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ABSTRACT Charger noise can cause inaccurate touch points and fake touch points to appear; this can cause
a device to behave incorrectly. The intensity of charger noise could be much larger than the intensities of
the original touch signals. Furthermore, the frequency of charger noise varies for each different charger.
Therefore, industry experts have identified charger noise as the most difficult problem in capacitive touch
applications. The demand for a solution to this problem has become crucial for the mobile market. In this
paper, we prove that a particular combination of frequency hopping and repeated integration is an effective
method to handle this problem. In addition, we propose an efficient discrete Fourier transform-based
algorithm to select an effective sensing frequency.We propose parallel driving with random delay to enhance
the signal-to-noise ratio (SNR). We show an efficient hardware–software co-design that facilitates the
application of our methods in touch ICs. The experimental results show that our methods can increase SNR
by over 45 dB and can find an effective sensing frequency fast and dynamically.

INDEX TERMS Charger noise, parallel driving, frequency hopping, repeated integration, mutual-capacitive
touch.

I. INTRODUCTION
Capacitive sensors are extensively applied in many consumer
electronics because they make user interfaces become more
intuitive, more convenient, and more interactive. These types
of sensors could be used as electrical buttons and switches
to replace the traditional mechanical ones. Besides, they also
provide the multi-touch functionality, which enables rich
ways to control devices, so a large number of smartphones
and tablets have appeared in the past ten years.

Capacitive touch ICs suffer from various noises, such as
display noise, charger noise, and inherent noise. Inherent
noise refers to random noise signals that can be significantly
reduced through proper circuit design since this type of noise
is due to the fundamental properties of circuits. However,
charger noise and display noise are interference noises that
physically couple into the sensor through the battery charger
and the display components. They cannot be reduced just by
circuit design skills because they are irrelevant to the essen-
tials of the circuits. Fortunately, display noise is a predictable
characteristic of the display, so it can be resolved during the

touch solution development. That is to say, display noise does
not happen again once it is reduced during the design phase of
the product. However, charger noise is unpredictable, depend-
ing on the charger to be used.

Noise reduction plays an important role in the multi-touch
algorithm because it affects the accuracy of touch points.
For charger noise, inaccurate touch points and fake touch
points may appear so that a device has a wrong behavior. The
makers of chargers often simplify their designs to reduce their
manufacturing costs, which results in large noises accord-
ingly. The intensity of charger noises can exceed touch signals
over 10 times [2]. Besides, the frequency of charger noise
varies for each different charger. Moreover, charger noise
only appears when a touch event happens. So it is more
difficult to detect charger noise. Therefore, industry identifies
charger noise as themost difficult problem in capacitive touch
applications [2]. Mohamed et al. [3] mentioned that their
noise analysis is regularly done by measuring noise spec-
trum at all frequencies using Fast Fourier Transform (FFT)
while no driving signal is applied. Because their FFT method
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is computationally expensive, it has a high hardware cost
and a large power consumption. To find out charger noise
efficiently, we propose a real-time charger noise analysis
algorithm, which is a low-cost implementation and can be
easily integrated into the current devices without a lot of
modifications.

There are a few papers proposed to resolve the noise prob-
lem [4]–[10]. They all presented that repeated integration is
an effective method for this problem. However, the afore-
mentioned works focused on the analog front-end implemen-
tation. They need large capacitors for charge accumulation,
which is a heavy burden on the competitive hardware cost.
In addition, they cannot detect charger noise quickly and do
a real-time manipulation. Moreover, they did not propose
the formal charger noise model to prove whether or not the
method is effective under any condition. Unfortunately, as the
noise frequency is close to the sensing frequency, the method
may become ineffective and cannot handle the noise imme-
diately. We present the mathematical model of charger noise
and prove that repeated integration is effective under certain
conditions.

To make repeated integration effective, Klein [2] indicated
that the frequency hopping is a method to find an effective
sensing frequency. However, he did not explain when and
how to execute frequency hopping. Hotelling et al. [11] used
three sensing frequencies to get three map values, and per-
formed median filtering on the three maps. There are two
drawbacks of this method. On the one hand, it reduces its
frame rate by up to 2/3. On the other hand, it is ineffective
if it meets two or more noisy frequencies at the same time.
To keep the original frame rate and to avoid noisy frequencies,
we propose an efficient algorithm to detect the charger noise
frequency and to find a good sensing frequency fast and
dynamically.

There are two types of capacitance sensing methods:
mutual capacitance sensing and self-capacitive sensing.
We focus on mutual capacitance sensing in this paper. The
common diagram of the mutual capacitance sensing is shown
in Fig. 1. The X-Y crossings of the patterns form the mutual
capacitors. When fingers touch the panel, the charges at the
sensing nodes change. A capacitive touch IC converts the
quantities of charges to digital values, which are also called
sensing values.

In mutual capacitance sensing, a time-multiplexed or time-
interleaved acquisition is a conventional method to capture a
variation of one mutual capacitor at one time slot. Recently,
the parallel sensing method is widely used to increase the
frame rate and handle the larger touch screens. This method
mainly repeats several front-end analog circuits to reduce
the total capture time of a whole sensing map. Nevertheless,
the number of front-end analog circuits needs to be carefully
estimated to prevent an unnecessary waste. On the other hand,
the parallel driving method [10], [12]–[15] is also extensively
applied in industry to get a better signal-to-noise ratio (SNR).
As the number of parallel driving channels is larger, the SNR
is better. Unfortunately, the parallel driving method cannot

FIGURE 1. The common diagram of the mutual capacitance sensing.

basically improve the frame rate because the parallel driving
sequence needs to be long enough to obtain the sufficient
information for decoding themixed signals. After that, we can
get the touch signals of those nodes. Note that the parallel
driving method cannot be applied to self-capacitive sensing.

The driving sequence for the parallel driving channels
is usually generated based on orthogonal codes, such as
Walsh-Hadamard (W-H) codes. As the number of parallel
driving channels grows, the received signals at sensing chan-
nels may be larger than the limited supply voltage level.
To deal with this problem and let the number of parallel
driving channels grow as possible, Park et al. [16] presented
the application of various weighing matrices to lower the
received signals. Moreover, Ma et al. [17] presented
the application of the differential Manchester code to detect
the variation between the un-touch and touch condition with-
out the problem of the large received signals. This paral-
lel driving method is suitable for combating random noise
because the samples of a random noise are regarded as uncor-
related random variables. However, it is weak for charger
noise, which is a periodic noise. Hence, we propose the
random delay technique to make the samples of a periodic
noise also regarded as uncorrelated random variables.

A conventional multi-touch algorithm framework is shown
in Fig. 2 [18]. There are four main steps to obtain coor-
dinates of touch points and their identifications (IDs). The
first two steps control the operations of hardware, and use
the algorithms of software to analyze noise and to reduce
noise. The two steps may be executed iteratively to obtain a
noiseless data map. After getting a noiseless data map, accu-
rate touch points could be calculated, presented in [19]–[23].
After getting the coordinates of the touch points, the tracking
algorithm is used to identify and track the corresponding
touch points in two sequential frames, presented in [24]–[29].
The third and fourth steps are pure software-related
topics. However, the first and second steps need an effi-
cient hardware-software co-design to achieve a performance
and cost optimization. Although most works presented the
advanced hardware solutions to achieve better performance,
such as SNR and speed, than the previous ones, they did not
consider the manufacturing cost and the other side effects.
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FIGURE 2. The multi-touch algorithm framework [18].

In this paper, we show that our methods assist in analyzing
noise and selecting an appropriate sensing frequency dynam-
ically to improve the SNR and keep the speed, while they
do not need to change the original hardware architecture and
merely slightly increase the hardware cost for analysis.

To sum up, our work has the following distinguished fea-
tures and theoretical findings:
• The mathematical model of charger noise is presented
and it is proved that repeated integration is effective
under certain conditions.

• To keep the original frame rate and to avoid noisy fre-
quencies, an efficient algorithm is proposed to detect
the charger noise frequency and to find a good sensing
frequency fast and dynamically.

• The random delay technique is proposed to make the
samples of a periodic noise regarded as uncorrelated ran-
dom variables, which makes the parallel driving method
effective for charger noise.

• Our methods do not need to change the original
hardware architecture and merely slightly increase the
hardware cost for analysis.

Experimental results show that our algorithm takes accept-
able run-time on a 50 MHz ARM-M0 processor based on the
user experience in [30]. In addition, the results also show that
our methods can increase SNR by over 45 dB, compared to
that without our charger noise reduction algorithm.

The rest of this paper is organized as follows. Section II
gives an introduction to the circuit model affected by charger
noise, presents the mathematical model of charger noise, and
formulates the charger noise reduction problem. Section III
presents 1) that the combination of frequency hopping and
repeated integration is an effective method, 2) an efficient
DFT-based algorithm to select a good sensing frequency,
3) parallel driving with random delay to enhance SNR,
and 4) an efficient hardware-software co-design about
adopting these methods. Experimental results are reported

FIGURE 3. The model of a basic touch sensing architecture.

in Section IV, and discussion is given in Section V. Conclu-
sions are given in Section VI.

II. MODELING OF CHARGER NOISE
In this section, we introduce the cause of charger noise,
give its mathematical model and formulate the charger noise
reduction problem.

An AC/DC charger is a device that converts AC into DC
and then supplies DC to a circuit via external power and
ground pins as shown in Fig. 3(a). The voltage of DC, which
is the difference in electric potential between a power pin
and a ground pin, is generally constant and stable. Although
the electric potentials of the power pin and the ground pin
may fluctuate, the circuit can work properly as long as the
potential difference is desired. However, for touch ICs, when
fingers touch on a touch screen, the fluctuation phenomena
would emerge because fingers have another reference point
(the earth’s ground). For a clear explanation, we illustrate the
charger noise caused by the fluctuation with the model of a
basic mutual-capacitive touch sensing architecture as shown
in Fig. 3(b), where VTX is the driving signal used to charge the
capacitorCP of the touch panel, VRX is the sensing value used
to detect the capacitance changes influenced by the finger-
coupled capacitors CC1 and CC2, CG is the earth capacitor,
VE is the earth’s ground, and VG is the system’s ground.
When the system plugs in a charger of poor quality, VG will
fluctuate. VTX has the same fluctuation with VG because
VG is its reference ground, but VE is constant. Therefore,
charger noise is a kind of finger-coupled noise because it
only emerges when fingers touch. Its intensity is in proportion
to the touch signal because the larger touch signal means
that CC1 and CC2 are larger. The noise is difficult to deal
with because it has very high intensity. Besides, the form of
charger noise is the combination of a fundamental frequency
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and its harmonics [2]. So, its function is described as follows:

N (t) =
K∑
n=1

An cos(2π fdnt + ϕn), K = b1000/fdc, (1)

where t is time, ϕn is the phase of the n-th harmonic,
An is the amplitude of the n-th harmonic, and fd is the
fundamental frequency (KHz). An is close to 0 when n is
larger than 1000/fd , benefiting by the low-pass filter formed
from the resistive and capacitive (RC) loading of a touch
panel [3], [10].

The sampling function of a touch controller is derived by:

S[m] = T + N [m] = T+
K∑
n=1

An cos(2π fdnm/fs+ϕn), (2)

wherem is them-th sampling, fs is the sensing frequency, and
T is the original noiseless signal. Note that T is considered as
a constant in a short period.

After our modeling of charger noise, our objective is to
minimize the interference from the charger noise for extract-
ing the original touch signal. Because repeated integration is
a well-known method to suppress a periodic noise, the objec-
tive is further formulated as follows:
Charger Noise Reduction Problem: Determine the sensing

frequency fs and the repeating number r so that the charger
noise is minimized and the final result I converges to the
original touch signal as follows:

1
r

r∑
m=1

N [m] ≈ 0. (3)

H⇒ I =
1
r

r∑
m=1

S[m] ≈ T . (4)

III. THEOREMS AND AN EFFECTIVE AND EFFICIENT
ALGORITHM
In this section, we 1) prove that the combination of frequency
hopping and repeated integration is an effective method,
2) propose an efficient DFT-based algorithm to select a
good sensing frequency, 3) propose parallel driving with
random delay to enhance SNR, 4) summarize the whole algo-
rithm flow, and 5) propose an efficient hardware-software
co-design about adopting these methods.

A. THEOREMS FOR THE CHARGER NOISE REDUCTION
PROBLEM
First, the charger noise reduction problem (3) can be trans-
formed to (5) because of the commutative law for addition.
The solution to (6) is also a solution to (5). Therefore, we can
solve (6) to get a solution to the charger noise reduction
problem.

K∑
n=1

(
1
r

r∑
m=1

An cos(2π fdnm/fs + ϕn)) ≈ 0 (5)

r∑
m=1

Ak cos(2π fdkm/fs+ϕk )≈ 0, k ∈{1, 2, . . . ,K }

(6)

The following theorems are used to get the solutions
for (6):
Theorem 1: (Repeated Integration Theorem) If 1) r /2k is a

positive integer, and 2) fd×r/fs equals a positive odd integer,
then
r∑

m=1

Ak cos(2π fdkm/fs + ϕk ) = 0, k ∈ {1, 2, . . . ,K }. (7)

Proof 1: Because fd/fs = c/r , where c is a positive odd
integer,
r∑

m=1

Ak cos(2π fdkm/fs + ϕk ) =
r∑

m=1

Ak cos(2πckm/r + ϕk ).

Then, because of the condition 1), r /2k is a positive integer,
we divide the summation into r/2k groups, and the above
expression equals

(Ak cos(2πck
1
r
+ ϕk )+ Ak cos(2πck

r/2k + 1
r

+ ϕk ))

+ (Ak cos(2πck
2
r
+ ϕk )+ Ak cos(2πck

r/2k + 2
r

+ ϕk ))

+ (Ak cos(2πck
3
r
+ ϕk )+ Ak cos(2πck

r/2k + 3
r

+ ϕk ))

+ . . .

+ (Ak cos(2πck
r/2k
r
+ ϕk )+ Ak cos(2πck

r/k
r
+ ϕk ))

Further, we apply the sum-to-product formulas, and the above
expression equals:

2Ak cos(
πc
2
) cos(πck

r/2k + 2
r

+ ϕk )

+ 2Ak cos(
πc
2
) cos(πck

r/2k + 4
r

+ ϕk )

+ 2Ak cos(
πc
2
) cos(πck

r/2k + 6
r

+ ϕk )

+ . . .

+ 2Ak cos(
πc
2
) cos(πck

3r/2k
r
+ ϕk )

Finally, since c is a positive odd integer, cos(πc2 ) is zero.
Hence, the expression equals zero. �
Theorem 1 states that if we can obtain the noise

frequency fd , we can find an appropriate set of fs and r by
this theorem.
Property 1: If 1) r /2k is a positive integer, and 2) fd × r/fs

equals a positive odd integer, then fs is not equivalent to fd .
Theorem 2: (Repeated Integration Theorem for Aliasing

1) If 1) r /2k is a positive integer, 2) fmirror is a mirrored
frequency of the frequency fd with respect to the sensing
frequency fs (fmirror = fd − fs), and 3) fmirror × r/fs equals a
positive odd integer, then (7) still holds.
Proof 2: Because fmirror is a mirrored frequency of the

frequency fd with respect to the sensing frequency fs,
fmirror = fs − fd .
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Therefore,
r∑

m=1

Ak cos(2π fdkm/fs + ϕk )

=

r∑
m=1

Ak cos(2π (fs − fmirror )km/fs + ϕk )

=

r∑
m=1

Ak cos(2πkm− 2π fmirrorkm/fs + ϕk )

=

r∑
m=1

Ak cos(2π fmirrorkm/fs − ϕk ).

Because fmirror/fs = c/r , where c is a positive odd integer,
the rest of this proof is similar to Proof 8. So, the above
expression also equals zero. �
Theorem 3: (Repeated Integration Theorem for Aliasing

2) If 1) r /2k is a positive integer, 2) ffolded is a folded
frequency of the frequency fd with respect to the sensing
frequency fs (ffolded = fd − y × fs, y ∈ integer), and
3) ffolded × r/fs equals a positive odd integer, then (7) still
holds.
Proof 3: Because ffolded is a folded frequency of the

frequency fd with respect to the sensing frequency fs,
ffolded = fd − y× fs, y ∈ integer.

Therefore,
r∑

m=1

Ak cos(2π fdkm/fs + ϕk )

=

r∑
m=1

Ak cos(2π (ffolded + y× fs)km/fs + ϕk )

=

r∑
m=1

Ak cos(2π ffoldedkm/fs + 2πykm+ ϕk )

=

r∑
m=1

Ak cos(2π ffoldedkm/fs + ϕk ).

Because ffolded/fs = c/r , where c is a positive odd integer,
the rest of this proof is similar to Proof 8. So, the above
expression also equals zero. �
Theorem 4: (Repeated Integration Theorem for Aliasing

3) If 1) r /2k is a positive integer, 2) fmirror,folded is a mirrored
and folded frequency of the frequency fd with respect to the
sensing frequency fs (fmirror,folded = y× fs − fd , y ∈ integer,
y ≥ 2), and 3) fmirror,folded×r/fs equals a positive odd integer,
then (7) still holds.
Proof 4: Because fmirror,folded is a mirrored and folded

frequency of the frequency fd with respect to the sensing
frequency fs, fmirror,folded = y× fs − fd , y ∈ integer, y ≥ 2.
Therefore,
r∑

m=1

Ak cos(2π fdkm/fs + ϕk )

=

r∑
m=1

Ak cos(2π (y× fs − fmirror,folded )km/fs + ϕk )

=

r∑
m=1

Ak cos(2πykm− 2π fmirror,foldedkm/fs + ϕk )

=

r∑
m=1

Ak cos(2π fmirror,foldedkm/fs − ϕk ).

Because fmirror,folded/fs = c/r , where c is a positive odd inte-
ger, the rest of this proof is similar to Proof 8. So, the above
expression also equals zero. �

B. DFT FOR FINDING WHERE THE NOISES ARE
As charger noise always changes with different chargers,
we need to design a real-time monitor to observe the behavior
of noise and to find the frequency of noise. Once we obtain
the frequency of noise, we can choose an appropriate sensing
frequency to eliminate noise. First, we choose a default sens-
ing frequency fs to capture a number r of signals. Then, based
on DFT, we calculate intensities of frequency components
with the following function:

Xk = |
r−1∑
n=0

S[n]× e−j2πkn/r |, 0 ≤ k ≤ r/2, k ∈ Z, (8)

where Xk is the intensity of the frequency bin k whose fre-
quency range is between fs× k/r and fs× (k + 1)/r , and Z is
the set of integers. When a signal, a noise, or its alias falls
within a frequency range, the intensity of the corresponding
frequency bin will show. The touch signal appears in the first
bin because it is a DC signal. If the repeating number r is
larger, the bandwidth of a frequency bin is smaller, and the
frequency of noise can be identified more accurately. How-
ever, the large repeating number r sacrifices the frame rate
of a touch system or increases the hardware cost. Therefore,
we can only use a limited repeating number r to keep the
frame rate. To find a good sensing frequency, we select a
frequency that meets Theorems 1, 2, 3, or 4.We usually select
a higher frequency than a lower frequency because a lower
sensing frequency sacrifices the frame rate. Note that when
the sensing frequency approaches the frequency of noise,
(4) would not equal T and the noise signal appears at the first
bin like the touch signal. As a result, it is difficult to extract
touch signals from sensing values. To avoid colliding with the
frequency of noise, we make the sensing frequency automati-
cally have a slight changewithin a range. The change can help
the frequency analyzer to separate the noise frequency from
the first and last bins. Our DFT analyzer is implemented by
the radix-2 Cooley-Tukey algorithm [31], which is not only
fast but also easy to implement in a low-cost MCU because
it has a small code size in a recursive form. On the contrary,
the FFT method [3] is implemented by extra hardware, which
is a hard burden to a low-cost design. Besides, the exe-
cution time of the radix-2 Cooley-Tukey algorithm only
requires O(r logr).

C. PARALLEL DRIVING AND RANDOM DELAY
Parallel driving almost exists in every mutual-capacitive
touch device because it is useful for combating
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FIGURE 4. Driving methods for the mutual-capacitive touch sensors.
(a) The driver sends one driving signal in one time slot, which is called a
sequential driving. (b) The driver sends multiple driving signals in one
time slot, which is called a parallel driving.

FIGURE 5. An example of the values captured by a sensor. (a) In a case of
sequential driving, the values of the node A, B, C , and D are captured at
time t1, t2, t3, and t4, respectively. (b) In a case of parallel driving,
the captured values are the combinations of the nodes being driven.

random noise. The conventional parallel driving method is
suitable for combating random noise because random noise
samples are regarded as uncorrelated random variables. How-
ever, the conventional parallel driving method is weak for
charger noise because periodic noise may result in the corre-
lated samples which have non-zero covariances. (Refer to the
note after the proof of Theorem 5.) So, we apply the random
delay technique to represent the samples of a periodic noise
as uncorrelated random variables. Therefore, parallel driving
with random delay can combat not only random noise but also
periodic noise.

Fig. 4 shows the difference between the sequential driving
and the parallel driving. See Fig. 4(a) for an example of the
sequential driving. The driver sends one driving signal in one
time slot, and then the sensor captures the coupling signal
from the sensing channel. The coupling signal represents the
touch signal of a certain node. The sensing values in Fig. 4(a)
are shown in Fig. 5(a), where the values of the node A, B, C ,
andD are captured at time t1, t2, t3, and t4, respectively. It can
also be regarded as the 4 × 4 identity matrix multiplies the
vector v=[TA TB TC TD]T . So, the sequential driving directly
obtains the touch signal of each node. See Fig. 4(b) for an
example of the parallel driving. The driver sends multiple
driving signals in one time slot, and then the sensor captures
the coupling signal from the sensing channel. The coupling
signal represents the combined touch signal of certain nodes.
The driving signals in Fig. 4(b) are [1 1 1 −1], [1 1 −1 1],
[1−1 1 1], and [−1 1 1 1] at time t1, t2, t3, and t4, respectively,
where ‘1’ and ‘−1’ represent positive driving and negative
driving, respectively. Note that the sensing period of the con-
ventional parallel driving method is fixed, which represents
t2 − t1 = t3 − t2 = t4 − t3. Those driving signals form the

FIGURE 6. An example of the values captured by a sensor with a noise.
(a) In a case of sequential driving, the values of the node A, B, C , and D
are captured with the noise at time t1, t2, t3, and t4, respectively. (b) In a
case of parallel driving, the captured values are the combinations of the
nodes being driven plus the noise. (c) The inverse of the matrix is used to
decode the combinations, and then the individual values are obtained for
the node A, B, C , and D.

driving matrix,

D4×4 =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

. (9)

The vector t are multiplied by the driving matrix to get the
sensing values as shown in Fig. 5(b), where (TA+TB+TC −
TD), (TA+TB−TC+TD), (TA−TB+TC+TD), and (−TA+TB+
TC + TD) are captured at time t1, t2, t3, and t4, respectively.
Hence, the parallel driving needs a decoder to separate those
combinations of touch signals. The decoder for Fig. 5(b) is
(D4×4)−1 which is the inverse of the driving matrix.
Parallel driving has a better SNR than sequential driving

when they have the same total driving and sensing time. If the
noise is a random noise, the SNR of parallel driving has
a
√
p times improvement at most, where p is the number

of parallel driving channels. For example, the number of
the parallel driving channels is 4 in Fig. 4(b), so its SNR
is enhanced by

√
4 = 2 times compared to the sequential

driving case in Fig. 4(a). As shown in Fig. 6(a) and (b),
the noises are added for the sequential driving case and the
parallel driving case during the sensing periods. As shown
in Fig. 6(c), the sensing values are multiplied by the inverse
of the driving matrix to obtain the touch signals of those
nodes. The noise parts of the touch signals are like average
after decoding. If the noise is a random noise, the standard
deviation of the noise after decoding is one-half of the stan-
dard deviation of the original noise based on the following
definition and theorem:
Definition 1: D is a p-by-p driving matrix. D[i, j] is the

driving signal of the driving channel j at time i. D has the
properties:
1) the entries of D are all 1 or −1.
2) (1/

√
p) · D is an orthogonal matrix.

VOLUME 7, 2019 3985



S.-L. Huang et al.: Frequency Hopping and Parallel Driving With Random Delay

Definition 2: Nt1 , Nt2 , . . . , and Ntp are the random vari-
ables of a random noise captured at time t1, t2, . . . , and tp.
Those random variables are uncorrelated and equal.
Lemma 1: The standard deviation of Nti has the property:

σ (Nti ) = σ (−Nti ).
Proof:

σ (Nti ) =
√
E[N 2

ti ]− (E[Nti ])2.

σ (−Nti ) =
√
E[(−Nti )2]− (E[−Nti ])2

=

√
E[N 2

ti ]− (E[−Nti ])2

=

√
E[N 2

ti ]− (−E[Nti ])2

=

√
E[N 2

ti ]− (E[Nti ])2 = σ (Nti ).

�
Theorem 5: (Parallel Driving Theorem for Noise Reduc-

tion) If 1) D is used to be the driving matrix and 2) the noise
r is a random noise, then the standard deviation of the noise
after decoding, which is done via multiplication by D−1, is
1/
√
p of the standard deviation of the original noise.

Proof 5: Let v be the vector whose components are the
original touch signals of p nodes, 1, 2, . . . , and p. Let n be
the vector whose components are the noises captured at time
t1, t2, . . . , and tp. Let r be the vector whose components are
the sensing values at time t1, t2, . . . , and tp. Then, r can be
described by the following equation:

r = Dv+ n. (10)

By multiplying r by D−1 to get v′, which is the vector
whose components are the decoded touch signals, the follow-
ing equation is obtained:

v′ = D−1r = v+ D−1n = v+ n′, (11)

where n′ is the noise vector after decoding.
From (11), the decoded touch signals also have the decoded

noises except the original touch signals. Because the original
touch signals are constant, the variance of the decoded touch
signals can be expressed by:

Var(N ′i ) = Var(
p∑
j=1

D−1[i, j]× Ntj ), (12)

whereN ′i is the random variable of n′[i], andNtj is the random
variable of n[j]. Note that Nt1 = Nt2 = . . . = Ntp because
they are uncorrelated and equal random variables.

Because (1/
√
p) ·D is an orthogonal matrix, the following

equations are obtained:

((1/
√
p) · DT )((1/

√
p) · D) = I = D−1D

⇐⇒ (1/p) · DTD = D−1D

⇐⇒ D−1 = (1/p) · DT , (13)

where I is the identity matrix.

We then replace D−1 in (12) by (13). Thus, we have the
following equation:

Var(N ′i ) = Var(
p∑
j=1

(1/p) · D−T [i, j]× Ntj ) (14)

= (1/p2)Var(
p∑
j=1

·D−T [i, j]× Ntj ). (15)

Because of Definition 1, Definition 2, and Lemma 1, the
entries of D are all 1 or −1, we further have the following
equation:

Var(N ′i ) = (1/p2)Var(
p∑
j=1

Ntj ) (16)

= (1/p2)(
p∑
j=1

Var(Ntj )

+ 2
∑

j,k:1<=j<k<=p

Cov(Ntj ,Ntk )) (17)

= (1/p2)
p∑
j=1

Var(Ntj ) (18)

= (1/p)Var(Nt1 ) (19)

= (1/p)Var(No), (20)

where Cov(Ntj ,Ntk ) denotes the covariance of Ntj and Ntk
which is zero because they are uncorrelated, No represents
the random variable of the sampled noise at any time, and
No = Nt1 = Nt2 = . . . = Ntp .
Therefore,

σ (N ′i ) = (1/
√
p) · σ (No). (21)

�
Note that if Nt1 , Nt2 , . . ., and Ntp are correlated, implying

that their covariances are not zero, (21) becomes:

σ (N ′i ) > (1/
√
p) · σ (No). (22)

Thus, we apply the random delay technique to make each
sampling independent and identically distributed (i.i.d.) so
that charger noise can be effectively suppressed like random
noise. Between two driving signals, a random delay, which is
a uniform distribution on [0, P], is inserted, where P is the
period of the charger noise. This can guarantee that captured
signals are uncorrelated. Therefore, if there are n driving
signals, we are required to insert at least n−1 random delays
into those driving signals to ensure that those captured signals
are uncorrelated. When those captured signals are uncorre-
lated, they can achieve the effectiveness of noise reduction
as illustrated in Theorem 5. See Fig. 7 for an example of
the parallel driving method with random delay. We use the
driving matrix D4×4 to produce the driving patterns, and
insert three random delays into those driving signals. The
four captured signals are uncorrelated because of these three
random delays.

3986 VOLUME 7, 2019



S.-L. Huang et al.: Frequency Hopping and Parallel Driving With Random Delay

FIGURE 7. An example of the parallel driving method with random delay.

FIGURE 8. An example of the parallel driving method with random delay
combined with the repeated integration method.

D. INTEGRATION OF PARALLEL DRIVING AND
REPEATED INTEGRATION
Repeated integration is the most effective method to sup-
press charger noise. However, because of the limited samples,
DFT can find the frequency region where noise falls, but
cannot find its exact frequency. Therefore, the noise may
not be totally suppressed and could be suppressed further.
On the other hand, in mutual capacitance sensing, parallel
driving is common, so we are required to integrate repeated
integration into it. Besides, we can simultaneously utilize
parallel driving with random delay to suppress charger noise
further.

There are two steps for the integration of parallel driv-
ing and repeated integration (I-PDRI). The first step is that
each driving pattern of parallel driving consists of a driving
group of repeated integration. Each driving pattern obtains
one value of repeated integration. The second step is that we
insert a random delay after each driving group until the last
driving group. Finally, the inversematrix of the drivingmatrix
is used to obtain those decoded touch signals. See Fig. 8 for
an example. We use the driving matrix D4×4 to produce the
driving patterns. Then, we execute the repeated integration
for the first driving pattern and insert a random delay after
the repeated integration. Next, we do the same steps until the
last driving pattern.

The following theorem shows its SNR improvement:
Corollary 1: (Corollary of Theorem 5) The noise standard

deviation of I-PDRI is 1/
√
p of the noise standard deviation

of repeated integration.

FIGURE 9. The algorithm flow for noise reduction.

Proof 6: Based on the proof of Theorem 5, (10) can be
extended for I-PDRI to be:

rm = Dv+ nm, (23)

where m is the m-th captured signal in one group of repeated
integration.

After doing repeated integration, we can obtain:

r =
1
r

r∑
m=1

rm = Dv+ n, (24)

where r and n are averages for each group of repeated inte-
gration, r is the repeating number of repeated integration.
The p elements in n are uncorrelated because random

delays are inserted between two adjacent groups of repeated
integration.

The rest of this proof is the same with the proof of
Theorem 5. Finally, we can obtain:

σ (N ′i) = (1/
√
p) · σ (N o), (25)

where σ (N ′i) is the noise standard deviation of node i
of I-PDRI, and σ (N o) is the noise standard deviation of
repeated integration. �
The repeated integration method can rapidly suppress the

charger noise as mentioned in Sec. III-A. In addition, the
parallel driving method with random delay can further reduce
the charger noise with a slightly increased time caused by
random delay. The more parallel driving channels are used,
the greater the noise reduction is.

E. THE WHOLE ALGORITHM FLOW FOR NOISE
REDUCTION
Our previously discussed algorithm flow is shown in Fig. 9.
The three main steps are summarized as follows:

1) I-PDRI: We control the driving circuit and obtain the
sensing values using the sensing frequency from the
previous analysis. If we have no previous analysis at the
beginning, a default setting is used. The sensing value
of each parallel driving group on the panel is calculated
by repeated integration from a series of consecutive
sampling values. After the completion of one parallel
driving group, the next group starts. In this process,
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FIGURE 10. The pipeline architecture of our whole algorithm flow.

we record some sampling values for the next analysis.
We are not required to record all sampling values for the
next step, which would be unnecessary and wasteful of
hardware resources. This is because charger noise is a
type of finger-coupled noise. Therefore, we only record
the sampling values of a certain suspicious touch point.
A certain suspicious touch point can be picked from
the noisy sensing channels. After picking the node, we
drive the node and do sufficient samplings for noise
analysis.

2) DFT-based noise analysis: After the previous step,
we obtain the sensing values of a whole frame and
a series of consecutive sampling values. We first
calculate the intensities of frequency components
by (8). Then, we search for the noisy frequency
bin, and consider whether the noise frequency, the
sensing frequency and the repeating number meet
Theorems 1, 2, 3, or 4. If any of those theorems have
been met, we pass the sensing values of a whole frame
to the next stage and then calculate the accurate touch
points as shown in Fig. 2.

3) Frequency hopping: If none of the aforementioned
theorems have been met, we use the noise frequency
and the repeating number to calculate an appropriate
sensing frequency. When the current sensing frequency
is close to the frequency of noise, we cannot find the
noisy frequency bin. This is because the noise sig-
nal appears at the first bin like a DC signal. There-
fore, we change the sensing frequency periodically.
To separate the noise frequency from the first bin,
the frequency change range must be larger than the
number fs/r .

Assume that m is the number of driving channels, n is the
number of sensing channels, and r is the repeating number.
Because the touch panel hasm×n nodes and every node has r
samplings, the repeated integration step requires O(m×n×r)
time. Calculating intensities of frequency by (8) requires
O(r logr) time applying the radix-2 Cooley-Tukey algorithm
and searching for the noisy frequency bin just requires O(r)
time because of r frequency bins, so the time complexity
of the noise analysis step is O(r logr). The time complexity
of the frequency hopping step is O(1) because it uses the
noise frequency and the repeating number to calculate an
appropriate sensing frequency.

F. HARDWARE-SOFTWARE CO-DESIGN
To optimize the computing efficiency, our algorithm can be
implemented with a pipeline architecture as shown in Fig. 10.

When the DFT-based noise analysis step and the frequency
hopping step are executed, the I-PDRI step for the next
frame is executed simultaneously. The I-PDRI step is imple-
mented by hardware because regular and continuous sam-
pling requires hardware to accurately control the sampling
duration. The DFT-based noise analysis step and the fre-
quency hopping step are implemented by software because
they have very low time complexities and do not need to be
accelerated.

IV. EXPERIMENTAL RESULTS
To verify the correctness and effectiveness of our algo-
rithm and theorems, we constructed a platform to simulate
a mutual-capacitive touch system using C/C++. The touch
system had 12 driving channels and 8 sensing channels. The
sensing frequency was initially set to 300 KHz, the back-
ground noise was random noise with amplitude [−100, 100],
and the amplitude of each touch point was 1000. Charger
noise was finger-coupled, so we directly added charger noise
to touch points in our experiments, which was the same as
the industry testing standard [2]. The form of charger noise
is a combination of a fundamental frequency and its har-
monics [2]. The fundamental frequency of our charger noise
was set to 290 KHz, and the amplitudes for the fundamental
frequency and the second harmonic were set to 3000, which
was much larger than that of the touch signal. The intensity of
every signal is a transformation of its sensing value (voltage).

Four scenarios were proposed to evaluate the performance
of the algorithms:
• Scenario 1 was sequential driving without repeated inte-
gration.

• Scenario 2 was sequential driving with repeated integra-
tion, which is mainly used to discuss the effectiveness
of Theorems 1, 2, 3, and 4. The repeating numbers were
16, 32, 64, and 128, respectively.

• Scenario 3 was parallel driving with random delay but
without repeated integration, which is mainly used to
discuss the effectiveness of Theorem 5. The driving
matrices were 2-by-2, 4-by-4, and 8-by-8, respectively.
The 2-by-2 matrix is

D2×2 =

[
1 1
1 −1

]
.

The 4-by-4 matrix is D4×4 as (9).
The 8-by-8 matrix is

D8×8 =

[
D4×4 D4×4
D4×4 −D4×4

]
.

• Scenario 4 was I-PDRI, which is mainly used to dis-
cuss the effectiveness of Theorems 1, 2, 3, and 4, and
Corollary 1. The repeating number was 64. The driving
matrices were the same as those in Scenario 3.

These scenarios were investigated under two cases:
• Case 1 was five fingers touching on the panel with the
background noise and the charger noise.
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TABLE 1. The SNRs among all the scenarios under the two cases before frequency hopping. The fundamental frequency of charger noise is 290 KHz.
The sensing frequency is 300 KHz.

TABLE 2. The SNRs among all the scenarios under the two cases after frequency hopping. The fundamental frequency of charger noise is 290 KHz. The
sensing frequency is 326 KHz.

• Case 2 was five fingers touching on the panel only
with the background noise and without the charger
noise. This case was a comparison group to show the
SNR differences with that of Case 1 influenced by
charger noise.

The SNR in a touch system is calculated using the follow-
ing equations [3]:

SNR = 20× log10
AVGtouch − AVGun−touch

σ (n)
; (26)

σ (n) =

√∑100
n=1(Stouch[n]− AVGtouch)

100
, (27)

where AVGtouch and AVGun−touch are the averages of
100 frame values for a certain touch point and a certain un-
touch point, respectively. Stouch[n] is the n-th frame value for
a certain touch point.

Table 1 shows the SNRs among all the scenarios under
the two cases before frequency hopping, where the sensing
frequency is 300 KHz. Fig. 11(a) shows Scenario 1 under
Case 2, which only has the background noise. Fig. 11(b)
shows Scenario 1 under Case 1. These two figures show
that the charger noise severely interfered with the sensing
channels, so we were not able to differentiate where the touch
points were. Fig. 12(a) shows Scenario 2 with the repeating
number 64 under Case 1. As shown in Fig. 12(a), the noise
was not suppressed enough because the sensing frequency
may have been in a little close proximity to the frequency
of the charger noise. These results proved that it is necessary
to get a well-tuned sensing frequency. Note that the SNRs of
Fig. 11(b) and Fig. 12(a) are approximately −9.96 dB and
14.55 dB, respectively.

Next, we executed the noise analysis and frequency hop-
ping steps to find a well-tuned sensing frequency. The algo-
rithm first found a sensing channel where a suspicious touch
point was and used the data of a certain node on the sensing
channel for analysis. For the chosen point, we did 256 con-
tinuous samplings. Then, the algorithm analyzed the data
using (8). Fig. 13(a) shows the intensities of all frequency

FIGURE 11. (a) The raw map only with the background noise. (b) The raw
map with the background noise and the charger noise.

FIGURE 12. (a) The raw map with the repeated integration method
for Fig. 11(b). (b) The raw map with the repeated integration
method and the frequency hopping method for Fig. 11(b).

components. The noisy frequency bins are the 9-th bin and
the 8-th bin. For the 9-th bin, f = 300 × (256 − 9)/256 =
289 KHz. For the 8-th bin, f = 300 × (256 − 8)/256 =
291 KHz. So, the frequency f of the noise or its aliases
should be 290 KHz. The frequency f could be fd , fmirror ,
ffolded , or fmirror,folded . (Please refer to Theorems 1, 2, 3,
and 4.) 326 KHz is chosen as the new sensing frequency
because f × r/fs(= 290 × 64/326) is close to a positive
odd integer number based on Theorems 1, 2, 3, and 4. The
execution time of the above two steps was 3.5 ms.

After frequency hopping, Table 2 shows the SNRs among
all the scenarios under the two cases, where the sensing
frequency is 326 KHz. Fig. 12(b) shows Scenario 2 with the
repeating number 64 under Case 1, where the touch signals
are distinguishable, and its SNR achieved 30.04 dB. Besides,
Fig. 13(b) shows the intensities of all frequency components

VOLUME 7, 2019 3989



S.-L. Huang et al.: Frequency Hopping and Parallel Driving With Random Delay

FIGURE 13. The intensities of all frequency components are calculated
by (8). (a) When the sensing frequency is 300 KHz, the 9-th and 8-th
frequency bins are noisy. (b) When the sensing frequency is 326 KHz,
the 28-th frequency bin is noisy.

FIGURE 14. The maps with the parallel driving method with random
delay for Fig. 12(b). (a) Before decoding. (b) After decoding.

with the new sensing frequency. The noisy frequency falls in
the 28-th frequency bin, which is far away from the sensing
frequency and meets one of Theorems 1, 2, 3, and 4.

Because our touch system is mutual-capacitive, we applied
the parallel driving method with random delay to improve
SNR further. Fig. 14 shows the maps of Scenario 4 under
Case 1 with a 4-by-4 driving matrix before decoding and after
decoding. Before decoding, the SNR was 30.04 dB, which
was the same as that of the sequential driving. However, after
decoding, the SNR achieved 36.10 dB with approximately
6 dB of improvement. When we used an 8-by-8 driving
matrix, the SNR achieved 39.08 dB. Relative to Scenario 1,
we obtained 49.04 dB of improvement at most.

In the original settings, the fundamental frequency of the
charger noise is lower than the sensing frequency. To fully

verify the effectiveness of our algorithm, we changed the
fundamental frequency of charger noise to 310 KHz, which
is the mirrored frequency with respect to the sensing fre-
quency 300 KHz. We obtained the similar frequency spec-
trum as Fig. 13(a). Hence, we still identified the frequency f
as 290 KHz. Therefore, after the next frequency analysis,
the 12-th and 13-th frequency bins are noisy, and its SNR
with parallel driving is 23.1 dB. The bins are still close to the
sensing frequency, so we picked 279 KHz as the new sensing
frequency. Table 3 and Table 4 show the SNRs among all the
scenarios under the two cases before frequency hopping and
after frequency hopping, respectively. Relative to Scenario 1,
we obtained 45.02 dB of improvement using an 8-by-8 driv-
ing matrix in Scenario 4.

V. DISCUSSION
First, we summarize the SNR improvements among all sce-
narios in the experimental results. Then, we discuss the effec-
tiveness of the repeating time based on Theorems 1, 2, 3,
and 4 from the experimental results. Finally, we discuss the
appropriate execution time for our algorithm.

A. THE IMPROVEMENTS OF SNRs
In Case 2, see all the SNRs in four tables, the SNRs are
the same because the SNRs have no relationship with the
sensing frequency for the random noise. Besides, Scenario 2
shows that the repeating time n has an improvement factor
of
√
n relative to Scenario 1 because of well-known Bien-

ayme formula. Scenario 3 shows that a p-by-p driving matrix
has an improvement factor of

√
p relative to Scenario 1

because of Theorem 5. Scenario 4 shows that the repeating
time n and a p-by-p driving matrix has an improvement
factor of

√
np relative to Scenario 1 because of Corollary 1.

(An improvement factor of
√
np represents 3log2 np dB of

improvement)
In Case 1 of Table 2, we found that the SNRs of Scenario2

with the repeating time 64 have approximately 40 dB of
improvement after frequency hopping relative to Scenario 1.
This shows that the frequency hopping and the repeated
integration is the most effective method to eliminate charger
noise. Scenario 4 shows that a p-by-p driving matrix has an
improvement factor of

√
p relative to Scenario 2 with the

repeating time 64 because of Corollary 1.

B. THE EFFECTIVENESS OF THE REPEATING TIME
In Scenario 2 under Case 1 of Table 2, we also changed
the repeating time to 128 and 32 in separate trials. For the
repeating time 128, we obtained an SNR of 30.39 dB which
only represented less than 1 dB of improvement relative to the
repeating time 64. This proved that when Theorem 1, 2, 3,
or 4 is met, the periodic noise can be almost entirely
suppressed. Regarding the repeating time 32, its SNR
was 14.55 dB, which was similar to the SNR without fre-
quency hopping. It’s because 290x32/326 is 28.5, which is
not close to a positive odd integer and thus does not satisfy
Theorems 1, 2, 3, or 4.
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TABLE 3. The SNRs among all the scenarios under the two cases before frequency hopping. The fundamental frequency of charger noise is 310 KHz.
The sensing frequency is 300 KHz.

TABLE 4. The SNRs among all the scenarios under the two cases after frequency hopping. The fundamental frequency of charger noise is 310 KHz.
The sensing frequency is 276 KHz.

C. THE APPROPRIATE EXECUTION TIME
The acceptable latency is 10 ms based on the user experience
in [30], so we must consider whether our algorithm can be
run in 10 ms. In our algorithm flow, because the repeated
integration step is implemented by hardware, we can increase
the number of the receivers to reduce the total sensing time,
but it will increase the hardware cost. For example, our touch
system needs 3 receivers for the sensing frequency 326 KHz
and the repeating number 64, or 8 receivers for the sensing
frequency 326 KHz and the repeating number 128. Because
our touch panel had only 8 sensing channels, we were only
able to use 8 receivers. Regarding the hardware, the noise
analysis and frequency hopping steps were implemented by
software. To verify the computing efficiency, we ran the noise
analysis and frequency hopping steps on an ARM-M0 pro-
cessor operating at 50 MHz. The execution time was 3.5 ms
for 256 sampling data, which was acceptable. If other parts
of the multi-touch algorithm take much time, the execution
times of the two steps can be reduced to 1.6 ms and 0.5 ms
for 128 sampling data and 64 sampling data, respectively.
The use of an excessively small number of sampling data
would sacrifice the accuracy of noise analysis, but it may still
achieve a sufficient SNR.

VI. CONCLUSIONS
Capacitive sensors suffer from various noises, such as dis-
play noise, charger noise, and inherent noise. Charger noise
is unpredictable and depends on the charger to be used.
Therefore, the industry consensus is that charger noise is
the most difficult problem in capacitive touch applications.
First, we have presented the mathematical model of charger
noise, which is the form of charger noise is the combina-
tion of a fundamental frequency and its harmonics. Then,
we have proven that the combination of frequency hopping
and repeated integration is effective to suppress charger noise
under certain conditions, as shown in Theorems 1, 2, 3,
and 4. Based on those theorems, we could find an appro-
priate sensing frequency and a certain repeating number for
charger noise. As charger noise always changes with different

chargers, a DFT-based real-time monitor has been designed
to observe the behavior of noise and to find the frequency of
noise. After we obtain the frequency of noise, we can choose
an appropriate sensing frequency to eliminate noise. To obtain
a higher SNR, the parallel driving is a common technique for
mutual capacitive sensors without increasing sensing time.
However, it is suitable for a random noise, not for a peri-
odic noise. Therefore, we have proposed the random delay
technique to make a periodic noise become an uncorrelated
noise. Integrating repeated integration into parallel driving
with random delay, we can suppress charger noise further.
In addition, to optimize the computing efficiency, we have
introduced the methods to implement these ideas in hardware
pipeline and software, which only increases little hardware
cost.

Based on the results achieved, it was concluded that our
algorithm can increase SNR a lot for the charger noise,
which is also with theorems supporting. For charger noise,
frequency hopping and repeated integration can have approx-
imately 40 dB of improvement relative to sequential driving
without repeated integration. I-PDRI can an improvement
factor of

√
p, where p is the number of parallel driving

channels. Therefore, I-PDRI can increase SNR by over 45 dB.
Besides, our algorithm can be employed for the random noise,
which also has a theoretical improvement of

√
np relative to

sequential driving without repeated integration.
Finally, our results are limited to the charger noise and

the random noise in mutual-capacitive touch applications.
The other types of applications, such as self-capacitive touch
applications, optical touch applications, biometric capacitive
fingerprint applications, and biometric optical fingerprint
applications, could be considered based on our algorithm and
theorems in future studies.
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