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ABSTRACT This paper proposes a novel estimationmethod, named double scale two dimensional frequency
distribution (DSTFD), to estimate the parameters of quadratic frequency modulated (QFM) signals. In the
DSTFD, by using a novel parametric instantaneous self-correlation function and the idea of the keystone
transform, the QFM signals are transformed into two-dimensional frequency domain, and the QFM signals
are detected by searching peaks. To reduce computational cost, a double scale (DS) estimation strategy,
which consists of coarse estimation and fine estimation, is proposed. The DS estimation strategy can
be implemented by using the Chirp Z-transform and an improved transform named local scaled Fourier
transform (LSFT). The LSFT only consists of complex multiplications, fast Fourier transform (FFT), and
inverse FFT operations. The implementation, anti-noise performance, and computational cost are analyzed
for the proposed method. Through simulations and analyses, the results demonstrate that the DSTFD
outperforms other compared algorithms.

INDEX TERMS Double scale two dimensional frequency distribution (DSTFD), quadratic frequency
modulated (QFM), parameter estimation, parametric instantaneous self-correlation function (PISCF), double
scale estimation strategy.

I. INTRODUCTION
Quadratic Frequency Modulated (QFM) signals are widely
used in many fields such as radar, sonar, and communi-
cation [1]–[4]. In recent years, parameters estimation and
detection of the QFM signals whose frequencies vary quickly
with time have received considerable attention, such as the
low probability interception radar signal [1].

Maximum likelihood (ML) based methods [5]–[7] are
the famous estimation method because of their good anti-
noise performance, but they need to search the maxi-
mum in the three dimensional domain which leads to a
large amount of computation. To reduce the computational
cost, many improved methods are proposed. For exam-
ple, the methods similar to time-frequency analysis tech-
nique are proposed, which include the L-class of fourth-
order complex-lag PWVD [8], local polynomial Wigner dis-
tribution [9], [10], quasi-maximum-likelihood (QML) [11],
and the method based on sparsity exploitation [12].
These algorithms have problems of the low anti-noise per-
formance and serious cross-term interference. In addition

to the time-frequency methods, some correlation algorithms
are proposed. The cubic phase function (CPF) [1], [13]
and Higher order ambiguity function (HAF) [14] are the
popular correlation estimation methods, whose essence are
to reduce the order of QFM signal by the multilinear
and bilinear transforms and estimate the parameters by
dechirping. Although the computational cost is reduced, the
cross-term problem is appeared. In order to eliminate the
cross-terms, two categories are exploited: one category is
based on product and integrating, and other one is based
on two-dimensional parametric domain. The first category
methods mainly include the integrated generalized ambigu-
ity function (IGAF) [15], the product HAF (PHAF) [16],
the product generalized CPF (PCPF) [17], the product high-
order matched-phase transform (PHMT) [18], and the HAF-
integrated CPF (HAF-ICPF) [19], where the performance of
HAF-ICPF outperforms that of the other methods. The sec-
ond category methods mainly include the chirp rate and the
quadratic chirp rate distribution (CRQCRD) [20], the mod-
ified CRQCRD (mCRQCRD) [21], the two-dimensional
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product modified parameterized chirp rate-quadratic chirp
rate distribution (2D-PMPCRD) [22], the scaled Fourier
transform (SCFT) based algorithm [23], the scaled double-
autocorrelation transform (SCDCT) [24], and the algorithm
presented in [25]. For the CRQCRD, mCRQCRD, and
the 2D-PMPCRD, the non-uniform fast Fourier transform
(NUFFT) is used to eliminate the brute-force searching.
As the NUFFT needs to perform interpolation operation, it is
non-preferred in realistic applications. Compared to them,
the SCFT based algorithm, the SCDCT algorithm, and the
algorithm presented in [25] obtain better estimation perfor-
mance by using the fast Fourier transform (FFT) instead of
the NUFFT, where the performance of the algorithm pre-
sented in [25] is better than that of the other two algorithms.
Compared to the ML-based methods, although the computa-
tional costs of the correlation algorithms are lower, the anti-
noise performance and suppression cross-term performance
are worse which need to be improved.

Through comprehensive analysis, the algorithm presented
in [25] and the HAF-ICPF are selected as the compared algo-
rithms. However, the anti-noise performance of them is still
low, and the computational costs are large for high precision
estimating. To solve these problems, in this paper, a novel
self-correlation algorithm named double scale two-dimension
frequency domain (DSTFD) is proposed. By employing
a novel parametric instantaneous self-correlation function
(PISCF) and the idea of keystone transform operations,
the anti-noise performance is improved. In the proposed algo-
rithm, a double scale (DS) estimation strategy is proposed
which can reduce the amount of calculation effectively. The
DS strategy is implemented by using an improved transform
named local scaled Fourier transform (LSFT) and Chirp
Z-transform (CZT), where the LSFT only consists of complex
multiplications, IFFT and FFT operations. Through the anal-
yses of implementation, anti-noise ability, and computational
cost, the DSLVD outperforms the compared algorithms.

The rest of the paper is organized as follows. In Section II,
some related works about the proposed method are intro-
duced. In Section III, the proposed method is described.
Section IV demonstrates the effectiveness of the DSTFDwith
a few numerical experiments. Finally, Section V concludes
the paper and presents the future research direction.

II. RELATED WORK
In this Section, the key technologies of the proposed
algorithm are described, including the PISCF and peak
accumulation.

A. THE PISCF
Consider a noise-free multi-component QFM signals which
can be described by

sm (t) =
K∑
i=1

Ai exp (jφi (t))

=

K∑
i=1

Ai exp
(
j2π

(
a1it + a2it2 + a3it3

))
(1)

where K denotes the number of components, φi (t) denotes
the signal phase of the ith component, Ai denotes amplitude,
a1i, a2i, and a3i are the phase coefficients.
The corresponding instantaneous frequency rate (IFR) of

(1) can be represented as

IFR =
d2φi (t)
dt2

= 4π (a2i + 3a3it) (2)

Based on the format of the IFR and the analyses
in [20], [26], and [27], a novel parametric instantaneous self-
correlation function (PISCF) is defined as

Rsm (t, τ ) = sm

(
t +

τ + a
2

)
sm

(
t −

τ + b
2

)
× s∗m

(
t −

τ + a
2

)
s∗m

(
t +

τ + c
2

)
(3)

where ∗ and τ denote the complex conjugation and the lag
time variable, respectively. a, b, and c are constant delay
which are utilized to complete order reduction and energy
accumulation [27], where b = a + 2$ and c = a − 2$ . $
is an order reduction factor described in [16], [27], and [28]
whose purpose is to reduce the signal order. According to
the analysis in [28] and [30], by using the constant delay a
and $ , the anti-noise performance is improved. Moreover,
the delay a helps to avoid the non-uniformly spaced lag-
time axis which is beneficial to improve estimation accu-
racy [26], [27]. The selection criterions of a and $ will be
introduced in Section III-C.

Substituting (1) into (3) yields

Rsm (t, τ )

=

K∑
i=1

A4i exp
[
j2π

(
(2a2i$ − 3a3i$ 2)(a+ τ )

+ 6a3i$ (a+ τ )t
)]
+ Rcross(t, τ ) (4)

where Rcross (t, τ ) denotes the cross-term. It is easily seen
from (4) that the time variable t and lag variable τ couple
with each other. Due to the existence of coupling, the phase
coefficients are difficult to be estimated.

B. PEAK ACCUMULATION
According to the analysis in [26], the similar coupling can be
removed by using the keystone transformation. To remove the
coupling in (4), we are inspired by the idea of keystone trans-
formation and propose an improved transformation operation
which consists of the local scaled Fourier transform (LSFT)
and the inverse Fourier transform (IFT), and the operation is
defined by

x (tnew) = IFTf [LSFTt [x (t)]]

= IFTf

[
b
∫
x (t) exp (−j2πbft) dt

]
(5)

where tnew = t/b, b is a scaling factor whose purpose is to
change the time variable. IFTf [·] denotes the IFT operation
with respect to f . f is the searching frequencywhich is limited
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in the frequency range [fd , fu]. fu and fd are the upper limit and
lower limit of the searching frequency, respectively, which
are determined by the frequency range of x(t). When the
frequency range of x(t) is unknown in advance, the fu and
fd are set to the limiting values (without violating Nyquist
frequency constraints), which means that fd = −fs/2 and
fu = fs/2 where fs is sampling frequency. When the range
is known in advance, fu and fd are set to the known values.
In this paper, the frequency range is unknown.

It is easily seen from (5) that, after performing the LSFT-
IFT operation, time variable is changed from t to tnew.
According to the property of (5), setting b = 1

(a+τ )q and
replacing x (t) by Rsm (t, τ ) yield

Rsm (tnew, τ ) = mathrmIFT f [LSFTt
(
Rsm (t, τ )

)
]

=

K∑
i=1

A4i exp (j2π (h1i (a+ τ)+ h2itnew))

+ IFTf [LSFTt (Rcross (t, τ ))] (6)

where tnew = (aq+ qτ) t , h1i =
(
2a2i$ − 3a3i$ 2

)
and

h2i = (6a3i$) /q. Equation (6) shows the coupling existing
in (4) is removed. The purposes of introducing q are to limit
h2i and make sure aq = 1, and those will be described
in Section III-C.

To estimate the parameters h1i and h2i, Fourier trans-
form (FT) is performed along the tnew and τ , respectively,
which is represented as

TFD
(
ftnew , fτ

)
= FTτ [FTtnew [Rsm (tnew, τ )]] (7)

where fτ and ftnew denote the frequency domain with respect
to τ and tnew, respectively. FTτ [·] and FTtnew [·] denote the
FT operation along the τ and tnew, respectively. TFD is a 2D
frequency domain about fτ and ftnew .
Substituting (6) into (7) yields

TFD
(
ftnew , fτ

)
= FTτ [FTtnew [IFTf [LSFTt

(
Rsm (t, τ )

)
]]]

=

K∑
i=1

A4i exp
[
(j2πh1ia) δ (fτ − h1i)

× δ
(
ftnew − h2i

) ]
+ Qcross

(
ftnew , fτ

)
(8)

where δ(·) denotesDirac delta function and theQcross(ftnew , fτ )
denotes the cross-term after FT operation. It is easily seen
from (8) that each self-term can be accumulated as a sole
peak at the point (h1i, h2i) where 1 ≤ i ≤ K , and each peak
denotes a QFM signal. Thus, there are K peaks in the TFD
domain. By locating the peaks, the parameters h1i and h2i can
be estimated. To obtain the estimation of a2i and a3i, we need
to perform the transformation about the parameters which are
expressed as

a2i =
h1i + (qh2i$) /2

2$
and a3i =

qh2i
6$

(9)

a1i can be obtained by the dechirping and FFT operation
which is presented in [19] and [20].

ForQcross
(
ftnew , fτ

)
, as long as the energy of the cross-term

cannot be accumulated as the self-term, no peak appears in
the TFD domain with related to the cross-term. However, for
three special cases, the energy of the cross-term is accumu-
lated as the self-term which will be verified in Appendix.
In further study, we will focus on resolving this problem.
In order to facilitate analysis, we assume that the energy of
the cross-term cannot be accumulated.

It is worth noting that, according to (5), the IFTf [·] is the
inverse transformation of FTtnew [·] where FTtnew [·] is the FT
with respect to tnew. Thus, in (8), the IFTf [·] operation is
avoided since we need to perform the FTtnew [·] operation, and
the peak accumulation operation can be simplified as

TFD
(
ftnew , fτ

)
= FTτ [LSFTt

(
Rsm (t, τ )

)
] (10)

III. PROPOSED METHOD
In this Section, we describe the proposed method based on
mono-component QFM signal and multi-component QFM
signals, respectively. In the end, we discuss the parameter
selection criterion of the DSTFD.

A. DSTFD BASED ON MONO-COMPONENT
According to the introduction of related works in Section II,
this subsection describes the proposed method based on a dis-
crete time mono-component QFM signal. For easier under-
standing, the implementation of the LSFT will be introduced
firstly. Then, we will describe the processing procedure of
proposed method.

1) THE IMPLEMENTATION OF LSFT
According to [29], we know that the CZT is able to provide
arbitrary frequency resolution within the selected frequency
band, and it can be implemented easily by the complex mul-
tiplications and FFT. The format of CZT is expressed by

CZT [x (n)] =
N−1∑
n=0

x (n) z−nl

=

N−1∑
n=0

x (n)A−nW nl, l = 0, 1, · · · ,L − 1

(11)

where x (n) is a discrete signal, L is an arbitrary integer
which denotes frequency number. The factors A and W are
expressed by A = A0 exp (jθ0) and W = W0 exp

(
−j1φ

)
,

where A0 is the vector radius length,W0 is zooming factor, θ0
is initial phase angle, and 1φ is angle increment.

Similar to the keystone transform, the LSFT can be imple-
mented based on the CZT [26], [30]. According to the analy-
sis in [30], to implement the LSFT, the factors in CZT should
be set to A0 = 1, W0 = 1, θ0 = 2π fd

fs
b, and 1φ =

2π fr
Lfs
b, where fr = fu − fd called searching frequency band.

Substituting these factors into (11), the LSFT is obtained
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RC
s =



RCs

(
−
N
2
,−

N
2

)
RCs

(
−
N
2
+ 1,−

N
2

)
· · · RCs

(
N
2
− 1,−

N
2

)
RCs

(
−
N
2
,−

N
2
+ 1

)
RCs

(
−
N
2
+ 1,−

N
2
+ 1

)
· · · RCs

(
N
2
− 1,−

N
2
+ 1

)
...

...
. . .

...

RCs

(
−
N
2
,
N
2
− 1

)
RCs

(
−
N
2
+ 1,

N
2
− 1

)
· · · RCs

(
N
2
− 1,

N
2
− 1

)


(14)

which is represented by

LSFT [x (n)] =
N−1∑
n=0

x (n) z−nl

=

N−1∑
n=0

x (n) exp
[
−j2π

(
fd
fs
bn+

fr
Lfs

bnl
)]
(12)

2) PROCESSING PROCEDURE OF DSTFD
For the mono-component QFM signal, the number of com-
ponent is K = 1 in (1). In this part, the discrete mono-
component QFM is simplified as

s (n) = A exp
[
j2π

(
a1nTs + a2(nTs)2 + a3(nTs)3

)]
,

(1 ≤ n ≤ Nw) (13)

where Ts is the sampling interval. By performing the PISCF
on s (n), a two dimensional instantaneous self-correlation
matrix is obtained which is written as (see (14), shown at
the top of this page), where N = (Nw − ($ + aq)/Ts) is
the effective signal length. With the Claasen and Mecklen-
brauker (CM) sampling scheme [31], the element in RC

s is
expressed as

RCs (n,m) = A4 exp
[
j2π

(
h1(a+ 2mTs)

+ h2(aq+ 2qmTs)nTs
)]

(15)

where h1 = 2a2$−3a3$ 2, h2 = 6a3$/q, n is the sampling
of time variable t with −N

2 ≤ n ≤ N
2 − 1, and m is the

sampling of lag variable τ with −N
2 ≤ m ≤ N

2 − 1. For the
matrix in (14), each row changes over time variable n and
each column changes over the lag variable m. To estimate the
parameters, the DS estimation strategy, which includes coarse
estimation and fine estimation, is performed on RC

s .

a: COARSE ESTIMATION
According to (10), to accumulate peak, the LSFT and FT
should be performed on RC

s along the lag variable and
time variable, respectively. For the coarse estimation, FT
is implemented by FFT operation. Thus, the procedure is
represented as

TDF1 = FFTcol

[
LSFTrow

[
RC
s

]]
(16)

where LSFTrow[·] denotes the LSFT operation performing on
the row, FFTcol [·] denotes the FFT operation performing on
the columns, and TDF1 is the 2D frequency domain which is
obtained by performing the coarse estimation. By searching
the peak on the TDF1 domain, the rough estimations of h1
and h2 are obtained which are denoted by ĥ1 and ĥ2.
According to the analysis of LSFT in (5), for the coarse

estimation operation, the searching range of LSFT is set to
fd = −fs/2 and fu = fs/2 because the range of h2 is unknown
in advance.

Due to the CM sampling property, the sampling frequency
of the time variable and the lag variable are equal to fs and
fs/2, respectively. So the estimation precision of ĥ1 and ĥ2
are equal to fs/ (2N ) and fs/L1, respectively, where N is the
frequency number for the FFT which is equal to effective
signal length, and L1 is the frequency number for the LSFT
which is determined by the resolution requirement in prac-
tical application. In order to improve estimation precision,
the fine estimation operation should be performed.

b: FINE ESTIMATION
Different from the coarse estimation, for the fine estimation,
the searching frequency band is selected around ĥ1 and ĥ2.
Moreover, CZT operation is performed instead of FFT oper-
ation to implement FT, because entire frequency band search
is not needed. Thus, the fine estimation procedure is repre-
sented as

TDF2 = CZTcol

[
LSFTrow

[
RC
s

]]
(17)

where CZTcol [·] denotes the CZT operation performing on
the columns, and TDF2 denotes the 2D frequency domain
which is obtained by performing the fine estimation.

The searching frequency ranges of ĥ1 and ĥ2 are set to
the estimation precision of the coarse estimation operation,
which means that

fr,h1 = fs/ (2N ) and fr,h2 = fs/L1 (18)

where fr,h1 and fr,h2 are the fine searching frequency ranges of
ĥ1 and ĥ2, respectively. According to the searching frequency
ranges, the factors θ0 and 1φ of CZT are set as

θ0 = 2π
ĥ1 − fr,h1/2

fs
and 1φ = 2π

fr,h1
fsLCZT

(19)

where LCZT is the frequency number.
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Meanwhile, the factors fd and fu of LSFT are set as

fd = ĥ2 − fr,h2/2 and fu = ĥ2 + fr,h2/2 (20)

and frequency number is set as L2.
By locating the peak in the TDF2 domain, the fine esti-

mations of h1 and h2, which are denoted by ĥfine1 and ĥfine
2

,
are obtained with the precision fs

2NLCZT
and fs

L1L2
, respectively.

In this paper, we assume the estimation precision of each
QFM parameter is the same, which means that 2NLCZT =
L1L2. The value of L1, L2, and LCZT are set in advance decided
by the requirement of precision in practical application.

According to (9), The fine estimate of a2 and a3 are
obtained by

âfine2 =

ĥfine1 +

(
qĥfine2 $

)
/2

2$

âfine3 =
qĥfine2

6$
(21)

where âfine2 and âfine3 denote the fine estimations of a2 and a3.
The fine estimate of a1 represented as âfine1 can be obtained
by dechirping method [18], [19].

The proposed algorithm is summarized in Algorithm 1.

Algorithm 1
1: Input: The QFM signal s (n), sampling frequency fs, and

frequency numbers L1, L2 and LCZT .
2: Step 1: Perform PISCF given in (3) on s (n) to obtain (14).
3: Step 2: Set fd = −fs/2, fu = fs/2 for the LSFT. Perform

LSFT and FFT on (14) to obtain TDF1 by (16).
4: Step 3: Search the peak in the TDF1 domain to obtain the

coarse estimated values ĥ1 and ĥ2.
5: Step 4: According to ĥ1 and ĥ2, calculate the factors for

LSFT and CZT based on (18) to (20). Perform LSFT and
CZT on (14) to obtain TDF2 domain by (17).

6: Step 5: Search the peak in the TDF2 domain to obtain the
fine estimated values ĥfine1 and ĥfine2 .

7: Step 6: Finally, the fine estimate of âfine2 and âfine3 are
obtained by using (21), and the fine estimate âfine1 are
obtained by dechirping method.

8: Output: The final estimate of the QFM coefficients, âfine1 ,
âfine2 , and âfine3 .

B. DSTFD BASED ON MULTI-COMPONENT
For the multi-component QFM signals, the proposed method
still works. The discrete form of (1) is expressed as

sm (n)

=

K∑
i=1

Ai exp[j2π (a1inTs + a2i(nTs)2 + a3i(nTs)3)] (22)

According to the analysis of the peak accumulation tech-
nique presented in Section II-B, when we consider K QFM
signals in the searching frequency range, K peaks will be

accumulated in the TFD domain after performing the peak
accumulation technique. Thus, by performing the coarse esti-
mation operation on (22), there will be K peaks in the TFD1
domain, and each peak denotes a QFM signal. According to
locating the peaks in the TFD1 domain, the coarse estimated
parameters of the K QFM signals are obtained, which are
represented by

{
ĥ1i, ĥ2i, i = 1, · · · ,K

}
. For the fine estimate

operation, according to the coarse estimation parameters,
we set different factors for CZT and LSFT. Such as, for the
estimated parameters of the ith peak, the factors of LSFT
should be set as

fdi = ĥ2i − fr,h2/2 and fui = ĥ2i + fr,h2/2 (23)

and the factors ofc CZT should be set as

θ0i = 2π
ĥ1i − fr,h1/2

fs
and 1φi = 2π

fr,h1
fsLCZT

(24)

where fr,h1 and fr,h2 are the fine search frequency ranges
which are the same as those for the mono-component case.
With the above factors, the fine estimated values ĥfine1i and ĥfine2i
are obtained by using fine estimation operation. According
to (9), the fine estimations of a2i and a3i are expressed as

âfine2i =
ĥfine1i +

(
ĥfine2i $

)
/2

2$
and âfine3i =

ĥfine2i

6$
(25)

The fine estimation of a1i is estimated by dechirping opera-
tion [18], [19].

C. PARAMETER SELECTION
In this part, the selection criteria of the parameters including
$ , a, and q are discussed. According to the analyses and
simulations in [27] and [28],$ can not only reduce the num-
ber of self-correlations but also complete the order reduction
which benefits the anti-noise performance and the energy
accumulation. The optimal $ is equal to NwTs/3 which
has been proved in [16] based on an alternative optimality
criterion (the resolution capability).

The delay a is corresponding to the keystone trans-
form [26]. Based on the analysis in (6), tnew = (aq+ qτ) t .
Lv et al. [30] propose a phase lines analysismethod to analyze
the choice of aq. In order to guarantee precision and improve
anti-noise ability, the optimal value of aq is equal to one,
because no interpolation is required along the axis tnew and the
interpolation on both sides of the axis is symmetrical. Define
the discrete parameter pair (a, q) as (NrTs, q). Assume the
given number of time sampling points of the PISCF isN , then

Nr = Nw − N and q =
1

(Nw − N )Ts
(26)

It is easily seen that (26) makes sure aq = 1. In addition,
the previously processed data can be used as the redundancy
information to perform the proposed method.
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TABLE 1. The parameters of two component QFM signals.

IV. PERFORMANCE ANALYSIS
In order to verify the effectiveness of the proposed method,
anti-noise performance and computational cost will be ana-
lyzed for the proposed method. According to the analysis in
Introduction, the HAF-ICPF [19] and the algorithm presented
in [25] are selected as the comparative method. The parame-
ters of the QFM signals are given in Table 1.

A. ANTI-NOISE PERFORMANCE
In this subsection, the anti-noise performance will be ana-
lyzed for the DSTFD, the HAF-ICPF, and the algorithm
presented in [25]. For statistical study the estimation perfor-
mance of the proposed method, it is assessed by means of the
normalized mean square error (NMSE) [32] expressed as

NMSE = 10 log

(Ntrails∑
l=1

(
âl − al

)2
/

Ntrails∑
l=1

a2l

)
(27)

where Ntrails denotes the number of trails (here Ntrails = 300)
and âl is the estimation of the a in the lth trial. The evaluation
is based on noisy mono-component QFM signal and noisy
multi-component QFM signals.

1) MONO-COMPONENT QFM SIGNAL CASE
The signal used in this simulation is the first component
shown in Table 1. The sampling frequency is 128 MHz. The
effective signal length is 512. The signal is corrupted by
an additive Gaussian noise with signal-to-noise ratio (SNR)
∈ [−8 : 0] dB, which is changed in increments of 1 dB. The
simulation results are shown in Fig. 1.

FIGURE 1. NMSEs for the DSTFD, the HAF-ICPF, and the algorithm
presented in [25]. (a) NMSEs of a1. (b) NMSEs of a2. (c) NMSEs of a3.

Fig. 1 shows the NMSE results of the DSTFD, the
HAF-ICPF, and the algorithm presented in [25]. It is easily
seen that both the SNR thresholds of the HAF-ICPF and the

algorithm presented in [25] are−4 dB. The SNR threshold of
the DSTFD is −5 dB. Therefore, the anti-noise performance
of DSTFD is better than that of other two methods. That is
because, compared with other methods, DSTFD introduces
the constant delay which can increase energy accumulation
and improve anti-noise ability. Moreover, Fig. 1 shows that
the estimation accuracy of a1 of DSTFD is close to algorithm
presented in [25], and it is better than that of the HAF-ICPF.
Meanwhile, the accuracy of a2 and a3 of DSTFD is better
than that of the other two methods. According to the analysis
in Section III-C, the delay a helps to avoid the non-uniformly
spaced lag-time axis which is beneficial to improve accuracy.
Therefore, it can be concluded that the anti-noise ability of the
proposed method is improved, and the estimation accuracy is
still satisfactory.

FIGURE 2. NMSEs for a3 and a2 of the two component QFM signals.
(a) NMSEs for a2 of the first component QFM. (b) NMSEs for a3 of the
first component QFM. (c) NMSEs for a2 of the second component QFM.
(b) NMSEs for a3 of the second component QFM.

2) MULTI-COMPONENT QFM SIGNALS CASE
For multi-component QFM case, we consider two component
QFM signals, and the parameters are given in Table 1. The
sampling frequency is 128 MHz, and the effective signal
lengths are equal to 512. The signals are corrupted by an
additive Gaussian noise with SNR ∈ [−4 : 5] dB changed
in increments of 1 dB, and they are also assessed by NMSE.
In this simulation, only the two highest order coefficients are
given due to brevity. Fig. 2 depicts theNMSEs for a3 and a2 of
two component QFM signals given in Table 1, where Fig. 2(a)
and Fig. 2(b) are corresponding to the first component and
Fig. 2(c) and Fig. 2(d) are corresponding to the second
component. SNR thresholds of the algorithm in [25], the
HAF-ICPF, and the DSTFD are 2 dB, 1dB, and −1 dB,
respectively. Compared to the algorithm in [25], the DSTFD
can achieve better anti-noise performance because constant
delay is introduced in the DSTFD which contributes to
improve anti-noise ability and energy accumulation. For the
HAF-ICPF, since the CLEAN operation [19] is used to esti-
mate the multi-component, the anti-noise ability decreases.
Therefore, the anti-noise ability of the DSTFD is better than
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that of the other two methods for multi-component. Mean-
while, Fig. 2 shows that the estimation accuracy of DSTFD
is also satisfactory.

B. COMPUTATIONAL COST
According to the analysis in Section III-A, by using
the DSTFD method, the parameters estimation precision
is fs/(2NLCZT ). In this part, the computational costs of
HAF-ICPF, the algorithm presented in [25], and DSTFD are
analyzed based on the same precision.

For the HAF-ICPF, the main implementation procedures
are HAF and ICPF, and the computational costs of them are
O (N ) and O((NLCZT )3), respectively. Therefore, the com-
putational cost of HAF-ICPF is O((NLCZT )3) [19]. For
the algorithm presented in [25], its main implementation
procedures include a parametric self-correlation function,
the GSCFT, and the FFT operation. The computational
costs of them are O

(
N 2
)
, O

(
(NLCZT )2log2(NLCZT )

)
, and

O
(
(NLCZT )2log2(NLCZT )

)
, respectively. Thus, the overall

computational cost of the algorithm presented in [25] is
O
(
(NLCZT )2log2(NLCZT )

)
[25]. For the DSTFD method,

its main implementation procedures include the PISCF,
the LSFT, the FFT, and the CZT. The computational
costs of them are O

(
N 2
)
, O

(
N 2log2N

)
, O

(
N 2log2N

)
,

and O
(
(N + LCZT )2log2(N + LCZT )

)
[29], respectively.

Thus, the overall computational cost of DSTFD is
O
(
(N + LCZT )2log2(N + LCZT )

)
. Table 2 gives computa-

tional costs of these three estimation algorithms.

TABLE 2. Computational costs.

It is easily seen from Table 2 that the computational cost of
DSTFD is lower than that of the other two methods. Accord-
ing to the analysis in Section III-A, when the signal effective
length N is not changed, LCZT should be large to obtain high
estimation precision. For the DSTFD, the computational cost
is almost unchanged with the increase of LCZT . However, for
the algorithm presented in [25] and the HAF-ICPF, the com-
putational costs are sensitive to LCZT .
To illustrate the superiority of the proposed algorithm,

the computational cost of different precision is shown by
using the average simulation time, which is depicted in Fig. 3.
The simulation condition is the same with the mono-
component QFM signal simulation with SNR = 0 dB. The
vertical axis shows the average simulation time, and the
horizontal axis shows the estimation precision. The simu-
lations are completed on a computer with an Intel Core
I7-8700K (3.70GHz), 32 GB memory, and 64 bit operating
system. The MATLAB version is R2018a. It is easily seen
from Fig. 3, with the precision becoming higher, simulation
times of the algorithm presented in [25] and the HAF-ICPF
increase quickly. For the DSTFD, the simulation time is

FIGURE 3. Simulation time.

almost unchanged with the precision increasing, and it is
less than that of the other two methods. It is worth noting
that when precision conditions are 1 MHz and 0.5 MHz,
the DSTFD costs less simulation time than other precision
conditions, because the DSTFD only needs to perform coarse
estimation operation when the precision requirement is low.

V. CONCLUSION
In this paper, a novel method called DSTFD is developed
to estimate both mono-component QFM signal and multi-
component QFM signals. In the DSTFD, by using the PISCF
and the idea of keystone transform operation on the QFM sig-
nals, the signal order is reduced and the coupling is removed.
The computational cost is effectively reduced by using dou-
ble scale estimation strategy, especially for obtaining high
precision estimation. With numerical simulations about anti-
noise performance and computational cost, we can see that
the proposed method can obtain better anti-noise ability and
less amount of calculation compared with other methods.
Although the DSTFD can acquire higher anti-noise perfor-
mance than other correlationmethods, the performance is still
not satisfactory because of the limitation of self-correlation
function. In the near further, we mainly focus on following
research work for the DSTFD: (1) developing of the high
order version of the DSTFD for the general polynomial
phase signals; (2) resolving the cross-term problem when it
accumulates as the self-term; (3) improving the anti-noise
performance of DSTFD.

APPENDIX
In this Appendix, we discuss the conditions when the cross-
term is accumulated as the self-term in (8). To formulate
the cross-term problem arising from multi-component QFM
signals, we consider two QFM signals which is expressed as

sm (t) = A1 exp
(
j2π

(
a11t + a21t2 + a31t3

))
+A2 exp

(
j2π

(
a12t + a22t2 + a32t3

))
(28)
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Qcross,1

= FTτ {LSFTt {A21A
2
2 exp{j2π [(ϕ1 +M4)(a+ τ )+ 2(ϕ2 + 3a32$ )(a+ τ )t)]} exp{j2π [2ϕ3(

a+ τ
2

)
3
+ 3ϕ3(a+ τ )t2]}

+A21A
2
2 exp{j2π [(M3 − ϕ1)(a+ τ )+ 2(3a31$ − ϕ2)(a+ τ )t)]} exp{−j2π [2ϕ3(

a+ τ
2

)
3
+ 3ϕ3(a+ τ )t2]}}} (30)

Qcross,2

= FTτ {LSFTt {A21A
2
2 exp{j2π [(M3 +M4)

a+ τ
2
+ 3(a31$ + a32$ )(a+ τ )t]}

× cos{2π [(M1 −M2)+ 2(ϕ2$ − ϕ3$ 2)t + 3ϕ3$ t2 + 3ϕ3$ (
a+ τ
2

)
2
]}}} (31)

Qcross,3

= FTτ {LSFTt {{A31A2 exp{j2π [(ϕ1 +M3 +M4)
a+ τ
2
+ (ϕ2 + 3a31$ + 3a32$ )(a+ τ )t]}

× cos{2π [(M2 −M1)+ (ϕ1 − 2ϕ2$ + 3ϕ3$ 2)t + (ϕ2 − 3ϕ3$ )t2 + (ϕ2 − 3ϕ3$ )(
a+ τ
2

)
2
]

+A1A32 exp{j2π [(ϕ1 + 2M4)
a+ τ
2
+ (ϕ2 + 6a32$ )(a+ τ )t]} cos{2π [ϕ1t + ϕ2t2 + ϕ2(

a+ τ
2

)
2
]}}

× exp{j2πϕ3[
(a+ τ )3

4
+ 3(a+ τ )t2]}}} (32)

Qcross,4

= FTτ {LSFTt {{A1A32 exp{j2π [(M3 +M4 − ϕ1)
a+ τ
2
+ (3a31$ + 3a32$ − ϕ2)(a+ τ )t]}

× cos{2π [(M1 −M2)+ (2ϕ2$ − 3ϕ3$ 2
− ϕ1)t + (3ϕ3$ − ϕ2)t2 + (3ϕ3$ − ϕ2)(

a+ τ
2

)
2
]

+A31A2 exp{j2π [(2M3 − ϕ1)
a+ τ
2
+ (6a31$ − ϕ2)(a+ τ )t]} cos{2π [ϕ1t + ϕ2t2 + ϕ2(

a+ τ
2

)
2
]}}

× exp{−j2πϕ3[
(a+ τ )3

4
+ 3(a+ τ )t2]}}} (33)

Qcross,5

= FTτ {LSFTt {A21A
2
2 exp{j2π [(M3 +M4)

a+ τ
2
+ (3a31$ + 3a32$ )(a+ τ )t]}

× cos{2π [(M2 −M1)+ (2ϕ1 − 2ϕ2$ + 3ϕ3$ 2)t + (2ϕ2 − 3ϕ3$ )(t2 + (
a+ τ
2

)
2
)+ 6ϕ3t(

a+ τ
2

)
2
+ 2ϕ3t3]}}}

(34)

With careful analyses of the characteristics of the cross-term,
Qcross can be divided into five parts and represented as

Qcross = Qcross,1 + Qcross,2 + Qcross,3 + Qcross,4 + Qcross,5
(29)

Let

M1 =

(
a11$ − a21$ 2

+ a31$ 3
)
,

M2 =

(
a12$ − a22$ 2

+ a32$ 3
)
,

M3 =

(
2a21$ − 3a31$ 2

)
, M4 =

(
2a22$ − 3a32$ 2

)
,

ϕ1 = (a11 − a12), ϕ2 = (a21−a22),

and

ϕ3 = (a31−a32).

Qcross,1, Qcross,2, Qcross,3, Qcross,4, and Qcross,5 can be
presented as (30)-(32), as shown at the top of this page,
(33) and (34), as shown at the top of this page.

Based on characteristics of Qcross,1, Qcross,2, Qcross,3,
Qcross,4, and Qcross,5, we obtain that, (1) when a31 = a32,
Qcross,1 can accumulate as the self-term; (2) when a21 =
a22 and a31 = a32, Qcross,2 can accumulate as the self-
term; (3) when a11 = a12, a21 = a22, and a31 = a32,
Qcross,3,Qcross,4, andQcross,5 can accumulate as the self-term.
It concluded that when the cross-term satisfies any of the
above conditions, the cross-term can accumulate as the self-
term. In further study and research, we will focus on this
problem.
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