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ABSTRACT An automated smart home system is a key contributor to user assistance technology in modern
civilization. Crucial merit of such a system is its ability to train itself through recorded data and recognize
patterns in resident behaviors. Lack of sufficient prediction accuracy, exponential memory consumption,
and extensive runtime prevent many of the current activity prediction approaches from being seamlessly
integrated into consumer residences. This research introduces a sequence prediction algorithm which uses
a prefix tree-based data model in order to learn and predict user actions. The algorithm applies episode
discovery to detect correlated sensor events and learns the activities using a lossless data compression
technique. This process assigns a probability of occurrence to sensor events and uses these probabilities
to detect patterns in resident behavior. A complexity analysis of the algorithm is done to prove its efficiency
in terms of memory usage and runtime. Using the presented technique, predictions are performed on popular
datasets and contrasted with existing algorithms. The proposed algorithm achieves an 8.22% improvement
in prediction accuracy over its predecessors, along with 66.69% better memory efficiency and 37% faster
runtime.

INDEX TERMS Activity prediction, data compression, prediction by partial matching, prefix tree, sequence
prediction, smart home.

I. INTRODUCTION
In this era of an indoor generationwhere humans are spending
a great deal of time within their homes more than ever, smart
home or automated home system is becoming a daily neces-
sity. It immensely helps people who are handicapped or has a
hard time regulating within their households, as well as serves
the elderly citizens of a specific community, by making their
lives easier to maintain. The Smart HomeAssociation defines
a smart home as ‘‘an integration of technology and services
through home networking for a better quality of living’’ [1].
Such services are set up through predicting individual’s daily
activities and it is done by collecting ADL (activities of
daily living) data. Performance of an automated home almost
entirely depends on the system’s observation, perception, and
effective usage of prediction algorithms. A proper integration
requires the system to observe an individual’s activity pattern
and formulate a probable next event based on the learned data.

A diverse variety of living smart home researches are
conducted around the world. Adaptive House in USA [2],
MavHome [3], [4], House of the Future or House-n

in MIT [5], and Aware Home Research Initiative (AHRI) at
Georgia Tech [6] are the most notable research initiatives for
smart environment research.

Previously, automated home systems focused on appliance
intelligence more than human behavior. But for a developed
scheme it requires close observation, being able to predict
the next course of actions and act out on the best decisions
developed by the system itself. This is achieved by learning
their behavior and further analyzing them using an existing
computing framework. With the contribution of numerous
researchers, several activity prediction systems are developed
over the past few decades [7]. Artificial neural networks [8],
Bayesian statistics [9], fuzzy logic [10] are some of the
approaches used to provide automation in smart homes.

PUBS (Patterns of User Behavior System) is an activity
prediction approach developed by Asier et al. This method
uses three algorithms to identify resident actions, learn those
actions, and interact with users. LPUBS algorithm is used
to correlate resident actions, define rules, and identify pat-
terns. APUBS is used to learn activity patterns through the
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established rules. And finally, IPUBS is the interface that users
can interact with and fine-tune their preferences [11].

A more recent study implements the Back Propagation
Neural Network (BPNN) in order to predict resident actions
in smart homes. Xu et al. [12] modified the BPNN to develop
Parallel-BPNN that runsmore efficiently for larger data quan-
tity. In this method, a Neural network is trained with smart
home sensor data by adjusting weights of the network using
backpropagation.

A study done by Erfaneh et al. is noteworthy for their
focus on the variations of living conditions of 5 different
target groups. The authors developed a 3D interactive smart
space using virtual reality (VR) in order to collect residents’
behavioral data. This is particularly effective as the stated
preferences of residents are collected and habits of each indi-
vidual are recorded. The living patterns are predicted using
the Bayesian Belief Network on the basis of individual data
models [13].

Recently, data compression techniques gained enormous
recognition among smart home researchers due to their pat-
tern predicting capabilities [14]. Bhattacharya and Das devel-
oped LeZi update algorithm by implementing LZ78. It is an
effective data compression algorithm which uses dictionary
contexts to develop a user behavior model [15]. Although
the LeZi update can predict user actions fairly accurately,
it has a rather slow convergence rate, making this algorithm
unfeasible in real-world applications [16]. Gopalaratnam and
Cook introduced a variable length window to solve this prob-
lem and developed Active LeZi (ALZ) [17]. In this process,
more weight is associated with recent activities, which makes
this algorithm more sensitive towards the latest data. ALZ
is further developed by Vikramaditya and Cook by adding
temporal rules, which made this algorithm more responsive
to the timestamp of user actions [18].

Prediction by Partial Matching (PPM) is another data
compression method used by Alam et al. [19] to develop
SPEED (Sequence Prediction via Enhance Episode Discov-
ery). In this approach user activities are classified using
distinct episodes consisting of sequential events. The clas-
sified episodes are collected in a finite order Markov
model. An average prediction accuracy of 88.3% is achieved
which surpasses the performance of LeZi Update and
ALZ algorithm. Further development of SPEED is per-
formed by Marufuzzaman et al. who included the time
and location components to formulate Modified-SPEED or
M-SPEED [20], [21]. Addition of time component can reduce
redundancy in data caused by corrupted sensors. This, in turn,
increases the accuracy of prediction. On the other hand, with
the help of location component, the SPEED can be more
efficient in classifying sensors based on their location which
in turns achieves a higher reliability in prediction. This is
mainly important in scenarios where sensor locations can
play a vital role in user activity patterns.

A major drawback of the SPEED lies in its process of
training the data model by tree generation. Due to the use
of a linear approach in the tree formation, different branches

of the tree often have misaligned probabilities. This phe-
nomenon is further discussed in the later section of this paper.
As a result of this inconsistency, the algorithm is heavily
dependent on the structure of its training data. In this paper,
we introduced Sequence Prediction via All Discoverable
Episodes (SPADE), that improves over the novel SPEED
algorithm. The proposed algorithm introduces a more effec-
tive way to handle the tree generation in order to address the
limitations of SPEED. At the same time, this paper puts for-
ward a few enhancements that can lead to a higher accuracy
and better performance than the previous designs.

II. METHODOLOGY
The proposed SPADE algorithm takes the raw data from the
training dataset and processes the data in several steps in order
to generate a trainedmodel.Main 4 steps of this procedure are
discussed in this section.

A. SEQUENCE CREATION
In the raw training data, each user activities are recorded in
separate lines. Different data formats are utilized by various
datasets. Sequence Creation Modules differ in the parsing
process based on the structure of this raw data. Proposed
research chiefly uses CASAS adlnormal dataset [22] and
MavLab dataset [23] for predicting user activities.

FIGURE 1. Sensor locations around the rooms in Kyoto testbed [22].

The CASAS adlnormal dataset is collected in the Kyoto
testbed, which is a three-bedroom apartment in theWSUUni-
versity Housing system [22]. The dataset contains 6425 data
points gathered for 20 healthy adult test subjects. There are in
total of 26 motions sensors distributed around the house. Item
sensors and equipment sensors are also used to record specific
user actions. The positions of the sensors inside rooms are
depicted in Fig. 1 and positions of the sensors inside the
cabinet are shown in Fig. 2. The residents performed 5 prede-
termined activities in no particular order. The ADLs consist
of – making a phone call, washing hands, cooking, eating,
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FIGURE 2. Sensor locations inside the cabinet of Kyoto testbed.

TABLE 1. Data format in different datasets.

and cleaning. The tasks are recorded separately and no over-
lapping activities are performed by the residents. Thus, it is
a single resident database. Individual behaviors and habits of
test subjects are omitted in order to generalize the activity
pattern.

Another dataset used in this research is theMavLab dataset
collected in the MavHome testbed of University of Texas,
Arlington. In this collection, activities of 6 inhabitants are
recorded over a period of one month. It is a single resident
database similar to the CASAS adlnormal. The testbed com-
prises of 50 different appliances and in total around 700 valid
sequential states are recorded. The residents performed day to
day activities without any guidance. This resulted in a realistic
situation for single resident inhabited homes [3], [23].

It is to be noted that, while the CASAS dataset has more
data points than the MavLab, the number of appliances is
significantly higher in the case of MavLab dataset. Data
formats of these datasets are presented in Table 1.

A 5-step approach is taken to process the raw data and
make it suitable for the algorithm. At the end of this process,
a linear sequence of activities is compiled and sent to the next
module for episode extraction.

1) STEP 1
Any unwanted data is removed in this step. False sensor
readings, invalid rows in the dataset, and blank spaces are
managed. Additionally, for the purpose of this research, only
Motion sensor readings are extracted.

2) STEP 2
In this step, the raw data is parsed from the dataset and
stored in a 2-dimensional array. In case of CASAS adlnormal
dataset, the records are classified based on Person ID found
in file names.

3) STEP 3
Time is converted to a 5-digit string using the formula:
hour∗3600 + minute∗60 + second. For the purpose of this
research, the millisecond precision of the time is ignored as
it does not contribute to the accuracy of the prediction.

4) STEP 4
The Sensor IDs in the raw data are generally denoted by
several characters. For example: ‘M02’ may indicate the 2nd
Motion sensor. In this step, these values are mapped to ASCII
characters in order to denote by one character. The Sensor
States are merged with Sensor IDs thus allocating only once
character to determine sensor name and its state. During this
mapping 2 constants: START, and DIVIDER are introduced
to denote the starting points of ON to OFF states. A variable
OFFSET can be used to convert from ON to OFF state and
vice versa where,

OFFSET = DIVIDER− START (1)

In this research, values of START and DIVIDER are set as
33 and 80 respectively. This way, any whitespace characters
can be avoided from the calculation, while using the max-
imum number of consecutive ASCII characters. The maxi-
mum number of sensors denoted in this approach is equal to
OFFSET. For the specified values of START and DIVIDER,
the maximum number of available sensors is 47. Sensor map-
ping for Person 1 of CASAS adlnormal database is shown
in Table 2.

TABLE 2. An instance of sensor mapping.

In the case of the MavLab dataset, the room number is
also included in the newly generated sensor codes. Here,
the approach developed by Marufuzzaman et al. [21] is used
which uses the following equation:

newSensor = (room− 1)×MR+ rawSensor (2)
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where,
newSensor =Modified sensor ID
room = Room number
MR =Maximum number of sensors in one room
rawSensor = Sensor ID in raw data.

5) STEP 5
Finally, the processed values are compiled in one contin-
uous sequence of records. The sequence is stored in a
2-dimensional array in the format: [Sensor Code] [Date]
[Time]

While usingASCII symbols renders effective computation,
human interpretation of these symbols is exceedingly hard.
For a clear understanding of this paper in the following
sections, the events are represented using Uppercase and
Lowercase letters. Uppercase representing ON state of an
event and Lowercase representing OFF state. For example,
in any event sequence ‘ABcabC’, ‘A’ corresponds to ON state
of a specific sensor whereas ‘a’ corresponds to the OFF state
of the same sensor.

B. EXTRACTION OF EPISODES
Episodes are extracted following the windowing technique
used in SPEED algorithm. A variable length window is
used to accumulate episodes from the generated sequence.
A different approach is taken in this research that exploits
the advanced matrix manipulation capabilities offered by
MatLab to generate the same resultant episodes more effi-
ciently. The pseudocode of Episode Generation Module as
shown in Fig. 3 eliminates the need for a nested loop to search
for subsequent events constituting the episodes.

FIGURE 3. Pseudocode for episode extraction.

During collection of episodes, the time of events is used to
validate the integrity of sensors. For episodes where event E1
comes before E2 but Time(E1) > Time(E2) , an invalid sensor
firing is identified and the episode is omitted. Additionally,
the duplicate firings of same sensor event are removed to
better facilitate the subsequent modules.

C. GENERATION OF ALL POSSIBLE CONTEXTS
In this step, the episodes are processed to generate all possible
contexts to build the data tree. In SPEED an intuitive linear
strategy was used to get the possible combinations while
keeping the order of events intact [19]. In case of an episode
’Bcdb’, the algorithm generated combinations: ‘B’, ‘c’, ‘d’,
‘b’, ‘Bc’, ‘cd’, ‘db’, ‘Bcd’, ‘cdb’, and ‘Bcdb’. These combi-
nations were then stored in linear arrays to be used in the later
part of the algorithm. But this method may result in multiple
memory allocations for the same combination in different
episodes. For a better understanding let us consider another
episode ‘Ecd’ occurring after ‘Bcdb’. For ‘Ecd’ the generated
combinations are ‘E’, ‘c’, ‘d’, ‘Ec’, ‘cd’, and ‘Ecd’. Here,
combinations ‘c’, ‘d’, and ‘cd’ are repeated and will require
additional memory to process.

To resolve the above-mentioned problem, a prefix tree-
based approach is introduced in this research. Instead of using
a linear array to store generated possibilities, a prefix tree
(also known as Trie tree) [24] data structure is implemented
that can grow on demand and simultaneously record the fre-
quency of occurrences of the possibilities. Singly connected
linked lists are used to connect nodes in the tree. A root node
σ is connected to multiple subtrees where node Tx occurring
as a child of node Ty indicates that event Ty is preceded by
event Tx in the training dataset.

FIGURE 4. A general structure of the data subtree.

Fig. 4 depicts the generalized structure of the possibility
tree for an episode s of length k . Here, s1, s2,... sn are events
of episode s, where event sn is followed by event sn−1 in the
dataset. Thus, node sn is added to sn−1 as a child node. If there
is a repetition during possibility generation, a nodewill preex-
ist in the tree representing the repeating combination. During
this scenario, no new node is added, only the frequency of the
existing node is incremented by a value of 1.

A step by step processing of an episode ‘Bcdb’ is visual-
ized in Fig. 5. In this example, a root node ‘σ ’ is first created
as the origin of the decision tree. During the first iteration,
event ‘B’ is added as a child node to the root node and its
frequency is set as 1. During iteration 2, ‘c’ is added as a child
to all its preceding events in episode ‘Bcdb’. Thus, a child
is added to root node ‘σ ’ and its child ‘B’. Concurrently,
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FIGURE 5. Tree generation steps for episode ’Bcdb’.

FIGURE 6. Pseudocode for generating all possible contexts.

the frequency of ‘B’ is incremented by 1 and frequency of
newly created ‘c’ nodes are set as 1. In a similar fashion,
iteration 3 and 4 finishes the tree building for episode ‘Bcdb’.

The algorithm uses pseudocode in Fig. 6 to generate the
data tree from extracted episodes. Themethod uses an array L
to keep track of the recently added leaf nodes. In every itera-
tion, the subtrees are added only to the leaf nodes contained
in L and the new leaves are replaced in the array as new
tracked items. This technique eliminates the need for multiple

nested loops and exhaustive tree search in order to convert the
linear episodes into prefix tree data structure.

Aside from the considerable improvement in memory and
time complexity in the context generation phase, this method
eliminated the need for additional tree generation phase
required in the previous SPEED algorithms.

D. PROBABILITY ASSIGNMENT
In the previous SPEED algorithms, the Tree generation step
following the All possible context generation module was
used to simultaneously create the decision tree and allocate
the probability of outcomes. This resulted inmisaligned prob-
abilities among different branches of the tree. A primary
goal of this research is to separate the tree generation from
the probability allocation. This technique can ensure uniform
distribution of probabilities and significantly improve the
accuracy of prediction.

The decision tree formed during the Possibility generation
phase is traversed using a Depth First Search (DFS) traversal
to visit all nodes and set their respective probabilities. At any
given level the algorithm first goes to the leftmost child node
and recursively reaches its bottom.Upon reaching a leaf node,
sets its probability value and travels back to its immediate
parent node. When the leftmost node child node is already
traveled, the algorithm steps to the child node to its right and
follows the same recursive procedure. This way every subtree
is visited from bottom to top and left to right. An overview
of this process for a particular training scenario is shown
in Fig. 7. In this setting, the algorithmfirst goes to the leftmost
child node of the root and travels to its bottom. When the
node D(1) is reached, the algorithm sets the probability using
the following equation:

p(sn) = f (sn)/f (sn−1) (3)

where,
p(sn) = Probability of node sn
f (sn) = Frequency of node sn
and, sn is the child node of sn−1.
Upon setting the probability of node D(1) to 0.5, its parent

node is visited and the same procedure is repeated. After
successive 4 iterations, the probability of all the nodes in the
leftmost subtree is set and the algorithm moves to the subtree
of node b(4). This way the whole data tree is configured to its
accurate probability in O(n) complexity.

III. COMPLEXITY ANALYSIS
The modifications of the SPADE algorithm in Possibility
generation module improves the memory efficiency signifi-
cantly. The following 4 hypotheses are presented to analyze
the memory complexity of this algorithm and establish the
effectiveness of the proposed changes.
Hypothesis 1: In the worst-case scenario, M-SPEED has a

space complexity of k to the power of three for an episode of
length k.

Proof: In the All Possible Context Generation module,
the generated contexts are stored in a 2-dimensional linear
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FIGURE 7. Probability assignment steps for a particular training scenario.

array to create the tree. For any episode s of length k , the num-
ber of possible contexts with length t will be k − t + 1.
To demonstrate this, let us consider an episode ‘Bcdb’.
• Possibilities containing 1 letter are ‘B’, ‘c’, ‘d’, and ‘b’
(in total 4).

• Possibilities containing 2 letters are ‘Bc’, ‘cd’, and ‘db’
(in total 3).

• Possibilities containing 3 letters are ‘Bcd’ and ‘cdb’
(in total 2).

• Possibility containing 4 letters is ‘Bcdb’ (in total 1).
Therefore, the total amount of required memory (letters) for
an episode of length k is,

M1(k) =
k∑
t=1

t ∗ (k − t + 1)

=
k3 + 3k2 + 2k

6
(4)

Hence, the worst-case space complexity is O(k3), where k is
the number of events in an episode.
Hypothesis 2: In M-SPEED, the worst-case scenario

appears when the complete data consists of a single large
episode and no events are repeated in that episode.

Proof: For any sequence of events D that consists of
n number of episodes of length kn, where k =

∑
kn, we know,

k3 ≥
∑

(kn)3 And, (5a)

k2 ≥
∑

(kn)2 (5b)

Therefore, based on the values in Equation (1) we can infer,

M1(k) ≥ M1(kn) (6)

This implies that, when the whole dataset contains only one
episode, the algorithm allocates the most memory.
Hypothesis 3: In the worst-case scenario, SPADE has a

space complexity of k to the power of two for an episode of
length k.

Proof: This research implements a Prefix Tree based
model where nodes are connected using linked lists. Every
node contains one letter (to denote its event), frequency,
and an address to the next node. For an episode s of
length k , the number of nodes at level l will be k − l + 1,
where 1 ≤ l ≤ k .

FIGURE 8. Context tree formed for episode ’Bcdb’.

This argument can be demonstrated by visualizing the tree
formed by the episode ‘Bcdb’ in Fig. 8. In this example, for
each level, the node count is decremented by 1.

Therefore, for an episode of length k, the sum of required
memory is:

M2(k) =
k∑
l=1

(k − l + 1)

=
k(k + 1)

2
(7)

Hence, the worst-case space complexity of the SPADE algo-
rithm is in the order ofO(k2), where k is the number of events
in an episode.
Hypothesis 4: In SPADE, the worst-case scenario appears

when the complete data consists of a single large episode and
no events are repeated in that episode.
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Proof: Similar to Hypothesis 2, when a data sequence
is divided into n number of episodes of length kn, where
k =

∑
kn, we can say,

k2 ≥
∑

(kn)2 (5b)

Putting these values in Equation (4) we find,

M2(k) ≥ M2(kn) (8)

This proves that dataset having one large episode covering
the whole sequence will require the maximum amount of
memory.

IV. RESULTS AND DISCUSSIONS
The SPADE algorithm is designed to yield better accuracy
and performance compared to the existing activity predic-
tion algorithms like SPEED, M-SPEED, PUBS, and BPNN.
To validate our proposal, we used two popular datasets
CASAS adlnormal, and MavLab to run different algorithms
and compare their results. Both these datasets are described
in section II.A.

Firstly, SPADE, M-SPEED, and PUBS algorithms are
trained and tested with the MavLab dataset to compare their
peak accuracies over different training lengths. Secondly,
the average accuracies of SPADE andM-SPEED for different
episode lengths are compared to analyze the influence of
resident behavior. Thirdly, the memory allocation and run-
time of both these algorithms are recorded and compared in
order to gain a better insight into how much performance
improvement is possible with the current changes. Finally,
SPADE is run on CASAS adlnormal dataset and compared
with BPNN to assess the prediction accuracy for massive data
points.

FIGURE 9. Accuracy comparison of SPADE, M-SPEED and PUBS on
MavLab dataset for different training data sizes.

The first analysis of the performance of the SPADE
algorithm is done in terms of peak accuracy over vary-
ing sizes of training data. M-SPEED and PUBS algo-
rithms are implemented to compare their accuracies with
this research. In Fig. 9 the prediction accuracies of all the
three algorithms are plotted over increasing training lengths.
To minimize the runtime, an interval of 20 is chosen to collect
data points. From the experiment results, a steep increase is

found in SPADE and PUBS for smaller data sizes, but when
the number of training events exceeded 80, SPADE showed a
significant improvement over the other two algorithms. The
maximum accuracy is achieved at event size 220 and a stable
performance is visible following that.

Fig. 10 charts the accuracy of SPADE and M-SPEED
on MavLab dataset with respect to episode lengths. Here,
the episode lengths refer to the number of sequential events
constituting a particular activity. An accuracy of 78% for
episode length 4 indicates that, when the trained model pre-
dicts activity after 3 consecutive known events, an average
of 78% accuracy is achieved. The graph shows a uniform
increase in prediction capability of around 10% for the pre-
sented approach. This is a concrete establishment that the pro-
posed algorithm performs better than the previous M-SPEED
in every possible episode length.

FIGURE 10. Accuracy comparison of SPADE and M-SPEED on MavLab
dataset with time verification.

FIGURE 11. Accuracy comparison of SPADE and M-SPEED on MavLab
dataset without time verification.

The importance of verification of event sequence based
on time information is evident in Fig. 11. This figure shows
the accuracy of SPADE without time verification. In this
graph, thought the peak accuracy is higher than the proposed
approach, anomalies are visible for episode length 5. Two
major factors may play a role behind this anomaly. Firstly,
the excessive random event firing in the dataset can cause
random noise in the data. The mean of this noise can peak
at a particular episode length causing the algorithm to render
poor prediction for that length. Secondly, the lack of suffi-
cient data points for a particular episode length can result in
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false predictions. Nevertheless, the average accuracy is still
higher than that of M-SPEED and its predecessors.

Better memory allocation is a key factor in determining
the performance of any simulation. It can ensure a smooth
transition of the process to hardware-based systems and assist
the system to scale up for larger data pools. This concept
was kept in mind during the development of the proposed
algorithm. As mentioned earlier, the substitution of the linear
array with a tree data structure can greatly conserve memory
while delivering the same prediction accuracy. To prove this
theory, memory allocation is recorded during runtime of both
M-SPEED and SPADE for MavLab database. During the
process, only byte counts for event tags are considered, due to
the fact that frequency and time stay the same for both cases.
Fig. 12 shows the average memory allocation with respect to
different episode lengths. Whereas for small episode lengths
the allocated memory is similar in both processes, a pro-
nounced difference is visible for larger episodes. The overall
effect onmemory can be perceived in Fig. 13where the cumu-
lative memory growth of the simulations over successive
episodes is displayed. As predicted, the exponential increase
in array size is at play here. The trained data structure in
SPADE is 66.69% more efficient than that of M-SPEED.

FIGURE 12. Average memory allocation of M-SPEED vs SPADE.

In addition to memory efficiency, SPADE also exhibits a
reduced execution time compared to previous activity pre-
diction systems. In M-SPEED, linear search on possibilities
makes the process greatly dependent on data composition.
A bigger size of the array causes an increase in the number of
nested loops. Whereas the tree traversal method in SPADE is
inherently faster, tree building is not. The use of tracker array
discussed in section II.C can make tree building a lot faster
and can process data in half the time. To prove this concept,
MATLAB timing features are utilized in the simulation to
record runtime. Fig. 14 demonstrates average time taken for
every episode of the two contrasting algorithms. It is evident
from the diagram that a notable improvement in performance

FIGURE 13. Cumulative memory allocation of M-SPEED vs SPADE.

FIGURE 14. Average runtime of M-SPEED vs SPADE.

is found for larger episode lengths. For smaller episodes
though, M-SPEED has a slighter advantage. This is due to
the fact that, connecting nodes with linked lists require more
function calls which in turn takes more time than linear loops.
Overall, nearly 37% improvement in runtime is established by
the new algorithm.

Because of the data management techniques applied to
SPADE, this algorithm runs large datasets in polynomial time
and memory. In the final experiment, we ran the SPADE
algorithm on CASAS adlnormal dataset and compared the
results with BPNN on the basis of training data sizes. It is
to be noted that, due to a large number of data points in this
dataset, M-SPEED and PUBS algorithms take a longer time
to compute, and thus, omitted from this experiment. Fig. 15
shows the simulation results of SPADE and BPNN over
increasing training events. Similar to the results on MavLab
dataset, the performance of SPADE peaks earlier than BPNN
and thenmaintains a stable prediction accuracy over the larger
data sizes.
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FIGURE 15. Accuracy comparison of BPNN and SPADE for different
training data sizes.

FIGURE 16. Accuracy of the proposed algorithm on CASAS dataset.

FIGURE 17. Accuracy of the proposed algorithm for individual residents
of CASAS dataset.

From the graph in Fig. 16, we can see that the accuracies on
CASAS adlnormal dataset for different episode lengths are
remarkably higher than the tests run on the MavLab dataset.
Even for predictions with no preceding events, the accuracy
is more than 66%. The primary cause of this higher output
is the abundance of data points in the CASAS dataset. Due
to adequate training variety, the tree is built reliably and
probability values are fine-tuned. Fig. 17 gives us an overview
of 4 sample residents from the CASAS data pool. A closer
inspection of these residents shows us that the prediction

graph varies widely from person to person. This is attributed
to the diversity in resident behavior and the inconsistency
of the activity data. On one hand, resident 1 and 4 shows
extremely high prediction values for their regularity in daily
activities. On the other hand, resident 2 and 3 shows a wider
variance, in some cases decline in accuracy with increasing
episode lengths.

A brief summary of prediction accuracies of all the meth-
ods implemented in this research is given in Table 3. The
accuracies over different data sizes are considered in this case.
From this table it is evident that, at least 8.22% improvement
is achieved by the proposed technique.

TABLE 3. Peak prediction accuracies of different algorithms.

Overall, the proposed SPADE algorithm has improved
over the existing activity prediction algorithms in terms of
both accuracy and computational complexity. The developed
system can be applied to real-world scenarios and realistic
datasets in order to deliver reliable activity prediction.

V. CONCLUSION
Recent smart home systems are equipped with the feature of
activity prediction, which plays a crucial role to ensure proper
automation and user comfort. The use of machine learning
and data compression algorithms for predicting human activ-
ities is increasing rapidly in order to provide robustness to
these systems. But with increasing data volume and high
demand, these algorithms fail to deliver reliable accuracy
and performance. In this paper, an improved human activ-
ity prediction algorithm is proposed based on a prefix tree-
based data model. To ensure the viability of the proposal,
simulations are conducted on popular datasets that closely
resemble real-world user behavior. Results show a notewor-
thy improvement over previous approaches in terms of accu-
racy, memory management, and runtime. On the basis of
these promising results, it is evident that our algorithm can
be effectively used in smart homes applications to provide
necessary automation.
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