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ABSTRACT Image registration is an important technique in many computer vision applications such as
image fusion, image retrieval, object tracking, face recognition, change detection and so on. Local feature
descriptors, i.e., how to detect features and how to describe them, play a fundamental and important role
in image registration process, which directly influence the accuracy and robustness of image registration.
This paper mainly focuses on the variety of local feature descriptors including some theoretical research,
mathematical models, and methods or algorithms along with their applications in the context of image
registration. The existing local feature descriptors are roughly classified into six categories to demonstrate
and analyze comprehensively their own advantages. The current and future challenges of local feature
descriptors are discussed. The major goal of the paper is to present a unique survey of the state-of-the-art
image matching methods based on feature descriptor, from which future research may benefit.

INDEX TERMS Local feature descriptor, image matching, point pattern matching, pattern recognition.

I. INTRODUCTION
Image matching is used to determine to geometrically align
two or more images of the same scene taken from different
viewpoints at the same or different times by the same or dif-
ferent sensors; this is an important task in image processing
and has been widely applied in the computer vision and
pattern recognition. Image matching methods are classified
into two different types i.e., area-based method and feature-
based method [1]. Area-based methods deal with the images
and used for checking the similarity of the pixels between
the reference image and the sensed image without detecting
salient features by using the optimization algorithms [2]–[4].
This method has some intrinsic limitations due to the inten-
sity distribution, varying illumination, and geometric defor-
mations that are caused by noise. Feature-based methods
directly use the salient features that is extracted from two

images instead of image intensity values that is more suitable
for illuminated change and complicated geometric defor-
mation [5], [6] and has also been widely used in image
matching.

Feature-based image registration methods consists four
main steps [7]: First feature extraction (feature descriptor),
second feature correspondence, third transformation estima-
tion and the final one is resampling. Feature extraction and
feature correspondence require lots of manipulation tech-
niques [8], image registration is the difficult part and is
the most important step for accurate feature correspondence.
Any problem in the feature extraction will result in incorrect
correspondences and incorrect transformation function that
will give wrong registration results. Feature extraction or fea-
ture descriptor is the main problem for inaccurate image
registration.
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Image matching was developed in 1980 by Moravec [9],
which is repeatable under small variations and near edges
and was applied for stereo matching; But the Moravec
detector was not rotation invariance and sensitive to noise.
Harris and Stephens [10] developed the Harris corner detector
in 1988, by improving the Moravec detector, that consist
the gradient information and the eigenvalues of symmetric
positive definite 2× 2 matrix to make it more repeatable,
that is widely applied for image matching tasks. Harris
corner detector is sensitive to scale, that does not result in
a good basis for image matching of different sizes [11].
Smith and Brady [12] presented SUSAN operator in 1997;
that is was not sensitive to local noise and has high anti-
interference ability. SIFT is the one of the mostly widely used
descriptor that was developed by Lowe [11], Scale invariant
feature transform (SIFT) has best performance in the context
of matching and recognition due to its invariance to rotation,
scale and translation [13]. Ke and Sukthankar [14] presented
the PCA-SIFT descriptor that represents the local appearance
by principal components of the normalized gradient field.
Mikolajczyk and Schmid proposed the Harris-Laplace and
Harris-Affine detectors for scale and affine invariant, that
deal with larger scale changes and also provide for reli-
able matching even for images with significant perspective
deformations [15]. Mikolajczyk and Schmid proposed a new
descriptor that is named Gradient Location and Orientation
Histogram (GLOH) by exploring SIFT by changing
the location grid and using PCA to reduce the size.
Lazebnik et al. [16] suggested a sparse texture representation
descriptor by using local affine regions called the Rotation
Invariant Feature Transform (RIFT). Bay et al. [17] revealed
that Speed-Up Robust Features (SURF) is an efficient imple-
mentation of SIFT by applying the integral image to compute
image derivations, and quantifying the gradient orientations
in a small number of histogram bins [18]. Wu et al. [19], [20]
suggested a new practices for learning method that is based
on fisher vectors (FV) and vectors of locally aggregated
descriptors (VLAD), that achieve high accuracy for good
practices for video encoding or action recognition in videos.
Lin et al. [21] suggested a tube-and-droplet-based repre-
sentation approach to indicate the global motion pattern
in practical applications such as trajectory clustering, tra-
jectory classification, abnormality detection and 3D action
recognition.

Recently, different important local feature descriptors are
proposed for matching and recognition from binary descrip-
tors that is based on pixel intensity comparisons, such as
BRISK [22], ORB [23], BRIEF [24], LDAHash [25] and
pooling configuration methods based on location and shape
of the regions [26]–[28], which are fast for both descriptor
construction and matching. Binary descriptors are used for
comparing the intensities of pixels sampled at different loca-
tions or mapping the local descriptor into the Hamming space
that is more efficient to compute [29], and in order to make
pooling configuration more tractable, the pooling configu-
ration needs to be considered and restricted to circular, and

symmetrically arranged pooling regions centered about the
patch to improve the performance by the convex optimiza-
tion [28]. Rublee et al. [23] stated that the ORB descriptor
is invariant to rotation changes and robust to noise that is
significantly faster than SIFT in many situations. ORB uses
binary tests by learning method that decrease the correlation
among the binary tests by improving the performance and
scalability [30]. Trzcinski et al. [28] suggested a new and
general framework to learn highly discriminative and com-
pact local feature descriptors with boosting that leverages the
boosting-trick to simultaneously optimize for both weight-
ing and sampling strategy respectively for nonlinear feature
responses. Chen et al. [18] studied a simple and powerful
local descriptor calledWeber Local Descriptor (WLD) which
is based on the Weber’s Law according to the perception of
human beings. WLD contains two components [18]: differ-
ential excitation and orientation. The differential excitation
component is a function of the ratio between two terms: one
is the relative intensity differences of a current pixel against
its neighbors; the other one is the intensity of the current pixel.
The orientation component is the gradient orientation of the
current pixel. Liu et al. [31] developed the local descriptor
called Weber Local Binary Pattern (WLBP) by combining
the advantages of WLD and Local Binary Pattern (LBP),
that includes two components: differential excitation and
LBP. The 2D histogram of WLBP is computed by encoding
patterns of differential excitation and LBP, that have high
performance as compared to LBP and WLD. Liu et al. [32]
proposed a new depth descriptor called Geodesic Invariant
Feature (GIF) that is multilevel feature representation frame-
work that is based on the nature of depth images and can
encode the local structures in the depth data.

The local feature descriptors play an important role in
computer vision and pattern recognition problems includ-
ing graph matching [33]–[35], object recognition or clus-
tering [36]–[38], image retrieval [39]–[41], object tracking
[42], [43], face recognition [44]–[46], and change detec-
tion [47]. The local feature descriptors describe keypoints
with distinctiveness, repeatability, compactness, accuracy
and efficient representations which are invariant and robust
to scale, rotation, affine transformation, occlusion, and illu-
mination [48], [49].

Recently, a large number of researchers have significantly
contributed on local feature descriptors for image match-
ing and recognition and so on. To our knowledge, there
is no review paper in the literature that comprehensively
analyzes these local feature descriptors for summarization.
The main objective of this paper was to present an insight
analysis framework on the latest findings of local feature
descriptors and promote further research on these aspects
in computer vision and pattern recognition, especially in
the context of image registration, and also provide the most
recent and advanced innovations from which the researchers
can benefit the state-of-the-art local feature descriptors to
present a number of improvements. In this paper, the existing
local feature descriptors are classified into six categories:
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FIGURE 1. The categorization of local feature descriptors and algorithms.

gradient-based methods, intensity-based methods, spatial
frequency-based methods, moment and probability-based
methods, learning-based methods and convolutional neural
network-based methods as shown in Fig. 1.

The rest of this paper is organized as follows: first we
provide a comprehensive survey of the existing local feature
descriptors for matching and recognition in detail. Finally we
present the conclusionwith some future recommendations for
future research.

II. LOCAL FEATURE DESCRIPTORS
Feature detection is the first main step of the local feature
descriptors that is based for imagematching system. The sim-
plest and themost commonly used keypoint detectionmethod
is Harris corner detector without using local descriptor. Harris
corner detector does not result in qualified keypoints in term
of repeatability and informativeness for big rotation and scale
change images because the Harris corner detector takes little
consideration to the richness of discriminative information
of these keypoints detected. It is necessary to encode the
keypoints extracted into a representative feature descriptor
that is based on the local geometric information to improve
their distinctiveness.

A. GRADIENT-BASED METHODS
Image gradient-based methods have received intense atten-
tion of the researchers due to its promising performance in a
variety of applications. Lowe [11] stated that the scale invari-
ant feature transform (SIFT) is based on the gradient distri-
bution in the detected regions, which is the mostly classical
and is invariant to scale, rotation and viewpoint change. There
are main four steps to generate the SIFT algorithm: (1) Scale-
space extreme detection. The first stage is to identify poten-
tial interest points that are invariant to scale and orientation
by applying Difference of Gaussian function. (2) Keypoints
localization. The location and the scale of each candidate
point is based on measures of stability that is determined.
(3) Orientation assignment is the stage in which one or more
orientations are assigned to each keypoint location that is
based on the local image gradient directions. (4) Keypoint
descriptor is the local feature descriptor; that is created by
computing the gradient magnitude and orientation in the
region around each keypoint. However, it is the computation-
ally demanding. Gradient location and orientation histogram
(GLOH) is developed by Mikolajczyk and Schmid [13], that
is an extension of the SIFT descriptor by changing the loca-
tion of the grid and using PCA to decrease the size in order
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to increase its robustness and distinctiveness. Ke and Suk-
thankar [14] stated that the PCA-SIFT descriptor is similar
to the SIFT descriptor, that represents the local appearance
by applying the principal components analysis (PCA) to the
normalized image gradient patch. Speeded-up robust features
(SURF) was proposed by Bay et al. [17] that has fast speed
by describing keypoints with the response of a few Haar-like
filter, but the SURF does away with SIFT’s spatial weighting
scheme which produces damaging artifacts [49].

Weng et al. [49] developed a new local image descriptor
that is named distinctive efficient robust features (DERF);
that is used for modeling the response and distribution prop-
erties of the parvocellular-projecting ganglion cells in the
primate retina. Pang et al. [50] suggested a fully affine invari-
ant SURF algorithm, which makes full use of the affine
invariant advantage of affine SIFT (ASIFT) and the efficient
merit of SURF, that avoid their drawbacks, and the exper-
imental results on optical image matching demonstrate the
proposed algorithm was robust. Several modifications in the
SIFT model have proposed [51]–[54] in order to improve the
repeatability of detection and effectiveness of matching under
nonlinear intensity changes and big distortion. Tola et al. [55]
introduced a DAISY descriptor by switching the weighted
sums of gradient norms by orientation maps that are con-
volutions of the gradients in specific directions with several
Gaussian filters, to make DAISY faster and more robust to
affine transformation and brightness change between images.
Because convolutions with a large Gaussian kernel can be
obtained from several consecutive convolutions by using
smaller kernels, and thus coordinationmaps for different sizes
can be computed at a low cost [56]. Cui and Ngan [57]
proposed the scale and the affine invariant Fan feature that
described by Fan-SIFT which is based on the affine shape
diagnosis of the mirror predicted surface patch and is made
by using the automatic sale selectionmethod based on the Fan
Laplacian of Gaussian (FLOG). Su et al. [58] suggested the
histogram of oriented gradient (HOG) descriptor, that consid-
ered weight for every bin of gradient orientation histogram
according to the significance of the gradient information.
Huang et al. [59] suggested the local main gradient and the
tracklets-based features method by applying the statistics of
tracklets to describe head-and-shoulder shapes to improve
the detection performance. Baber et al. [60] suggested the
BIG-OH, a simple method for binary quantization of any
descriptor based on the gradient orientation histogram by
computing a bit vector representing the relative magnitudes
of local gradients associated with neighboring orientation
bins. BIG-OH needs small memory requirements and only
requires 16 bytes per descriptor for the construction of the
gradient orientation histogram by applying the SIFT default
parameters. Huang et al. [61] suggested a novel and powerful
local image descriptor for making use of the histograms of
the second order gradients (HSOGs) to capture curvature
related local geometric properties. In order to reduce the time
and improve the recognition accuracy, Xie et al. [62], [63]
suggested the reversal invariant descriptor for local patterns

to obtain the identical representation for an image and its left-
right reversed copy, which has high performance for object
recognition and image classification.

Sedaghat and Ebadi [64] suggested a new local feature
descriptor that is named adaptive binning scale-invariant fea-
ture transform (AB-SIFT) by exploiting an adaptive binning
strategy to describe the image content around a local feature
and applying an adaptive histogram quantization strategy for
both the location and gradient orientations respectively, that
significantly increases the discriminability and robustness of
the final descriptor. The local descriptors are based on the
gradient information, that is widely used for image match-
ing and registration including optical images, multispectral
images [52], remote sensing images [64] and the synthetic
aperture radar (SAR) images [65], [66]. These methods are
more suitable for big geometric distortion and rotation and
can achieve robust image registration. The feature descriptor
is based on gradient methods, that leads to the slow speed and
poor real-time performance.

B. INTENSITY-BASED METHODS
The image intensity-based methods are applied to com-
pare the intensities of pixels sampled at different loca-
tion or mapping the local descriptor into the Hamming space.
Strecha et al. [25] suggested a new and simple approach
to produce a binary string from a SIFT descriptor, named
LDAHash, that aligns the SIFT descriptors according to the
problem specific to covariance structure. The reliable thresh-
olds can be estimated to perform the binarization according
to an appropriate cost function. Fan et al. [26] proposed a
newmethod for constructing interest region descriptor for the
key idea to pool the sample local features into several groups
based on the intensity orders in multiple support regions.
A distinctive local feature descriptor named partial intensity
invariant feature descriptor (PIIFD) [67] was proposed by
Chen et al. In their framework, the corner points are detected
instead of bifurcations; PIIFD are extracted for all corner
points by following a bilateral matching technique to identify
corresponding PIIFD matches; any unsuitable matches are
removed and these unsuitable matches are refined.

In order to deal with illumination changes, many local
features based on the intensity order have been proposed as
compared to the raw intensity, because the intensity order
of pixels in an image are invariant to monotonic changes of
intensity [68]. Ojala et al. [69] firstly suggested the local
binary pattern (LBP) operator, that creates an order based fea-
ture for pixel by comparing each pixel’s intensity value with
that of its neighboring pixels. The BRISK descriptor was pre-
sented by Leutenegger et al. [22]. BRISK descriptor is based
on binary string by assigning location, scale and orientation
clues for each sample points by concatenating the results of
the simple brightness comparison tests, which is invariant
to scale and rotation to obtain more compact and robust
performance. A simple descriptor based on binary descriptor
is called BRIEF that is proposed by Calonder et al. [24],
in which each bit is computed by comparing the intensity
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difference between a pair of sample points from the image
patches. Despite the clear advantage in computation and
storage, BRIEF still has weakness in terms of reliability and
robustness.

The LBP is among the most widely used intensity based
feature due to its computational simplicity [70], with appli-
cations in face recognition [71], [72], texture recogni-
tion or classification [73]–[77], video or receptive detection
[78], [79], interest region description [80]–[82], and infor-
mation retrieval [83]–[85]. LBP need to compare the gray-
level intensity of a pixel with that of k of its neighbors
at a pixel distance of r according to the LBP features for
a given image patch, and LBP can obtain a binary vector
expressing the relationship between the gray level intensity
at the point of interest to each of its neighbors from the
comparisons [60]. In order to decrease the dimension of the
descriptors while considering a large number of local neigh-
bors, Dubey et al. [86] suggested the interleaved order based
local descriptor (IOLD) that merges the patters extracted
for constructing the descriptor over each set separately to
produce a single pattern based on the local neighbors of a
pixel as a set of interleaved neighbors.

These methods can be widely used for multimodal retinal
image registration [67], [87], optical image matching with
different geometric and photometric transformations such as
scale, rotation, blur, illumination, and JPEG compression,
and textured scenes images [68], [80]. These methods have
the following properties such as short histogram, tolerance
to illumination changes and computational simplicity [80].
These methods also have some limitations due to the intensity
distribution, varying illumination, and geometric deforma-
tions which are caused, for instance, by noise.

C. SPATIAL FREQUENCY-BASED METHODS
Spatial frequency-based methods are very important descrip-
tors methods for image registration mainly including shape
contexts [36], [40], [88]–[94], directionlets [95], steerable
filters [96], [97], affine invariant [98], [99] and fractional
fourier or wavelet transform [100]–[102]. Mathematicians
typically define shape as an equivalence class under a group
of transformations, that tells us when two shapes are exactly
the same [36]. A survey on shape correspondence in com-
puter vision, pattern recognition, medical image process-
ing, and many other fields can be found in [90]. Tasks
such as content-based image retrieval, face recognition, and
image registration all require matching of features such
as points, lines, and contours extracted from the reference
and sensed images [103]–[107], i.e., finding the correspon-
dence between two shapes is then equivalent to finding
the point in each object with a similar shape context [91].
Litman and Bronstein [92] suggested a parametric spectral
descriptors that takes into account the statistics of the corpus
of shape to which it is applied and the class of transformations
to which it is made insensitive. Wang et al. [93] developed
a new shape descriptor method for leaf shape identification
by extracting multiscale shape features using arch height

features instead of curvatures for leaf shape description for
discriminatively representing the shape of the leaf. Hong and
Soatto [94] stated that a shape descriptor provides desirable
invariance properties that are based on a series of isotropic
integral kernels that characterize the local shape geometry
by enabling the shape signature to be robust with respect
to undesirable perturbation while retaining discriminative
power. In addition, the shape signature is designed to be
invariant with respect to group transformations that include
rotation, scaling, translation, and reflection.

The steerable pyramid filters introduced by Freeman and
Adelson [96], which are multi-scale, multi-orientation image
decomposition methods, rotation and translation invariant to
image distort, that can be widely applied for image registra-
tion. These characteristics make it useful for image registra-
tion such as remote sensing images and the registration results
that are more robust under big distort based on the steerable
pyramid filters [97]. Zavorin and Moigne [100] suggested
a wavelet feature pyramids method for automatic registra-
tion exploiting the inherent multi-resolution character of the
wavelet transformation, that can achieve a fast computational
speeds and accurate registration. Pan et al. [101] proposed an
adaptable-multilayer fractional Fourier transform approach
by combining the polar Fast Fourier Transform (FFT) and
the log-polar FFT, that has a lower interpolation error in both
polar and log-polar Fourier transform and can reach better
accuracy with the nearly same computing complexity as the
pseudopolar FFT. Song and Li [102] proposed a new feature
descriptor called the Local Polar DCT Feature (LPDF), which
is robust to a variety of image transformation by directly
extracting the DCT features from the local image patch quan-
tized in the polar geometric structure.

These methods are more accurate and significantly faster,
that is more suitable for point sets matching including
deformation, noise, outliers, rotation and occlusion [91],
optical image registration without any interpolation and iter-
ation [101]. In addition, these methods are also applied
to remote sensing image registration with geometrically
warped, noisy and radio metrically warped [108]. Two major
techniques in Fourier-based methods for image registration
are the phase correlation and the log-polar transform, but both
have poor performance and limited applications such as large
scales with arbitrary rotations.

D. MOMENT AND PROBABILITY-BASED METHODS
Feature representations are invariant to rotation, scale, and
translation in the matching process, general feature represen-
tations are chain code [109], moment invariants [110], and
probability descriptors [111], [112]. Dai and Khorram [109]
stated that the automated image registration method was
establish to correspondences between the protentially
matched regions detected by combining an invariant moment
shape descriptor with improved chain-code matching. The
Zernike moments are the extension of the geometric monents
by replacing the conventional transform kernel with orthog-
onal Zernike polynomials [110]. Zernike moments are used
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in the image registration and object recognition regardless
of variations in size, position, and orientation [113], [114].
Chen and Sun [110] proposed a new descriptor called the
Zernike moment phase-based descriptor by applying a com-
mon set of elliptical interest regions that are further normal-
ized to circular with a fixed size. In addition, the normalized
circular regions become affine invariant to a rotational
ambiguity.

The likelihood function has a mixture-structure such as
expectation-maximization (EM) algorithm that provide a
principled way for recovering maximum likelihood solutions
to problems posed in terms of missing or hidden data [33].
Luo and Hancock [33] stated from a probability distribu-
tion for errors and show that the problem of graph match-
ing can be started as maximum likelihood estimation by
applying the EM algorithm, and the correspondence matches
between the graph models that can be found in a matrix
framework which is based on singular value decomposi-
tion to improve the matching. Cho and Lee [115] proposed
a progressive method to update the candidate matches by
applying a move of graphs based probabilistic voting, that
greatly boost the objective function in an integer quadratic
programming problem. AHigh-order statistics ofWeber local
descriptors was proposed by Han et al. [116], that explore
the local patch, called micro-Texton, transformed domain and
employed a parametric probability process and extract the
higher-order statistics to model the Weber local descriptors.
Ma et al. [117]–[120] investigated about point matching
methods based on the local features under the assumption
that the point matches undergo a coherent transformation that
can be iteratively estimated by the expectation maximization
(EM) algorithm [121]. They presented a unified framework
for non-rigid feature matching based on the transformation,
and the underlying transformation between the point pairs
is represented by vector field [117], [118], robust L2E esti-
mator [119], or using a Gaussian mixture model [120], that
exploit both global and local structure to find the better
correspondences.

Moment and probability-based methods are applied to
point sets, textured scenes and structured scenes images for
matching or registration including photometric and geometric
transformations [110]. Moment and probability-based meth-
ods are suitable for remote sensing images, that are efficient
and robust and are able to handle outliers [122]. The probabil-
ity model depends on hidden variables, has a low convergence
rate. As a consequence, it is not suitable for large-scale data
sets and high dimensional data; but the computational struc-
ture of the algorithm is stable and accurate.

E. LEARNING-BASED METHODS
Learning-based methods are applied for higher level visual
tasks that can be classified into two categories [49]: learn-
ing low-level features [28], [84], [123], [124] and the deep
learning neural networks which provide more invariance to
various distortions by learning multiple levels of feature
including low-level feature to obtain higher-level features

[125]–[127]. Trzcinski et al. [28] suggested a new
supervised learning low-dimensional but highly discrimi-
native descriptors, that is applied for boosting to obtain
a non-linear mapping of the input to a high-dimensional
feature space. Simonyan et al. [84] suggested a learning
local feature descriptors as a convex optimization problem
by applying sparsity. The proposed method can decrease the
dimensionality as well as to improve discrimination of the
descriptors by applying theMahalanobis matrix nuclear norm
regularization.

Leaning local image descriptors method was proposed by
Brown et al. [123]. Leaning local image descriptors method
is based on building blocks for constructing descriptors,
which considers both linear and non-linear transforms with
dimensionality reduction, and to make use of discriminant
learning techniques and Powell minimization to minimize the
error of a nearest neighbor classifier. Most existing image
classification methods use hand-craft features, that are not
adaptive for different image domains. In order to solve this
problem, Shao et al. [124] suggested an evolutionary learning
method to automatically generate domain adaptive global
feature descriptor; that is based on multi-objective genetic
programming (MOGP); that is applied to evolve robust and
discriminative feature descriptors with a set of domain spe-
cific images and random constants as terminals, a number
of primitive operators as a function, both the classifica-
tion error rate and tree complexity as the fitness criterion.
Yuan et al. [127] proposed a manifold standardized deep
architecture method for recognition that is used to learn the
high-level features in an unsupervised fashion by exploit-
ing the structural information of data and making mapping
between visible layer and hidden layer. Liu et al. [128]
developed a motion feature descriptor based on genetic pro-
gramming (GP) to evolve discriminative spatiotemporal rep-
resentations, that simultaneously fuse the color and optical
flow sequences for high-level action recognition.

Learning-based methods doesn’t need manually labeled
ground-truth data, for low-level and high-level features that
are more flexible than conventional handcrafted features.
In addition, the trained deep learning network selected fea-
tures capture accurately the complex morphological patterns
in the image patches, that improve the image registration
performance on new image modalities or new imaging appli-
cations [129]. Deep learning can only provide limited amount
of data in application scenarios, and cannot give unbiased
estimation of data.

F. CONVOLUTIONAL NEURAL NETWORK
(CNN)-BASED METHODS
End-to-end learning of patch descriptors based on deep learn-
ing was introduced by [130]– [135], the convolutional neural
networks (CNN) have recently led to breakthroughs in com-
puter vision and pattern recognition [136] such as objective
detection [137], feature matching [138], and image classi-
fication [139] and so on. In 2012, Krizhesky et al. [130]
suggested a CNN called AlexNet that exceeded the previous
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results by a large margin in the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC). CNN belong to specific
category of deep learning methods, that become exception-
ally popular method because CNN have not only been able to
automatically learn image feature representations, but have
also simply a scaled version of the LeNet with a deeper
structure [136]. CNN models serve as good choices for
extracting features such as VGGNet [140], GoogleNet [141]
and ResNet [142], that are viewed as a set of non-linear
functions that are composed of a number of layers including
convolution, pooling, non-linearity [143].

Ma and Zhao [138] proposed a new feature matching
method that is based on CNN feature as the holistic image
representation. The CNN feature is applied to retrieve key-
frames that have similar appearance from a topological map.
Finally, the vector field consensus was used for geometric
verification and to retrieve the most similar key-frame to
improve the matching performance. Zhang et al. [144] pro-
posed fine-grained recognition method, includes two steps
of picking neural activations computed from the CNN,
one for localization, and the other one for description.
Zheng et al. [143] presented a local descriptor comparisons
called SIFT meets CNN: This survey provides insights con-
nection between SIFT and CNN-based methods for mod-
ern instance retrieval, reviews a broad selection in different
categories. Lin et al. [145] suggested visual data matching
method based on generalized similarity measure and fea-
ture learning. The similarity measure is unified with feature
representation learning via deep CNN that incorporates the
similarity measure matrix into the deep architecture, enabling
an end-to-end way of model optimization. Wen et al. [146]
introduced a new deep color guided coarse-to-fine convolu-
tional neural network (CNN) framework to alleviate texture
copying artifacts and preserve edge details effectively for
depth image super-resolution.

CNN-basedmethods are widely applied to computer vision
and patter recognition, CNN features can be extracted in
an end-to-end manner through a single pass to the CNN
model [143]. The feature descriptor representations exhibit
improved discriminative ability for image matching or image
registration. CNN-based methods have some limitations such
as adjusting parameters, large samples and using GPUs to
train samples models. The physical meaning is not clear and
neural network itself is an inexplicable ‘‘black box mode’’.

There are some special local features, i.e., feature encod-
ing methods including Bag-of-Words (BoW) [147], Fisher
Vector (FV) [148], Vector of Locally Aggregated Descrip-
tors (VLAD) [149] and so on, that are widely applied to
image classification [150]–[154], object localization [155],
face recognition [156], crowd counting [157] and video
analysis [158].

Yuan and Hu [150] applied the bag-of-words (BoW)
model to construct the compact feature vectors from densely
extracted local features for automatic cloud extraction and
image classification. Liu et al. [153] used the pre-trained
CNN activations as local features that is proposed for

particular compositional model based on the fisher vector
(FV) coding for image classification. Li et al. [154] pro-
posed a multiple vector for locally aggregated descriptors
(VLAD) encoding method with CNN features for image clas-
sification. Wang et al. [155] proposed a scheme for instance
annotation inspired by the successful application of bag-of-
words (BoW) to feature representation to incorporate the
BoW learning and instance labeling in a single optimiza-
tion formulation for object localization. Wang et al. [156]
developed the Compact FV (CFV) descriptor that is obtained
by zeroing out small posteriors, calculating first-order statis-
tics and reweighting its elements properly to apply CFV to
encode convolutional activations of CNN for face recogni-
tion. By taking into consideration diverse coefficient weights,
Sheng et al. [157] proposed a generalized form of weighted-
VLAD (W-VLAD)with the help of a CNN for accurate crowd
counting. Xu et al. [158] developed a new sequential vector
of locally aggregated descriptor (VLAD) layer to combine
the recurrent convolution networks (RCNs) architecture into
a whole framework to improve feature extraction and motion
analysis.

III. CONCLUSION
This paper aims to investigate the insight analysis of frame-
work on the latest local feature descriptors and promote
further research on the same aspects in computer vision appli-
cations to provide most recent and advanced innovations for
researchers.

The local feature descriptor is a key technique that plays
an essential role in computer vision and pattern recognition.
However, there are still some issues that remained un-solved
for the local feature descriptions as follows:

• The detection of stable features is the first step for
image registration, that directly affect the accuracy for fea-
ture correspondence. Therefore, it is suggested that in future
researchers are suggested to detect reference image and
sensed image to solve this problem.

• Describing the features detected is a critical and very
difficult step, and the features by local description should be
invariant and robust to affine, scale, rotation, occlusion and
illumination.

• To find the accurate feature correspondence is very
important step, that measure criterions and optimization algo-
rithms which are used to accelerate and improve image reg-
istration.

• How to choose the suitable transformation function is an
essential step, because some images are global, local or global
and local deformation.

In summary, local feature descriptors play an essential role
in many computer vision applications for future in image
registration, image fusion, image retrieval, object recognition
and change detection.
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