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ABSTRACT In the data-driven economy era, social data have tremendous business and potential values.
Obtaining authentic social data is the first step in mining the business value of social data. In this paper,
we consider an emerging social data outsourcing paradigm. Therein, different online social network (OSN)
operators outsource their social data to a third-party social data provider (SDP), who resells them to data
consumers who can be any individual or entities. However, a dishonest SDP may return untrusted query
results to data consumers through various activities, such as adding fake data and deleting/modifying correct
data. To deal with these dishonesties, we propose a basic scheme and an enhanced scheme to allow data
consumers to verify the correctness and completeness of their received social data from the SDP. Data
consumers in the basic scheme utilize the public APIs to collect the sampled social data and compare them
with their received social data. This scheme is a probabilistic verification method as the data consumers
only having a tiny proportion of the social data. To permit data consumers to verify the query results
trustworthiness deterministically, we proposed an enhanced scheme, in which the OSN operator generates
some cryptographic auxiliary information. The SDP can construct a verification object for the data consumer
based on these information. Extensive experiments ran on a real Twitter dataset confirm that our schemes
are effective and efficient.

INDEX TERMS Social data outsourcing, verifiable keyword-based search, semantic similarity
measurements.

I. INTRODUCTION
As the popularity of Internet, Online Social Networks (OSNs)
play an important role in people’s life due to its various
advantages. As reported by the Statistics Portal, almost
2,196 million, 336million, and 411million users are active as
of July 2018 on Facebook, Twitter, and Sina Weibo, respec-
tively [1]. So many OSN users produce large amounts of
user-generated content. For example, 31,250,000 Facebook’s
messages, 347,222 Twitter’s tweets, and 48,611 Instagram’s
photos are posted in a minute [2]. These social data bring
new insights to the current business models. More than 92%
of marketers stated that their business was deeply attached
to social media marketing, and 80% of marketers’ efforts
increased pageviews of their websites [3]. Meanwhile, almost
97% of marketers are currently using social data [4].

How to access these social data with vast economic
value? Data consumers can commonly call the public APIs

provided by each OSN operator itself. However, such APIs
only offer very limited functionalities, leading to data con-
sumers receiving incomplete, biased, and even incorrect
social data. For instance, Twitter provides the Sample API
and the Filter API to data consumers to obtain tweets, but
only randomly samples at most 1% data in all social data
meeting the query condition [5]. Besides, Twitter also pro-
vides the search functionality by the Search API to search
the tweets in the past seven days. However, calling these
APIs suffers from limited rate. For example, only 180 calls
per user and 450 calls per application are permitted in the
Search API every fifteen minutes. As another way to access
social data, the Firehose API can provide 100% of public
tweets to data consumers. But it requires monetary cost and
high-performance servers to host and process the real-time
tweets. The public APIs of other OSNs such as Sina Weibo
have similar constraints as well. To this end, we consider
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an new paradigm social data outsourcing, which is more
effective and efficient than the prior accessing methods. This
system includes three entities: the OSN operator, social data
provider (SDP), and data consumers. Therein, the SDP col-
lects complete data from the OSN operator and offers paid
data services to data consumers who can be any individu-
als or entities requiring the complete social data satisfying
some criteria. There are some favorite SDP examples, like
Gnip, DataSift, NTT Data, CrowdEye, etc.

However, these SDPs could not be fully trusted. In 2017,
Google was pointed out that they manipulated its search sug-
gestions to support Democratic presidential hopeful Hillary
Clinton when she was in trouble due to ‘‘Email Contro-
versy’’ [6]. When someone typed ‘‘Hillary Clinton cri’’,
Google’s search suggestions were like ‘‘Hillary Clinton crime
reform’’ and ‘‘Hillary Clinton crisis’’, while Yahoo or Bing
search suggestions were the fact ‘‘Hillary Clinton crimes’’.
As other famous review websites, like Yelp or Dianping,
they had been reported that they might modify the reviews
from customers to improve the effects of some specific busi-
nesses [7]. In our scenario, an untrusted SDP may return
fake query results to data consumers by adding fake data and
deleting/modifying true data.

In this paper, we are the first to consider the problem of
verifiable keyword-based semantic similarity search in social
data outsourcing scenario, whereby data consumers can guar-
antee the social data receiving from the SDP are correct and
complete. The reliable social data should meet the following
two conditions. First, the social data should satisfy the query
condition and be indeed generated by the targeted OSN users.
Second, all social data satisfying the query condition should
be returned.

Specifically, we tackle the following specific problem.
Here, we define each user in the OSN operator as one data
generator, who can publish his/her emotional states or all that
he/she sees and hears at any time at any place. All social
content of the data generator i published from the timestamp
ts he created the account to the current timestamp tc can
be denoted by Mi = {mi,ts , · · · ,mi,tc}, where mi,ts is a
concatenation of a messagem and a time stamp ts. Therefore,
the social content from one OSN operator can be represented
byM = {M1, · · · ,Mi, · · · ,Mn} (i ∈ [1, n]). In this paper,
we focus on single keyword-based semantic similarity query.
For example, the query condition Q = {2, ‘‘Galaxy S9’’,
[7/10/2018, 8/25/2018]} can be interpreted that (1) the search
keyword is ‘‘Galaxy S9’’; (2) the semantic similarity distance
should be less than 2; (3) the posting times of social contents
should be located in the time domain [7/10/2018, 8/25/2018].
The query result should be a subset ofM. The query result is
complete if all social contents satisfying the query condition,
and it is correct if none of social contains therein do not satisfy
the query.

We propose two schemes to address verifiable social con-
tent queries. The basic solution allows data consumers to
utilize the public APIs provided by each OSN operator to
collect the sampled social contents and compare these data

with the query results. Since the public APIs only sample 1%
data from the original data, the basic solution is a probabilistic
verification scheme. However, the basic scheme suffers from
three drawbacks, like the detection probability dramatically
decreasing with the number of query results, needing to
know the organization structure of all keywords, and running
APIs all the time of the query time domain. To thwart these
limitations, we propose an enhanced solution, whereby each
OSN operator generates some cryptographic auxiliary infor-
mation for its dataset. After receiving the query request from
the data consumer, the SDP constructs a verification object
based on the query condition and auxiliary information. Next,
data consumer utilizes the query results and the verification
object to verify the query-result trustworthiness. Note that the
enhanced solution can determinately guarantee the correct-
ness and completeness of the query results.

In this paper, we use a real Twitter dataset with 41.6 million
social contents to thoroughly evaluate our two schemes. Our
experimental results show that the basic scheme can guar-
antee the correctness and completeness of the query results
with the probability of 100% when the number of query
results is larger than 104. To evaluate the impact of data
size on performance, we randomly sample three subsets of
social contents, i.e., D1 (with 2 million contents), D2 (with
24 million contents) andD3 (with 41.6 million contents). For
the datasetD3, the OSN operator only needs to take 5.495s to
generate 76.9873MB auxiliary information (just 1.04% of the
storage size of the original dataset). Our experimental results
demonstrate the efficacy and efficiency of our schemes.

The roadmap of this paper is described as follows. We for-
mally formulate our problem in Section II. Sections III and IV
separately detail our two schemes. In Section V, we analyze
the security and performance of our two schemes. Section VI
evaluates the performance of our two schemes via a real
Twitter dataset. The related work and the conclusion are
described in Sections VII and VIII, respectively.

II. PROBLEM FORMULATION
A. SYSTEM AND ADVERSARY MODELS
In our social data outsourcing scenario, our system consists
of three entities: the OSN operator, SDP, and data consumers.
TheOSN operator as a social platform provides various social
services (e.g., making friends, showing daily life, or hunting
job) to registered users. Some popular OSN operators include
Facebook, Sina Weibo, Twitter, Youtube, LinkIn, Snapchat,
and so on. The SDP integrates social data from different OSN
operators and answers the data queries from data consumers.
To describe clearly, we here only consider a single OSN
operator, but similar operations can independently performed
on social contents of each OSN operator. Data consumers can
be any individuals or businesses, who request particular social
contents from the SDP to improve their business interests.

In this paper, we assume each OSN operator is trusted
entirely and honestly outsources its dataset to the SDP.
Conversely, the SDP is considered as an untrusted entity, and
may return fake query results to data consumers by adding,
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deleting, or modifying data. Besides, the communications
between any two entities are assumed as secured by adopting
traditional mechanism like Transport Layer Security (TLS).
Thus, a dishonest query result can only result from the mis-
behaviour of the SDP. Note that the OSN operator is highly
willing to help identify malicious SDPs, as data consumers
who make critical decisions based on manipulated query
results may eventually blame the OSN operator.

B. PROBLEM FORMULATION
Social data can be categorized into two aspects: social graph
and social contents. In a social graph, each node denotes a
social user (like twitters in Twitter or bloggers in microblog-
ging), and edges mean the relationships among connected
users. We have considered the social graph in previous
work [8], so we here mainly focus on social contents, which
are published by social users at a specific time stamp. For
instance, tweets on Twitter, comments on Youtube, posting
on Facebook orWeibo. To describe simplicity, we take tweets
as an example, which can easily be extended to other social
contents.

We represent all tweets of the twitter i as a set with time-
line denoted by Mi = {mi,tf , · · · ,mi,tl }, where tf and
tl denotes the first and last time stamp of posting tweets.
To describe simply, we assume that the points tf and tl are
identical for each twitter, and replaced with ts and tc. Intu-
itively, normal twitters always post one or multiple topics
within a tweet, while not arbitrary combine several unre-
lated words. To represent these topics briefly, we extract
keywords from each tweet as described in Section IV-A.
Thus, the keywords of a tweet mi,t (ts ≤ t ≤ tc) can be
denoted by {t,K1, · · · ,Kτi}. Note that the number of key-
words in mi,t is |τi|.
We consider single keyword-based semantic similarity

queries for any tweets, each of which can be the fol-
lowing two cases: (i) Exact Keyword Query: Data con-
sumer only focuses on listening or monitoring what is said
about its company, product or brand on social network in
a period. (ii) Semantic Similarity Query: Data consumer
also focuses on analyzing tweets of other related companies,
products or brands in the same period. Data consumers submit
these queries to the SDP, which specifics the query condition
and the interested OSN as well. For instance, the famous elec-
trical company Samsung launches a query Q = {δ, ‘‘Sam-
sung’’, ‘‘1/15/2016≤ t ≤10/25/2017’’}). Here, the parameter
δ can be utilized to distinguish two cases. Specifically, if δ is
equivalent to zero, the query Q is an exact keyword query;
Otherwise, it is a semantic similarity query, and δ denotes the
semantic similarity distance.

The SDP processes the query on the specified OSN dataset,
like Tweets in this paper. The query result includes a subset
M′ of social content M, including all the social contents
whose keywords satisfy the query condition. Continuing the
previous example, the SDP returns the tweets with the exact
keyword ‘‘Samsung’’ from 1/15/2016 to 10/25/2017 for the
single keyword query if δ = 0; or the tweets with keywords,

which have similar semantic with ‘‘Samsung’’ (e.g., ‘‘Apple’’
and ‘‘Huawei’’) for the single keyword semantic similarity
query if δ > 0. If needed, the social graph for social users
who post contents inM′ needs to be returned as well.
Based on our system and adversary models, a query result

is said to be trustworthy if the following requirements are
satisfied.

• Content correctness: All social contents in M′ are
indeed in M and satisfy the query condition.

• Content completeness: M′ contains all social contents
in M that satisfy the query condition.

• Social-graph authenticity: The returned social graph for
social users in M′ is the same as that in M.

Social-graph authenticity have been studied in our previous
work [8]. The OSN operator generates auxiliary information
for social graph, which can then be verified by the data
consumer. Thus, we subsequently focus on achieving social
content correctness and completeness.

III. BASIC SCHEME
In this section, we first take a overview of our basic scheme
to understand its key idea, and then, introduce the details.

A. OVERVIEW OF BASIC SCHEME
Recall that the OSN operator also provides the public APIs
for data consumers to obtain sampled social contents. In our
basic scheme, we encourage data consumers to utilize these
public APIs to identify the untrusted behaviors. The core
idea is that, for specific queries, data consumers compare the
sampled social contents collected by the public APIs with the
query results returned from the SDP. If the sampled social
contents are the subset of the query results, data consumers
consider that the query results are trusted with a probability;
Otherwise, the SDP returns fake results to him/her.

B. DETAILS OF BASIC SCHEME
The single keyword-based semantic similarity search
includes two categories: exact keyword search and semantic
similarity search. In our basic scheme, data consumers are
assumed to know all semantic similarity keywords for any
specific keyword. For example, data consumers should know
that the set {‘‘Apple’’, ‘‘Google’’, · · · , ‘‘Nokia’’} is the
semantic similarity set of the keyword ‘‘Samsung’’. Hence,
semantic similarity search can be replaced by multiple exact
keyword searches. For brevity, we here focus on an exact
keyword search.

For a queryQ = {δ, keyword, time domain}, we assume
the SDP should return η social contents (i.e., {m1, · · · ,mη}).
Since the public APIs only return 1% of random sampled
social contents [5] for the queryQ, we let the sampled social
contents by {m′1, · · · ,m

′

d0.01·ηe}. To verify the correctness
and completeness of social contents, data consumers calcu-
late hash values for each social content in the query results
and sampled social contents, and compare these hash values.
If all hash values for sampled social contents can be matched
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with that for social contents, social contents can be viewed
as satisfying correctness and completeness with a probability
p (namely, ∀i ∈ [1, d0.01ηe], ∃j ∈ [1, η], s.t. h(si) = h(rj));
Otherwise, it fails. Note that the overhead of matching pro-
cessing in the basic scheme is O(η2). Intuitively, the number
of η is higher, the detection probability p is higher. There-
fore, we analyze the relations between the number η and the
detection probability p.

In our adversary model, the attacks launched by SDPs
consist of three types: deleting, adding and modifying social
contents. We assume that the attackers delete, add or modify
γ social contents. Based on these premises, we conclude
detection probability p for these attacks as the following
equations:

pdel,mod = 1−

(
η−γ
0.01η

)(
η

0.01η

)
= 1−

η − γ

η
·
η−1−γ
η − 1

· · · · ·
η − 0.01η + 1− γ
η − 0.01η + 1

padd = 1−

(
η

0.01η

)(
η+γ
0.01η

)
= 1−

η

η + γ
·

η − 1
η − 1+ γ

· · · · ·
η − 0.01η + 1
η+γ−0.01η + 1

Since η−j−γ
η−j ≤

η−j−1−γ
η−j−1 , it follows that: 1-( η−γ

η
)0.01η ≤

pdel,mod ≤ 1 − ( η−0.01η+1−γ
η−0.01η+1 )0.01η and 1-( η

η+γ
)0.01η ≤

padd ≤ 1− ( η−0.01η+1
η−0.01η+1+γ )

0.01η. Here, we utilize the minimal
probability to represent the probability, i.e.,

pdel,mod ≈ 1− (
η − γ

η
)0.01η (1)

and

padd ≈ 1− (
η

η + γ
)0.01η, (2)

separately. As shown in Figure 1, we set γ as {0.01η,
0.05η, 0.1η}, and conclude that the smaller the number of
query results is, the lower the detection probability p is.
When γ is fixed as 0.01η and η decreases from 105 to 103,
the detection probability p decreases from 100% to 10%.

IV. ENHANCED SCHEME
Notwithstanding, the basic scheme can simply guarantee
the correctness and completeness of query results. However,
it has three drawbacks: (1) If the number of query results
η is less than 104, the detection probability will dramati-
cally decrease as depicted in Fig. 1; (2) Data consumers
need to know the semantic similarity keyword set; (3) Data
consumers cannot collect the sampled social contents pub-
lished over 7 days unless running the APIs all the time [5].
For example, data consumers may wish to gather all social
contents in the previous year and do not have any plans
to do that beforehand. In this case, data consumers cannot
collect social contents with the public APIs. To thwart these
drawbacks, three challenges should be addressed: the first is

FIGURE 1. Relations between η and p for various attacks.
(a) Deleting/Modifying attack. (b) Adding attack.

how to guarantee the query results RQ actually contains the
similar semantic keywords of the queryQ; the second is how
to ensure all similar semantic keywords are considered and
their social contents are returned; the third is how to verify
the correctness and completeness of the posting time of social
content. To solve these challenges, we propose an enhanced
scheme.

In what follows, we first describe text modeling to prepro-
cess social contents in Sect. IV-A, a dataset NameNet to store
the relationships among company, brand or product names
in Sect. IV-B, and the semantic similarity measurements in
Sect. IV-C. Subsequently, we detail the auxiliary information
generation, the query processing and the results verification
in our enhanced scheme, successively.

A. TEXT MODELING
Currently, the datasets outsourced by each OSN operator
are noisy and unstructured. To make our discussion easily,
we first deploy the text modeling to preprocess the original
datasets. Let M be an original dataset, and n denote the
number of users in the dataset. For each user i ∈ [1, n],
the corresponding social data is defined as Mi. To prevent
the identify-linkage attack, the OSN operator assigns each
user an anonymous ID to hide the true ID. Intuitively, data
consumers mainly focus on meaning while not meaningless
words. Hence, we introduce the following text modeling for
the OSN operator to extract keywords for each social content.

In the first phase, the OSN operator removes stop words
for each social content in a stop-word list,1 which are more
general and meaningless. For example, ‘‘the’’, ‘‘those’’ and
‘‘it’’. In the second phase, the OSN operator further reduces
inflected words to stem forms by conducting stemming [9].
In this case, the words with different forms can be mapped
to the same word. For instance, ‘‘play’’, ‘‘playing’’, and
‘‘played’’ are all mitigated to ‘‘play’’. Therefore, we denote
the keyword set for the j-th social content mi,j of data user i
by {j,K1, · · · ,Kτi}.

B. NameNet
After extracting keywords for each social content, our pri-
mary task is defining the relationships among keywords. Intu-
itived by a lexical database of English words (WordNet) [10],

1http://www.lextek.com/manuals/onix/
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we propose a data structure, named by NameNet, to orga-
nize these keywords. In the WordNet database, nouns, verbs,
adverbs and adjectives are organized by a variety of semantic
relations into synonym sets (synsets) representing one con-
cept. However, WordNet cannot be directly adopted to our
problem due to lacking special words, like company, brand
and product names. To thwart this hinder, we exploit the con-
cept of nouns inWordNet to build a databaseNameNet, which
express the semantic relation of company, brand, and product
names. Inspired by cognitive evidence that human beings
organize knowledge in a hierarchical manner, we encode the
NameNet with the typical hyponym/hypernym (is-a). The
organization structure is a tree. The upper the names are,
the more abstract the concepts are. Figure 2 shows a fragment
of is-a relation between names in NameNet. The meaning of
the keyword ‘‘electronic’’ is more abstract than that of ‘‘cell
phones’’, while themeaning of ‘‘Hilton’’ ismore specific than
that of ‘‘Chained-brand’’.

FIGURE 2. Is-a relation in NameNet.

C. SEMANTIC SIMILARITY MEASUREMENTS
In this subsection, we introduce the method to evaluate the
similarity between any two keywords in NameNet. Let the
path from the root to the current keyword denote the keyword
in NameNet. For instance, the keyword ‘‘Hilton’’ is denoted
by Path(Hilton)={‘‘Brand Name’’, ‘‘Hotel’’, ‘‘Chained-
brand’’, ‘‘Hilton’’}. Hence, the depth is equivalent to the car-
dinality of the path, e.g., depth(Hilton)=|Path(Hilton)|=4.
Since the structure of NameNet is a tree, we adopt the path-
based measurements [11] to define the semantic similarity of
any two keywords. They mainly consist of two aspects: the
path length of two keywords, and the position of the keywords
in the NameNet.

Here, we consider two typical measurements. Given two
keywords K1 and K2 in NameNet, Varelas et al. [11] define
their semantic similarity measurement as:

sim1(K1,K2) = 2 · deep_max− len(K1,K2) (3)

, Leakcock and Chodorow [12] define it as:

sim2(K1,K2) = − log
len(K1,K2)

2 · deep_max
(4)

. Therein, the notation len(K1,K2) denotes the length of
the shortest path from the keyword K1 to the keyword K2
in NameNet. For example, the value of len(‘‘AmericInn’’,
‘‘Hilton’’) is 2 and that of len(‘‘AmericInn’’, ‘‘IPhone 7’’)

is 6 in Figure 2. Besides, the notation deep_max means the
max depth of the taxonomy (i.e., the height of the NameNet).

In what follows, we detail the auxiliary information gener-
ation, the query processing and the results verification in our
enhanced scheme, successively.

D. GENERATING AUXILIARY INFORMATION
As stated before, we should guarantee the correctness and
completeness of social contents, all similar keywords and the
posting time. Next, we will introduce the auxiliary informa-
tion generation in our enhanced scheme.

As described in Section IV-A, each OSN operator extracts
keywords from each social content. To organize social con-
tents efficiently, we introduce the inverted index structure,
which commonly consists of two parts. The first part contains
uniform keywords, like ‘‘Samsung S7’’, ‘‘Google Pixel’’ and
so on in Figure 3. The second part contains social contents,
which is listed with the order of posting time. The posting
time of the social contents in the left should be earlier than
that of the social contents in the right. As for the keyword
K=‘‘Google Pixel’’ in Fig. 3, there are eight social contents
with this keyword from the starting time s to the last time e,
i.e., {m2,s,m4,s+1, · · · ,m4,e}, in which each social content
mi,t contains the keyword ‘‘Google Pixel’’.

For all social contents of each keyword, the OSN operator
builds an Merkle Hash Tree (MHT).2 As shown in Figure 3,
the OSN operator first concatenates each social content with
the posting time, and hashes the concatenated value by the
classical SHA-1 method [14]. For example, the values from
h1 to h8 are the hash values of social contents with the
keyword ‘‘Google Pixel’’. Subsequently, the OSN operator
computes hash values of parent nodes, like h1−2 = h(h1||h2),
and signs the root hroot (e.g., S(h1−8) for ‘‘Google Pixel’’).
Finally, the OSN operator denotes all signatures of roots as
the first auxiliary information AUX 1.

By analyzing the Eqs. (3) and (4), we conclude that the
distance between any two keywords is tied with two vari-
eties, deep_max and len(K1,K2). The deep_max is an
constant value and its value is equivalent with the height of the
NameNet. Besides, the value len(K1,K2) can be caculated by
|P(K1)∪P(K2)| − |P(K1)∩P(K2)|. Therefore, the maximum
value of len(K1,K2) should be 2·deep_max−1. To generate
the auxiliary information that authenticating the semantic
similarity keywords, the OSN operator needs to traverse the
whole tree and count all keywords for each different dis-
tance. As shown in Figure. 4, the OSN operator first builds
an table under the aforementioned example. Next, the OSN
operator also builds an merkle hash tree for each uniform
distance (δ=1 in our example). Finally, the OSN operator
defines all signatures for various distances as the second
auxiliary informationAUX 2. All these auxiliary information
{AUX 1,AUX 2} and the original social contents will be
outsourced to the SDP.

2More details about MHT can refer to [13]

5620 VOLUME 7, 2019



Y. Zou et al.: Verifiable Keyword-Based Semantic Similarity Search on Social Data Outsourcing

FIGURE 3. Building MHTs for social contents in invert index.

FIGURE 4. Building MHTs for different semantic distance δ.

E. QUERY PROCESSING
When receiving the query request Q from data consumers,
the SDP first searches all social contents and finds out the
corresponding query result RQ. To guarantee the correct-
ness and completeness of RQ, the SDP needs to return two
untamable verification objects to data consumers, i.e., VO1
and VO2.
Given a queryQ={δ,K , [ts, te]}, the SDP first searches the

NameNet database and finds out all keywords {K1, · · · ,Kz},
in which the semantic similarity distance between any key-
word Ki and K should be smaller than δ. For each keyword
Ki, the SDP finds out all social contents whose posting time
are located in the time domain [ts, te].

Next, the SDP checks AUX 1 to obtain the verification
object VO1 to reconstruct the MHT root for the social
contents of each keyword (see Section IV-D). Specifically,
the qualified posting time and two boundary elements each
correspond to the posting time of a unique element, so each
hash value of the concatenation of the posting time and its
corresponding social content is a leaf node of the MHT.
The verification object for each such leaf node includes the
siblings of itself, its parent, its parent’s parent, etc. Since
these leaf nodes are adjacent in the MHT, their auxiliary
authentication information should be combined to reduce
the likely redundancy. The verification object VO1 includes
all the auxiliary authentication information and related root
signature.

Finally, the SDP checks AUX 2 to obtain the auxiliary
information needed to reconstruct the MHT root for the
keywords of each semantic similarity distance value (see
Section IV-D). Since we here also buildMHT for each seman-
tic similarity distance value, the construction processing of
the verification object VO2 is also similar to that of VO1,
including all the auxiliary authentication information and
related root signature.

F. CORRECTNESS AND COMPLETENESS VERIFICATION
Data consumers utilize the verification objects VO1 and VO2
to verify the correctness and completeness of the query results
with the following operations.

First, data consumers check that the posting time of each
content locates in the range [ts, te]. This step ensures that all
contents are posted in the time range of the query.

Second, data consumers reconstruct the MHT root of all
social contents for each keyword based on the RQ and the
auxiliary information in the verification object VO1. The
reconstructed MHT root should match the root signature in
the verification objectVO1. This step ensures that all contents
satisfying the posting time are returned.

Third, data consumers reconstruct the MHT root of all
based on the RQ, and the auxiliary information in the ver-
ification object VO2. The reconstructed MHT root should
match the root signature in the verifiation object VO2. This
step ensures that the correctness and completeness of all
keywords in the query result.

The query result is considered complete and correct if and
only if the above verification succeed. The security of this
scheme relies on the unanimously assumed security of the
cryptographic hash function h(·) and the digital signature
scheme. In particular, the SDP cannot fabricate a query result
that can lead to valid MHT roots with correct signatures.

G. A WORKING EXAMPLE
To better understand the enhanced scheme, we take an exam-
ple in Figs. 2, 3 and 4 to show these operations. Given a con-
crete query Q={1, ‘‘Google Pixel’’, [ts+3, te−3]}, the SDP
first finds out the correct social contents. As shown in Fig. 3,
the social contents m7,s+3 and m1,e−3 satisfy the query Q.
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To guarantee the correctness and completeness of the post-
ing time of social contents, SDPs return verification object
VO1 as {m3,k ||ts+2,m5,k ||te−2, h1−2, h7−8,S(h1−8)}. When
data consumers receive the query result and the verification
object VO1, they reconstruct MHTs and verify the signature
of the root. If the verification passes, data consumers can
consider the posting time of the query results are correct
and completeness; Otherwise, they reject the query results.
To guarantee the correctness and completeness of the seman-
tic similarity keywords, SDPs return verification object VO2
as {K1||K2 ⊕ K3, h3−4,S(h1−4)}. If data consumers can
reconstruct MHTs and verify the signature of the root, data
consumers can consider the returned semantic similarity key-
words are correct and completeness.

V. SECURITY AND OVERHEAD ANALYSIS
In this section, we will separately analyze the security and
performance of our schemes.

A. SECURITY ANALYSIS
The basic scheme asks data consumers to call the public APIs
and obtain the sampled social contents. As long as these
public APIs in the OSN operator has not been hacked, data
consumers can collect the true sampled data. Therefore, data
consumers can verify the correctness and completeness of
the query results with these collected sampled social content.
In our enhanced scheme, data consumers detect an incorrect
and/or incomplete query result in a deterministic fashion. The
reason is that the auxiliary information amounts to social
contents with cryptographic methods. As long as the hash
function and digital signature scheme used for constructing
the MHTs are secure, the SDP cannot modify the authentic
query result without failing the signature verification.

B. OVERHEAD ANALYSIS
Next, we analyze the computation, communication, and stor-
age overhead in our schemes. The time overhead to search
for qualified social contents and initial datasets preprocessing
are ignored here. Note that the basic scheme needs to adopt
public APIs to collect social contents, and the collection time
depends on the responsing time of the OSN operator and the
bandwidth. Therefore, we do not discuss the basic scheme
here.

1) COMPUTATION OVERHEAD
All our schemes involve digital signature generations, ver-
ifications, and hash operations. The computation overhead
is dominated by signature generations and verifications
(especially, the former). Hash operations take less time in the
experiment, so we can safely ignore the hash operations for
simplicity.

First, we estimate the computation overhead that gener-
ating the auxiliary information. The OSN operator needs to
sign each keyword. Let the number of keywords be n, so the
complexity of signature operations is O(n). As analyzed in
Section IV-D, the maximum value of len(K1,K2) should

be 2 · deep_max − 1. Therefore, the number of unique
semantic similarity distance values is |2 · deep_max − 1|,
wheredeep_max denotes the heighth of theNameNet.When
the NameNet is a binary tree, the complexity of signature
operations is O(logm + 1), where m denotes the number of
keywords in the NameNet.

Next, we discuss the computation overhead that verifying
a query result. Suppose that the number of keywords in the
query result is z, data consumers performs up to z signature
verifications, leading to the complexity of O(z).

2) COMMUNICATION AND STORAGE OVERHEAD
We discuss the communication overhead for transmitting the
auxiliary information from the OSN operator to the SDP,
which is the same as the storage overhead at the SDP for
storing the auxiliary information. For convenience, let t be
the number of time points during posting all social contents,
and let lhash and lsig denote the lengths of a hash value and
a digital signature. The communication overhead includes
(n+2 · dlog2 ne+1) · lsig and (n · (2dlog2 te

−2)+ (2dlog2 ne
−

2) · 2 · (dlog2 ne + 1)) · lhash.

VI. EXPERIMENTAL RESULTS
In this section, we thoroughtly evaluate our schemes with
a real Twitter datasets. We implement our schemes with
Python 3.4. All the experiments are carried out on a server
with Intel(R) Xeon(R) Silver 4110 CPU@2.10GHz, 128 GB
memory, 3.6 TB hard disk, and Centos 6.0.

A. DATASETS
The dataset we used is a real-world Twitter dataset and col-
lected in 2016. The dataset includes 41.6 million social con-
tents. To evaluate the performance of our schemes for datasets
with different sizes, we have randomly sampled three subsets
of social contents (D1, D2, D3) from the above dataset. The
number of social contents in D1, D2 and D3 are 2 million,
24 million and 41.6 million, respectively. To analyze English
and practical meaning keywords, we deploy Natural Lan-
guage Toolkit for social content preprocessing. To construct
the NameNet database, we first generate a word list based
on the vocabulary of content statistics. In our experimental
results, our three datasets have the same keywords, but their
frequencies are different. The frequency for each word in D3
is larger than that in D2 and D1 Thus, we select Top-1500
keywords to construct the tree-like database.

B. GENERATING AUXILIARY INFORMATION
We now evaluate the computation and storage overhead
incurred by generating auxiliary information in the schemes.

1) COMPUTATION OVERHEAD
We evaluate our scheme in terms of the number of hash,
signature operations, and computation time. Table 1 lists
the numbers of hash and sign operations for three datasets.
We can conclude from Table 1 that (1) the numbers of
sign operations for three datasets are identical due to having
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FIGURE 5. Query processing time. (a) D1. (b) D2. (c) D3.

FIGURE 6. Query-result verification time. (a) D1. (b) D2. (c) D3.

TABLE 1. Computation overhead.

TABLE 2. Storage overhead.

the same keywords’ number; (2) The compuation overhead
satisfies the practical requirement.

2) STORAGE OVERHEAD
Table 2 shows the storage overhead of auxiliary information,
i.e., the total size of signatures, internal nodes of MHTs.
As we can see from Table 2, for the same keywords in differ-
ent datasets, the storage overhead of the hash and signature
are independent of the datasets size. When the number of
keyword increases, the hash and signature storage overhead
also increase. This is of no surprise, as the complexities
of storage overhead for signatures and hash values in the
enhanced schemes are fixed at O(n). Table 2 is also clear
that the scheme only requires less overhead for auxiliary
information storage.

C. QUERY PROCESSING
To measure the computation overhead of query processing
in our scheme. We generate three types of queries for our
three datasets: Q10, Q30, and Q50. Here, Qi (i = 10, 30,
and 50) means that the number of randomly selected key-
words. Besides, we set δ as {0, 1, 3, 5} in our experiments.
When δ is equivalent to zero, the query is the exact key-
word search; Otherwise, it is the single keyword semantic
similarity search. Fig. 5 shows the query processing time of
our enhanced scheme for three types of queries with all three
datasets, where each point represents the average of 100 runs,
each with a random seed. We can see that the query process-
ing time of our enhanced scheme is in line with the previous
analysis. When δ is larger than 5, the query processing time
also meet our analysis.

D. QUERY-RESULT VERIFICATION
Figs. 6a to 6b compare the verification overhead under our
enhanced for three datasets and same keywords. We also
select δ from {0, 1, 3, 5} as the previous setting. We can
see that the verification time is basically the same on
different data sets, and satisfies the complexity analysis
in Sect. V-B (O(z)).

VII. RELATED WORK
Our work is mostly close to data outsourcing para-
digm [15]–[17]. The data owner outsources his/her dataset
to a third party, who answers the queries from either
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data owner or other users. One security provision in data
outsourcing is to ensure the integrity of the query results
[18], [19]. A trivial solution to authenticate query results is
to let the data owner outsource its dataset and some auxiliary
information over the data to the third party which returns both
the query result and a verification object computed from the
auxiliary information for the querying user to verify query
integrity.

Here, we mainly discuss single- and multi-dimensional
query authentication with signature chaining-based schemes
and MHT-based schemes. Besides, we also overviews exist-
ing solutions for authenticating keyword-based queries, and
surveys alternative methods for database outsourcing.

A. SINGLE- AND MULTI-DIMENSIONAL
QUERY AUTHENTICATION
To address the query authentication problem, the previ-
ous literature can be classified into two aspects: signa-
ture chaining-based schemes and Merkle Hash Tree (MHT)
based schemes [13]. Narasimha and Tsudik [20] proposed
an approach DSAC based on signature chain to verify the
integrity of dynamic databases. To reduce the overhead of
DSAC, Pang et al. [21] proposed a novel signature caching
scheme SigCache. To supportmulti-dimensional range aggre-
gate query, Pang and Tan [22] proposed efficient authen-
tication schemes based on signature chaining and MHT.
Moreover, many variants based on MHT are pro-
posed for authenticating aggregation queries [23], kNN
queries [24], [25], top-k spatial keyword queries [26], [27],
and location-based skyline queries [28], [29]. However, none
of these schemes consider semantic-similarity query over
social contents, so they cannot be applied to our problem.

B. KEYWORD-BASED QUERY AUTHENTICATION
Another line of research has been devoted to verifiable
keyword-based search [30]–[32], in which each keyword
is represented as a root of some polynomial. It is possi-
ble to verify whether a keyword is present by evaluating
the polynomial on the keyword and testing whether the
output is zero or not. However, these schemes cannot be
directly deployed for addressing our problem due to the query
complexity linearly increasing with the number of tweets.
Besides, Pang and Mouratidis [33] proposed an authenti-
cated similarity-based document retrieval scheme. Moreover,
many schemes [34]–[36] supporting verifiable keyword-
based search on encrypted data are proposed. Nevertheless,
none of these schemes can be applied to verifiable keyword-
based semantic similarity queries over short plaintext texts.

C. OTHER RELATED WORK
In other contexts, authenticating is also a critical problem, like
two-layer sensor networks. Zhang et al. [27] proposed tech-
niques to verify the top-k query results returned by untrusted
service providers. Besides, Shi et al. [37] presented several
schemes to guarantee the completeness and correctness of
range query results even if data is encrypted. However, all

these schemes focus on different contexts and cannot be
directly deployed for addressing our problem.

VIII. CONCLUSION
In this paper, we consider verifiable keyword-based semantic
similarity search problem in social data outsourcing scenario.
To address this problem, we propose two schemes. The basic
scheme depends on the public APIs provided by the OSN
operator. Data consumer verifies the correctness and com-
pleteness of the query results by comparing the sampled
social contents and the query results. The enhanced scheme
first introduce the NameNet to organize the keywords and
deploy the classical Merkle hash tree to guarantee the authen-
tic query results. Our experimental results shows that our
schemes are efficacy and efficiency.
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