in Section III-D, three neural net-
work classification models will be trained and tested to
explore their relative identification performance. The net-
work architecture used for the three neural network classifica-
tion models are based on a feedforward network architecture
and can be seen in Fig. 6. The number of input features of
this network is 5, 6, and 11, for Model 1, Model 2, and Model
3, respectively. Model 1 only uses 5 morphological features,
whileModel 2 uses 6 spectral features. Model three combines
both these morphological and spectral features together to
form a morphological-spectral feature set. The neural net-
work classification models each contain three hidden layers,
with the number of neurons at each layer being 12, 8, and
6, respectfully. This decrease in the amount of neurons as
the network continues to go deeper allows the input features
to the transformed into a better representation for improve
discrimination power between the different algae types. The
same neural network architecture was used in this study to
enable a consistent and fair comparison based purely on the
use of different sets of features (morphological features only
vs. spectral features only vs. combination of morphological
and spectral features), which is the main contribution of this
study. In the situation where different architectures are also
used along with different sets of features, it would be quite
difficult to identify whether changes in performance are due
to the use of different sets/combinations of features, or due to
the change in neural network architecture.

TABLE 1. The mean and standard deviation of the identification accuracy
using the test data across 20 test runs of Monte Carlo Cross Validation.
Model 1, trained using morphological features, had the lowest average
accuracy and the highest standard deviation. Model 2, trained using
spectral features, and Model 3 trained using morphological-spectral
features, achieved significantly higher average accuracies and lower
standard deviations.

In the network architecture design, the rectified linear
unit (ReLU) activation function was chosen for the network.
Finally, the neural network classification models contain a
softmax function, a normalized exponential function, which
is used to transform the output to sum to one tomimic a proba-
bility mass function. Therefore, the features of a given model
are directly fed into a given neural network model and are
combined in a linear fashion and then passed through a non-
linear activation function. The softmax layer normalises the
output so that the sum of outputs is equal to one, mimicking
a probability density function.

The neural network classification models were evaluated
by using 20 runs of Monte Carlo Cross Validation (MCCV),
where 70% of the data was randomly selected without
replacement for a given run of the cross validation to be the
training set. The remaining 30% of the input features were
used as the test data-set.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section the experimental results will be presented
(Section V-A) and discussed (Section V-B). Then future work
(Section V-C) will be presented.

A. EXPERIMENTAL RESULTS
The mean and standard deviation of identification accuracies
across the 20 test runs of Monte Carlo Cross Validation
can be seen in Table 1. A number of observations can be
made based on the identification accuracy results. First of
all, it was observed that Model 1, which utilizes only the
set of five morphological features had the lowest average
identification accuracy at 53.0%. Model 2, which leverages
the set of six fluorescence-based spectral features signifi-
cantly outperformed Model 1, with an average identification
accuracy of 95.7%. Finally, Model 3, which leverages the
combined fluorescence-basedmorphological-spectral feature
set also demonstrate a strong average identification accuracy
at 96.1%. Therefore, it can be shown that the utilization of
fluorescence-based spectral features is very important for the
automated identification of different algae types, and further
extends upon the observations made by Walker et al. [12]
regarding the necessity of spectral information. It can also
be observed that the standard deviation is significantly lower
for Model 2 compared to Model 1, which indicates that the
utilization of spectral features also provide more consistent
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FIGURE 5. Six types of algae from three phyla classes were imaged: Scenedesmus obliquus (CPCC 005), Scenedesmus quadricauda (CPCC 158),
Ankistrodesmus falcatus (CPCC 366), Anabaena flos-aquae (CPCC 067), Pseudanabaena tremula (CPCC 471), and Euglena gracilis (CPCC 095). Each algae
was excited at six different wavelengths (405 nm, 420 nm, 450 nm, 470 nm, 500 nm, and 530 nm) and the fluorescent signal was captured with a
monochrome sensor. Sample micro-organisms can be seen for each algae type at each excitation wavelength.

identification performance across different permutations of
samples, which is important for generalizability in real-world
scenarios. In addition, it can be observed that, when compar-
ing Model 2 andModel 3, the average identification accuracy
for Model 3 is increased compared to Model 2, as well as
had a lower standard deviation. What this means is that by
also leveraging morphological features, Model 3 can provide
consistently improved identification performance.

Since the increase in average identification accuracy in
Model 3 compared to Model 2 was relatively low, a pair-
wise t-test was run between all pairs of two models with
a 1% significance level, as seen in Table 2. As expected,
the pairwise t-test for Model 1 vs Model 2 as well as Model 1
vs Model 3 show that the improvements of Model 2 over
Model 1, as well as the improvements of Model 3 over Model
are both statistically significant in terms of identification
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TABLE 2. A pairwise t-test was run between all pairs of neural network
classification models with a 1% significance level.

FIGURE 6. A fully-connected feed-forward neural network architecture
was leveraged for all three neural network classification models. The
number of input features of this network is 5, 6, and 11, for Model 1,
Model 2, and Model 3, respectively. Model 1 only uses 5 morphological
features, while Model 2 uses 6 spectral features. Model three combines
both these morphological and spectral features together to form a
morphological-spectral feature set.

accuracy. However, it was also found that Model 2 and
Model 3 are do not show a statistically significant difference
in their identification accuracy. Therefore, based on these
results, it was observed that the set of fluorescence-based
spectral features leveraged in the study is the major contribu-
tor to improved identification accuracy performance.

To gain a deeper understanding of the identification error
associated with each neural network classification model,
the confusion matrix of the best performing run from each
20 Monte Carlo Cross Validation runs for Model 1, Model 2,
and Model 3 can be seen in Table 3, Table 4, and Table 5,
respectively. The confusion matrix is an accepted and com-
mon method of reporting multi-class performance since a
more detailed analysis of the classification error can be deter-
mined. In a confusionmatrix any off-diagonal entries indicate
a miss-classification from the model and therefore one can
determine the precision and recall of a given classifier when
inspecting a given class [26], [27]. In these tables, the major
sources of identification error have been highlighted in red.
Selected miss-classified samples from each of these high-
lighted red errors can be seen in Fig. 7, Fig. 8, and Fig. 9, for
Model 1, Model 2, and Model 3, respectively. It is important
to note that the values reported in Table 1 are the mean and
standard deviation of the 20 Monte Carlo cross validation
runs, while the confusion matrices in Table 3, Table 4, and
Table 5 show the classification test accuracy of the best
performing model from the 20 Monte Carlo cross validation
runs.

B. DISCUSSION
In Table 3 and Fig. 7, it can be observed that for
Model 1, which uses only morphological features, the great-
est source of misidentifications came from Anabaena flos-
aquae (CPCC 067) and Pseudanabaena tremula (CPCC 471)
samples being mislabeled as Ankistrodesmus falcatus
(CPCC 366). By inspecting both Fig. 4 and Fig. 5 it is
clear that both of these species can have an elongated shape,
which can cause problems with identification when lever-
aging only morphological features. The other most com-
mon misidentification error came from Anabaena flos-aquae
(CPCC 067) being mislabeled as Scenedesmus obliquus
(CPCC 005). Once again by looking at Fig. 4 and Fig. 5
smaller Anabaena flos-aquae (CPCC 067) could easily be
confused with an Scenedesmus obliquus (CPCC 005) sam-
ple using just morphological features. Therefore it can be
concluded, that for the extracted morphological features,
and for these six types of algae, utilizing only the selected
five morphological features is insufficient for differentiat-
ing between different samples. These results indicate the
need to add additional features to increase the classification
performance.

When inspecting Table 4 and Fig. 8, it can be observed that
for Model 2, which uses only spectral features, the misiden-
tification error was significantly less compared to that of
Model 1, with the largest source of error being 4 sam-
ples of Euglena gracilis (CPCC 095) being mislabeled as
Scenedesmus quadricauda (CPCC 158) and 3 samples of
Scenedesmus quadricauda (CPCC 158) were mislabeled as
Euglena gracilis (CPCC 095). These results are consis-
tent with the observation that the spectral features between
Scenedesmus quadricauda (CPCC 158) and Euglena gracilis
(CPCC 095) is much closer compared to other samples.
The other main source of error is when Anabaena flos-
aquae (CPCC 067) is classified as Pseudanabaena tremula
(CPCC 471). This miss-classification is intuitive as both of
these species are both from the Cyanophyta phylum and are
both filamentous types of algae.

Finally, in Table 5 and Fig. 9, it can be observed that for
Model 3, which utilized fluorescence-based morphological-
spectral features, the misidentification error was significantly
less compared to that of Model 1, with sources of error being
6 samples of CPCC 067 being mislabeled as Scenedesmus
obliquus (CPCC 005) and five samples of Pseudanabaena
tremula (CPCC 471) being mislabeled as Anabaena flos-
aquae (CPCC 067). This particular source of misidentifica-
tion may be attributed to the fact that both are filamentous
typeswith very similar shapes and characteristics. In addition,
as seen in Fig. 8, certain Anabaena flos-aquae (CPCC 067)
were classified as Scenedesmus quadricauda (CPCC 158)
when the chain structure of the Anabaena flos-aquae broke
apart, leaving one or two single-celled organisms on their
own. When inspecting Fig. 4, a given Anabaena flos-aquae
can easily be mistaken as a Scenedesmus quadricauda.
When inspecting Fig. 9, it is observed that some images,
such as Pseudanabaena tremula (CPCC 471) have not been
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TABLE 3. The best performing Model 1 from 20 Monte Carlo cross validation runs.

TABLE 4. The best performing Model 2 from 20 Monte Carlo cross validation runs.

TABLE 5. The best performing Model 3 from 20 Monte Carlo cross validation runs.

well segmented. This reveals that the classification error is
primarily due to errors in the segmentation.

Comparing the preliminary results achieved using the neu-
ral network classification models to that achieved by human
taxonomists, which have an identification accuracy between
67% and 83% [7], it can be observed that Model 1 dra-
matically under-performed compared to human taxonomists,
demonstrating that the utilization of just morphological fea-
tures is not a reliable way to identify between different
types of algae via imaging. However, both Model 2 and
Model 3 demonstrated very encouraging identification accu-
racies when compared to that of human taxonomists, and thus
illustrate not only that fluorescence-based spectral features
are highly effective for identifying between different types
of algae, but also that such automated identification methods
can be a very valuable tool for human taxonomists to leverage
to reduce the time-consuming and tedious task of manually
isolating and analyzing individual micro-organisms, and thus
be able to spend more time on the more important judg-
ment and assessment of water quality and determining the

appropriate course of action to take to mitigate the situa-
tion. Therefore, this approach of capturing data at multiple
wavelengths and processing it with a neural network shows
promise that on-site monitoring of algae types is potentially
possible. Given that the identification accuracy of human
taxonomists are typically between the range of 67% and 83%,
this method illustrates the feasibility of leveraging machine
learning and fluorescence-based spectral-morphological fea-
tures as a viable method for automated identification of dif-
ferent algae types. While in this study it was shown that the
performance ofModel 2 and that of Model 3 are quite similar,
which does in fact illustrate the effectiveness of using spectral
features, and does appear to be themost cost-effectivemethod
for practical applications, it can be noted that as the number
of algae type grows, the combination of both the spectral and
morphological features may be more advantageous.

C. FUTURE WORK
As previously discussed in Section V-B, using only the
selected five morphological features is insufficient for
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FIGURE 7. Misidentified samples from Model 1 corresponding to errors highlighted in red from Table 3.

FIGURE 8. Misidentified samples from Model 2 corresponding to errors highlighted in red from Table 4.

FIGURE 9. Misidentified samples from Model 3 corresponding to errors highlighted in red from Table 5.

differentiating between the different six different samples in
these presented experiments, as demonstrated in Model 1.
Therefore work must be conducted to expand the list of

morphological features to contain a more comprehensive
set of physical descriptors of algae. Future work also
includes determining which spectral and morphological
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features impact the models performance in order to find
the optimal set of features for classification. Research will
also be conducted to evaluate the performance differences
between using morphological features, spectral features, and
a combination of the two types of features for a larger scale
study with more algae types. In this future study investigation
will be done around exploring additional morphological fea-
tures that include both low-level features (edge and curvature
based) as well as high-level features (statistical and shape
based).

Research will be conducted to explore different neural net-
work architectures. Other types of neural network structures,
such as convolutional neural networks [28], [29], will also
be explored as they learn the optimal set of features in an
end-to-end manner. This involves exploring the design of
more advanced neural network classification architectures for
handling scenarios characterized by the need to automatically
identify a greater number of algae types in contaminated and
mixed water samples. Future work also includes the explo-
ration of neural network ensembles composed of networks
that perform well at identifying different groups of algae
types to complement the performance of each other. Such
a system will allow for near real-time analysis of a water
sample to determine which types of algae are present as
well as their relative concentrations. This will give water
treatment plants and other organizations the ability to build
up a database of algae activity over time allowing them an
early warning sign that bloom might occur.

VI. CONCLUSIONS
In this paper, the feasibility of leveraging machine learning
and fluorescence-based spectral-morphological features for
automated identification of algae type was explored. In par-
ticular, neural network classification models were trained
to identify different algae types using fluorescence-based
spectral features and morphological features extracted from
imaging data captured using a custom multi-band fluores-
cence imaging microscope at six different excitation wave-
lengths (405 nm, 420 nm, 450 nm, 470 nm, 500 nm, and
530 nm). Experimental results using three different neu-
ral network models (one trained on morphological fea-
tures, one trained on spectral fluorescence features, and one
trained on spectral-morphological fluorescence features) on
six different algae types (Scenedesmus obliquus (CPCC 005),
Scenedesmus quadricauda (CPCC 158), Ankistrodesmus
falcatus (CPCC 366), Anabaena flos-aquae (CPCC 067),
Pseudanabaena tremula (CPCC 471), and Euglena gracilis
(CPCC 095)) demonstrated that neural network classifica-
tion models trained using either fluorescence-based spectral
features or fluorescence-based spectral-morphological fea-
tures resulted in average identification accuracies of 95.7%
and 96.1%, respectively. As such, the results of this study
illustrate that leveraging machine learning and fluorescence-
based spectral-morphological features can be a feasible direc-
tion for further exploration for the purpose of automated
identification of different algae types.

CONTRIBUTIONS
JLD, CJ, and AW designed the functionality of the hardware
system. AC and JLD designed the form factor of the system
and AC created the 3D model. JLD collected the data used
in the experiments. JLD and AW designed the data pipeline
and architecture of the different machine learning classifica-
tion models. JLD, CJ, and AW conducted the analysis and
contributed to the writing of the manuscript.

REFERENCES
[1] A. M. Michalak et al., ‘‘Record-setting algal Bloom in Lake Erie caused

by agricultural and meteorological trends consistent with expected future
conditions,’’ Proc. Nat. Acad. Sci. USA, vol. 110, no. 16, pp. 6448–6452,
2013.

[2] NASA. (Oct. 2011). Toxic Algae Bloom in Lake Erie. [Online]. Available:
https://earthobservatory.nasa.gov/IOTD/view.php?id=76127

[3] I. R. Falconer, ‘‘Potential impact on human health of toxic cyanobacteria,’’
Phycologia, vol. 35, no. 6S, pp. 6–11, 1996.

[4] ‘‘Cyanobacterial toxins: Microcystin-LR,’’ in Guidelines for Drinking-
Water Quality, vol. 2. Geneva, Switzerland: World Health Organization,
1998. [Online]. Available: http://apps.who.int/iris/handle/10665/63844

[5] Guidelines for Canadian Drinking Water Quality: Guideline Technical
Document—Cyanobacterial Toxins, Health Canada, Ottawa, ON,
Canada, 2018. [Online]. Available: https://www.canada.ca/en/health-
canada/services/publications/healthy-living/guidelines-canadian-
drinking-water-quality-guideline-technical-document-cyanobacterial-
toxins-document.html

[6] L. Barsanti and P. Gualtieri, Algae: Anatomy, Biochemistry, and Biotech-
nology. Boca Raton, FL, USA: CRC Press, 2014.

[7] P. F. Culverhouse, R. Williams, B. Reguera, V. Herry, and S. González-Gil,
‘‘Do experts make mistakes? A comparison of human and machine inden-
tification of dinoflagellates,’’ Mar. Ecol. Prog. Ser., vol. 247, pp. 17–25,
Feb. 2003.

[8] M. E. Sieracki et al., ‘‘Optical plankton imaging and analysis systems for
ocean observation,’’ in Proc. Ocean Obs, vol. 9, 2010, pp. 21–25.

[9] R. G. Colares, P. Machado, M. de Faria, A. Detoni, and V. Tavano,
‘‘Microalgae classification using semi-supervised and active learning
based on Gaussian mixture models,’’ J. Brazilian Comput. Soc., vol. 19,
no. 4, pp. 411–422, 2013.

[10] I. Corrêa, P. Drews, M. S. de Souza, and V. M. Tavano, ‘‘Supervised
microalgae classification in imbalanced dataset,’’ in Proc. 5th Brazilian
Conf. Intell. Syst. (BRACIS), Oct. 2016, pp. 49–54.

[11] I. N. da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and
S. F. dos Reis Alves, Eds., Artificial Neural Networks: A Practical Course.
Cham, Switzerland: Springer, 2017.

[12] R. F.Walker, K. Ishikawa, andM. Kumagai, ‘‘Fluorescence-assisted image
analysis of freshwater microalgae,’’ J. Microbiol. Methods, vol. 51, no. 2,
pp. 149–162, 2002.

[13] B. A. Hense, P. Gais, U. Jütting, H. Scherb, and K. Rodenacker, ‘‘Use
of fluorescence information for automated phytoplankton investigation by
image analysis,’’ J. Plankton Res., vol. 30, no. 5, pp. 587–606, 2008.

[14] X. Hu, R. Su, F. Zhang, X. Wang, H. Wang, and Z. Zheng, ‘‘Multi-
ple excitation wavelength fluorescence emission spectra technique for
discrimination of phytoplankton,’’ J. Ocean Univ. China, vol. 9, no. 1,
pp. 16–24, 2010.

[15] J. L. Deglint, J. Chao, and A. Wong, ‘‘A comprehensive spectral analysis
of the auto-fluorescence characteristics of three algae species at twelve
discrete excitation wavelengths,’’ J. Comput. Vis. Imag. Syst., vol. 3, no. 1,
2017. [Online]. Available: http://www.jcvis.net/

[16] N. Otsu, ‘‘A threshold selection method from gray-level histograms,’’
Automatica, vol. 11, nos. 285–296, pp. 23–27, 1975.

[17] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Upper Saddle
River, NJ, USA: Prentice-Hall, 2012.

[18] M. A. Wirth, ‘‘Shape analysis and measurement,’’ School Comput. Sci.,
Univ. Guelph, Guelph, ON, Canada, Tech. Rep. CIS 6320, 2001.

[19] J. D. Wehr, R. G. Sheath, and J. P. Kociolek, Eds., Freshwater Algae of
North America: Ecology and Classification. Amsterdam, The Netherlands:
Elsevier, 2015.

[20] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

7052 VOLUME 7, 2019



J. L. Deglint et al.: Feasibility of Automated Identification of Six Algae Types

[21] L. Breiman, Classification and Regression Trees. Evanston, IL, USA:
Routledge, 2017.

[22] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Kuala Lumpur, Malaysia: Pearson, 2016.

[23] K. Hornik, ‘‘Approximation capabilities of multilayer feedforward net-
works,’’ Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[24] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, p. 436, 2015.

[25] C. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer-Verlag, 2006.

[26] M. Sokolova and G. Lapalme, ‘‘A systematic analysis of performance
measures for classification tasks,’’ Inf. Process. Manage., vol. 45, no. 4,
pp. 427–437, 2009.

[27] A. Géron, Hands-on Machine Learning With Scikit-Learn and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems. New-
ton, MA, USA: O’Reilly Media, 2017.

[28] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[29] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer. (2014). ‘‘DenseNet: Implementing efficient ConvNet descrip-
tor pyramids.’’ [Online]. Available: https://arxiv.org/abs/1404.1869

JASON L. DEGLINT received the bachelor’s
degree (Hons.) in electrical engineering from
the University of Victoria, Victoria, BC, Canada,
in 2014, and the M.A.Sc. degree in systems
design engineering from the University of Water-
loo, Waterloo, ON, Canada, in 2016, where he
is currently pursuing the Ph.D. degree in systems
design engineering. He is currently being super-
vised by Dr. A. Wong and Dr. C. Jin. His research
interests include computational imaging and using

machine learning and multispectral imaging for computational biology and
water conservation.

During his undergraduate studies, he worked in a variety of different
companies as a co-op. First, in 2011, he was with Research InMotion (Black-
Berry). Then, in 2012, he was with the National Aerospace Laboratory,
Amsterdam, The Netherlands. Finally, in 2013, he was with MacDonald,
Dettwiler and Associates Ltd. (MDA). During his M.A.Sc. degree, he was
with Christie Digital Systems Inc., from 2014 to 2015. During his graduate
studies, he founded Hedgehog Medical Inc., in 2016, which provides soft-
ware to find and track artery walls from ultrasound images and videos.

His awards include the co-op Student of the Year Award, in 2012, from
the University of Victoria, the Talbot Memorial Fund Award, in 2013, and
the Andreas Antoniou Medal for Digital Signal Processing, in 2015. He also
received the Distinguished Paper Award from the Society of Information
Display, in 2015, and the Best Paper Award for the Conference of Computer
Vision and Imaging Systems, in 2015. Finally, he received the Sandford
Fleming Foundation Teaching Assistant Award, in 2016, from the University
of Waterloo and the AquaHacking Challenge First Place Prize, in 2017.

CHAO JIN received the Ph.D. degree in civil engi-
neering from the University of Waterloo, Water-
loo, ON, Canada, in 2014. He currently holds
a Research Assistant Professor position with the
Department of Systems Design Engineering, Uni-
versity of Waterloo, working on several projects
related to colloidal science and engineering, inno-
vative device for water quality assessment, sus-
tainability analysis for wastewater treatment, and
sludge handling, and artificial intelligent applica-

tions for water and wastewater treatment processes.

ANGELA CHAO received the B.A.Sc. degree
(Hons.) in systems design engineering from the
University of Waterloo, Waterloo, ON, Canada,
in 2018.

She is currently pursuing the M.S. degree in
robotic systems development with Carnegie Mel-
lon University, Pittsburgh, PA, USA, and hopes to
pursue a career in robotic surgical devices. She is
passionate about medical applications of engineer-
ing and has previously worked as a Research and

Development Intern with Baylis Medical Company. She received the Baylis
Medical Award, in 2018, for her undergraduate capstone project in the design
of a novel surgical instrument for cardiac valve repair.

ALEXANDER WONG (M’05–SM’16) received
the B.A.Sc. degree in computer engineering,
the M.A.Sc. degree in electrical and computer
engineering, and the Ph.D. degree in systems
design engineering from the University of Water-
loo, Waterloo, ON, Canada, in 2005, 2007, and
2010, respectively. He is currently the Canada
Research Chair of Artificial Intelligence and
Medical Imaging, the Co-Director of the Vision
and Image Processing Research Group, and an

Associate Professor with the Department of Systems Design Engineering,
University of Waterloo. He has authored over 450 refereed journal and
conference papers and patents, in various fields, such as computational imag-
ing, artificial intelligence, computer vision, graphics, image processing, and
multimedia systems. His research interests include integrative biomedical
imaging systems design, operational artificial intelligence, and scalable and
explainable deep learning.

He has received a number of awards, including two outstanding per-
formance awards, the Distinguished Performance Award, an Engineering
Research Excellence Award, the Sandford Fleming Teaching Excellence
Award, an Early Researcher Award from the Ministry of Economic Devel-
opment and Innovation, the Best Paper Award with the NIPS Workshop
on NIPS Workshop on Transparent and Interpretable Machine Learning,
in 2017, the Best Paper Award with the NIPS Workshop on Efficient Meth-
ods for Deep Neural Networks, in 2016, two Best Paper Awards by the
Canadian Image Processing and Pattern Recognition Society, in 2009 and
2014, the Distinguished Paper Award by the Society of Information Display,
in 2015, two Best Paper Awards for the Conference of Computer Vision
and Imaging Systems, in 2015 and 2017, the Synaptive Best Medical Imag-
ing Paper Award, in 2016, two Magna Cum Laude Awards and one Cum
Laude Award from the Annual Meeting of the Imaging Network of Ontario,
AquaHacking Challenge First Prize, in 2017, the Best Student Paper with the
Ottawa Hockey Analytics Conference, in 2017, and the Alumni Gold Medal.

VOLUME 7, 2019 7053


	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	DATA ACQUISITION
	DATA PROCESSING
	IMAGE SEGMENTATION AND MICRO-ORGANISM EXTRACTION
	FLUORESCENCE-DRIVEN SPECTRAL-MORPHOLOGICAL FEATURE EXTRACTION AND NEURAL NETWORK CLASSIFICATION MODELING

	EXPERIMENTAL SETUP
	TYPES OF ALGAE
	HARDWARE CONFIGURATION
	MODEL ARCHITECTURES

	EXPERIMENTAL RESULTS AND DISCUSSION
	EXPERIMENTAL RESULTS
	DISCUSSION
	FUTURE WORK

	CONCLUSIONS
	REFERENCES
	Biographies
	JASON L. DEGLINT
	CHAO JIN
	ANGELA CHAO
	ALEXANDER WONG


