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ABSTRACT Image deformation has ubiquitous usage in multimedia applications. It morphs one image
into another through a seamless transition. Existing techniques either mainly focus on the correspondence
mapping of interior features of the objects in two images, without considering object contours, or sketch
contours manually, resulting in tedious work for users. Thus, we propose a 2D image deformation method,
which extracts object contours automatically, considers both inner features and contours as constraints and
preserves image features in terms of visual importance. Our method first automatically extracts the object
contours in the source and target images and then allows users to sketch some interior features in both the
images. Then, our method tessellates two images to generate two triangular meshes and builds a guaranteed
bijective mesh mapping between them. We also prove the bijectivity of our mesh mapping and discuss its
other desirable properties. Then, our method generates the intermediate images between the source and target
images by calculating the intermediate meshes and pixels of each intermediate image. Our method realizes
automatic contour extraction, provides an intuitive user interface and utilizes harmonic maps to establish a
bijective mesh mapping. Therefore, it preserves more significant features with less distortion and works well
for many image deformation cases in real time.

INDEX TERMS 2D image deformation/morphing, automatic contour exaction, Delaunay triangulation,
harmonic map.

I. INTRODUCTION
Various multimedia applications testify to the ubiquitous
use of planar shape deformation and animation. Exam-
ples include digital composition in cel animation, computer
graphics productions, andWeb graphics, etc. 2D image defor-
mation, as a fundamental operation in numerous multimedia
applications, has long been an active research topic. Studies
on image deformation roughly fall into two categories. One
is deforming the space (see [1]) where the shape of interest
is embedded, and the other one is deforming the shape itself
(see [2], [3]) by taking its structure into consideration.

Generally, there are three well-understood major issues
in morphing. The first issue is how to extract or specify
features, known as the feature problem. The second issue
is how to expediently establish a reasonable correspondence
mapping between the source and the target, referred to as the
correspondence problem. The third issue is how to define the
way of transforming the source shape into the target shape,
known as the path problem.

Though many works have researched on image deforma-
tion and proposed solutions to the abovementioned three
issues, it is noted that (i) some existing methods such
as [3]–[7] are algorithmically complex and still can be
improved in terms of time complexity; (ii) some works such
as [1] only regard the interior features of the shape as con-
straints, and disregard the important role played by the bound-
ary or contours; (iii) some works such as [8] consider the
interior together with its boundary, but do not allow users
to specify and preserve some important inner features, and
therefore users do not have a large degree of control over
the deformation results; and (iv) some other works like [9]
require users to manually sketch the contours which leads to
tedious work for users.

In order to take advantage of both the contours and interior
feature constraints, reduce users’ cumbersome manual work
as much as possible, give users a high degree of control over
the deformation results, and meanwhile achieve a natural
and smooth deformation effect, this paper presents a novel
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FIGURE 1. 2D image deformation examples generated by our method. (a) Flower-to-flower deformation. (b) Duck deformation.

method for shape-aware 2D image deformation and morph-
ing with guaranteed feature correspondence. Two examples
deformed by our method can be found in Fig. 1. Given input
source and target images, our method firstly automatically
extracts the contours of the objects of interest and then allows
the user to specify some inner features within the contours.
Our method then constructs a triangular mesh for the source
image and target image, respectively, through constrained
Delaunay triangulations, taking the contours and the interior
features as constraints. The triangular mesh is composed
of several patches, each of which is parameterized onto a
unit circle domain. With the parameterization, our method
can easily establish a correspondence mapping between the
patches of the source image and the patches of the target
image. Thereafter, our method quickly computes the interme-
diate meshes and pixels in intermediate images, and finally
shows the image deformation process by displaying interme-
diate images between the source and target images.

This paper makes the following contributions.
• This paper presents a 2D image deformation method
which can deform a source image into a target image
naturally and smoothly.

• Our deformation method extracts the contour of an
object of interest in an image automatically which
relieves tedious operations for users, and achieves pleas-
ing morphing results between different objects.

• We prove the bijectivity of our mesh mapping and
discuss its distortion metrics and other good properties.

The remainder of this paper is organized as follows.
Section II reviews existing image deformation solutions.
Section III presents the overview and design scheme,
and detailed key steps of our image deformation method.
Section IV discusses the bijectivity and minimized distortion
of our mesh mapping. Section V reports and discusses our
image deformation results, and compares our results with
previous methods. Section VI draws a conclusion.

II. RELATED WORK
In this section, we review related work on image deformation.

A. LITERATURE ON IMAGE DEFORMATION TOPIC
Image deformation has received attention from the research
community since the early 1990s. To name a few, studies
on image deformation include [1], [3], and [9]–[12]. Image
deformation has many multimedia applications such as face
morphing [13]–[15] and image animation [2], [16].

The underlying technology of image deformation is image
warping [10], [17]–[20]. A natural deformation requires a
smooth transition when warping the source object into the
target object.

B. LITERATURE ON IMAGE DEFORMATION METHODS
Existing techniques for image deformation include mesh-
based warping [3], [17], field-based morphing [11], radial
basis function [10], and deep learning methods [21], [22].

The basic idea of traditional mesh-based warping tech-
niques (see [3]) is to divide the entire image into quadrilat-
erals. The user needs to specify a number of control points
on both the source image and target image. The traditional
mesh-based technique is intuitive and efficient but has its
drawbacks: (i) Some points may bemoved to where you don’t
want them to go. (ii) The user cannot have a good control
over all points. (iii) It is a cumbersome technique since users
need to specify a large number of control points in order to
get a good deformation effect. (iv) It is also possible that
some features may be lost when generating the intermediate
images.

The field-based morphing techniques [11] belong to
feature-based techniques. Morphing is conducted based on
fields that surround the control elements, that is, feature lines.
The advantage of this technique is that it is more expressive.
One disadvantage of this technique is that it is time consum-
ing. The distance from all feature lines to each source point
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FIGURE 2. The overview and design scheme of our 2D image deformation method.

must be computed before warping. The other disadvantage
is that sometimes unwanted interpolation occurs in that one
single point is influenced by all feature lines.

The theory of radial basis functions (RBF) [10], [23] pro-
vides an attractive framework for image warping. However,
this kind of deformation techniques can obtain easy facial
deformation, but they cannot produce complex intermediate
images and thus cannot achieve complex deformation.

The deep learning methods usually adopt GANs (Gen-
erative Adversarial Networks) [24] or their variants such
as Cycle-GAN [21], Recycle-GAN [22]) to generate
images. Such kind of methods finds many applications
in image generation/editing/translation. For example, the
‘‘Cycle-GAN’’ method can translate an image from a source
domain X to a target domain Y and thus generate similar
images with a different style.

C. COMPARISON WITH EXISTING METHODS
As mentioned in Section I, some existing works [3]–[7]
still can be improved in terms of runtime; Some other
works [1], [9] either neglect contour constraints or require
users to sketch the contours manually. Many mesh-based
methods like [3], [17], and [25] do not provide a bijectivity
proof for the mapping between the meshes.

In order to overcome the drawbacks of the abovemen-
tioned existingmethods, ourmethod utilizes bothmesh-based
morphing and field-based morphing techniques, combines
their advantages, and therefore outperforms traditional mesh-
based morphing and field-based morphing.

Furthermore, our method takes the significance of the con-
tour of the object in an image into account in addition to con-
sidering interior features. Instead of requiring users to sketch
object contours manually, our system extracts the boundary
contours fully automatically. We also provide an intuitive
user-controllable interface for animators to sketch interior

feature curves, lines, points, or holes as interior constraints.
Meanwhile, we prove the bijectivity of ourmeshmapping and
discuss the distortion metrics.

In addition, compared with the deep learning methods such
as Cycle-GAN [21] or Recycle-GAN [22], our method differs
with them in terms of purposes and application scenarios.
(i) The ‘‘Cycle-GAN’’ or ‘‘Recycle-GAN’’ method can trans-
late images or retarget a sequence of images. For instance,
input a sequence of Donald Trump’s facial expression images,
then the ‘‘Recycle-GAN’’ method can output a corresponding
sequence of Barack Obama’s facial expression images which
have similar styles to Donald Trump’s facial expression
images. However, it cannot generate the intermediate images
between two input images. (ii) Our deformation method aims
to generate the sequence of intermediate images between two
input images which are referred to as the source image and the
target image, so that users can watch the gradual morphing
process between the source and the target little by little.
Therefore, the application scenarios of the ‘‘Cycle-GAN’’ or
‘‘Recycle-GAN’’ method and our method are different. The
‘‘Cycle-GAN’’ or ‘‘Recycle-GAN’’ method uses currently
hot deep learning techniques and looks upmarket, but, given
two input images, it surely cannot generate the intermediate
image sequences for the morphing process between the two
input images, so that it cannot morph the source image grad-
ually into the target image. But ourmethod can achieve image
morphing little by little.

III. IMAGE DEFORMATION METHOD
In this section, we present our image deformation method in
detail.

A. OVERVIEW AND DESIGN SCHEME
The overview and design scheme of our image deforma-
tion method is shown in Fig. 2. Given the input source and
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target images I and I ′ containing an object O ⊂ I and
O′ ⊂ I ′, after we load them into our image deformation
system, our method firstly extracts the two objects’ features,
including contours which are extracted automatically, and
interior features which are specified by the user. Then our
method generates a triangular mesh for the two images,
respectively, taking the feature constraints (including both
contour constraint and interior feature constraint) into consid-
eration. Using harmonic maps [26], we can conveniently con-
struct a constrained correspondence mapping for 2D image
animations. Thereafter, we generate the intermediate trian-
gular mesh from the source and the target meshes with the
corresponding mapping mentioned above. We thus calculate
each pixel of the intermediate shape by linear interpolation of
the color values of the corresponding pixels in the source and
the target shapes. Finally, we generate a sequence of smooth
morphing results and achieve image deformation from the
source image to the target image gradually, smoothly and
naturally.

Hence, in general, our deformation scheme is mainly com-
posed of four modules, i.e., feature extraction module, tri-
angulation module, constrained mesh mapping establishment
module, and intermediate image generation module.
• Feature extraction: Features include contours and inner
features. In this module, our method automatically
extracts the contours of the source and target images,
and subsequently allows the users to sketch some
user-controllable inner features including inner feature
points, lines, curves, or holes inside the contour on both
images, and finally allows users to set several pairs of
user-controllable corresponding points along the con-
tours of the source and target images. In other words, this
module consists of three key steps: (i) automatic con-
tour extraction, (ii) inner feature sketching, and (iii) key
corresponding points setting. Via this module, we obtain
a bijective feature correspondence between the source
image and the target image.

• Triangulation: In this module, our method first applies
constrained Delaunay triangulation to the source image
based on its features. Then the triangular topology of
the source image is copied to the target image based
on the feature points correspondence built in the first
module, and thus we also get a constrained Delaunay tri-
angulation of the target image. Subsequently, patch tri-
angulation is applied for each triangle (triangular mesh
patch) of the triangulations on both images and then we
obtain a dense source triangular mesh and a dense target
triangular mesh. As a result, we obtain a one-to-one
patch correspondence via this module.

• Constrained mesh mapping: This module constructs a
constrained mesh mapping between the source triangu-
lar mesh and the target triangular mesh using harmonic
map techniques.

• Intermediate image generation: On the basis of the
constrained mesh mapping, our method generates a
series of intermediate meshes between the source and

target meshes, and computes pixels in each interme-
diate image based on each intermediate mesh. Finally,
we automatically display the smooth deformation
sequence results.

B. KEY STEPS
As mentioned in Section III-A, our system has four mod-
ules. These modules altogether contain six key steps which
are referred to as automatic contour extraction, inner fea-
tures sketching, corresponding points setting, triangulations,
constrained mesh mapping establishment, and intermediate
images generation. In this subsection, we take the duck defor-
mation shown in Fig. 1(b) as an example to present these key
steps in detail. At the beginning, we load the source image
and target image as shown in Fig. 3.

FIGURE 3. An example of source image and target image.

1) AUTOMATIC CONTOUR EXTRACTION
The first key step is automatic contour extraction, which can
be further divided into the following three substeps.

(i) Gaussian blur: If we apply edge detection directly
without Gaussian blur, most natural images after grayscale
processing like Fig. 4(a) have noises. Thus a Gaussian blur
filter [27] is utilized prior to edge detection to reduce noises
in the image. Most edge-detection algorithms are sensitive to
noises and a Gaussian blur filter improves the result of the
edge-detection algorithm by filtering single pixel noises. The
Gaussian blur filter utilizes a Gaussian function as given in
Eq. 1, to calculate the transformation and apply it to every
pixel of the image.

G(x, y) =
1

2πσ 2 e
−
x2+y2

2σ2 (1)

In Eq. 1, x and y denote the distances to the origin along
the horizontal axis and the vertical axis, respectively, and σ
denotes the standard deviation of the Gaussian distribution.
Surfaces produced by Eq. 1 have concentric circular contours
from the center point, following a Gaussian distribution. Val-
ues of G(x, y) are utilized to construct a convolution matrix
to apply to the original image. The new value of each pixel
is set as a weighted average of the neighborhoods of this
pixel. Thus, the value of the original pixel has the largest
weight as it has the highest Gaussian value. Neighboring pix-
els have smaller weights since their distances to the original
pixel increase. This leads to a blur which can preserve edges
and boundaries better, compared with other more uniform
blurring filters.
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FIGURE 4. Automatic contour extraction. (a) Images after grayscale
processing. (b) Images after Gaussian blur. (c) Images after edge
detection. (d) Contour extraction. (e) Contour points.

(ii) Edge detection: As shown in Fig. 4(b), although most
single pixel noises are removed after Gaussian blur, some
multi-pixel noises still exist. Most of these multi-pixel noises
are likely to be identified as an edge and thus these noises can
influence the accuracy of contour extraction to a great extent.
As shown in Fig. 4(c), our method can discard some false
and fine edges using Canny edge detection operator since
this operator has three main advantages: low error rate, good
localization and minimal response.

(iii) Contour extraction: Based on edge detection,
our method conducts the third substep, i.e., contour
extraction using a contour extraction function provided

by OpenCV. In this function, we use the parameter
‘‘CV_RETR_EXTERNAL’’ which means that we only pre-
serve the external contour. As shown in Fig. 4(d), only the
external boundary contour of the object of interest is pre-
served. The results of contour extraction are the points or
pixels of the contour and their connectivity. There is no
need to keep all contour points, so our system uniformly
samples the contour points. Note that the sampling results
of the contour points should reflect the significant features
of the contour. Therefore, a suitable sampling step length
enables the sampled contour points to be evenly distributed.
The relatively even distribution is beneficial for preserving
the characteristics of a contour. The number of sampled
contour points in the target image should be equal to that in
the source image. An example satisfying the aforementioned
requirements is shown in Fig. 4(e), in which the red points are
the sampled contour points. The concavities and convexities
of the contour are maintained.

2) INNER FEATURES SKETCHING
When the object of interest in an image has some inner
features, only extracting the contour of the object may pro-
duce unsatisfactory deformation effect. The reason is that,
in addition to the contour features, interior features also
represent significant characteristics of an object of interest
in an image. Therefore, these inner features should also be
considered as feature constraints and this is why the sec-
ond key step of our deformation method is to sketch inner
features.

Inner features can be inner lines, curves or holes. Similar
to the first step, i.e., contour extraction, the number of inner
feature lines or curves, and holes on each inner feature line or
curve, and the number of hole points for each hole in the target
image must be equal to that in the source image. In this step,
the user only needs to sketch the inner feature curves/lines in
pairs (one on the source image, the other on the target image),
and does not need to set any point manually on the feature
curves. The reason is that it is our backstage program that
automatically memorizes the order of the feature curves/lines
that the user sketches, and it is also our program that samples
and saves equal number of feature points along the sketched
source feature curve/line and target feature curve/line at the
backstage. All the user needs to do is to sketch equal number
of feature curves/lines on the source image and the target
image. This means that the point correspondences between
the source inner feature curve and the target inner feature
curve are established automatically by our program.

Note that each pair (one in the source image, the other one
in the target image) of feature lines, curves, and holes should
be sketched in the same direction with the corresponding
start point, to guarantee the feature correspondence. Figure 5
shows an example of inner features (e.g. feature curve, hole)
sketching. In Fig. 5(a)(b), the feature curves (representing the
wings) on both the source image and the target image are
drawn in the same direction as the arrows show, and both
holes (representing the eyes) are drawn counterclockwise.
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FIGURE 5. Sketching inner features (points, lines, or holes). The
counterclockwise arrow below each figure means the inner feature lines
or holes are sketched in the counterclockwise direction. (Note that inner
features are sketched in the same direction on both images).
(a) Sketching inner feature curves. (b) Sketching inner feature holes.

FIGURE 6. All feature points (including contour points and inner feature
points). Note that the number of feature points of the source image
equals to the number of feature points of the target image.

Finally, a one-to-one point correspondence between inner
feature points, lines, curves, and holes is established.

After the first two key steps, we can obtain two sets of
feature points including contour points and inner feature
points on the two images, as shown in Fig. 6.

3) KEY CORRESPONDING POINTS SETTING
Afine feature correspondence can make the subsequent mesh
mapping more accurate and smoother. In order to guaran-
tee feature correspondence, our method allows users to set
several pairs of corresponding points along the extracted
contours on the source image and target image.

Each pair of corresponding points include one point on the
contour of the source image and its corresponding point on
the contour of the target image. Thus, a one-to-one contour
point correspondence is constructed. These corresponding
points are usually specified at some places which have visual
importance or visual characteristics, like the convexity or

concavity of the contour. The purpose of setting correspond-
ing points is to establish the correspondence between each
visually important feature in the source image and its corre-
sponding visually important feature in the target image.

FIGURE 7. User sets the corresponding points on the contours of the
source image and the target image, in order to make the important
features of the source image correspond to the appropriate features of
the target image.

An example is shown in Fig. 7 in which equal number of
corresponding points are set on the contours of the objects
in the source image and target image, and each point in the
source image is mapped to its corresponding point in the tar-
get image. For instance, Point 2, 4, 9, 11, and 13 in the source
image are mapped to Point 2, 4, 9, 11, and 13 in the target
image, respectively.

4) TRIANGULATIONS
Based on the guaranteed feature correspondence, our method
performs the fourth key step, i.e., applying triangulations to
the source and the target images. We utilize the method of
‘Triangle’1 [28] which can compute Delaunay triangulations
and constrained Delaunay triangulations exactly and gener-
ate guaranteed-quality meshes (without small angles). It can
achieve a low time complexity of O(n log n).

This step can be decomposed into two substeps, con-
strained Delaunay triangulation and patch triangulation.

a: CONSTRAINED DELAUNAY TRIANGULATION
First, we apply constrainedDelaunay triangulation only to the
source image based on the features including the contour con-
straint and the interior feature lines, curves, and holes (if any)
which are the inner feature constraints. If no inner holes exist,
our method generates a sparse triangular mesh only com-
posed of triangles. If inner holes exist, it generates a sparse
triangular mesh composed of some triangular patches and
polygonal hole patches. The generated triangles or polygons
are so-called rough patches.

Then, our method does triangulation to the target image:
Thanks to the point-to-point correspondence, our method
simply copies the connections of the source mesh to connect
the target points according to the connectivity among source
points and thus we get a target mesh which is compatible
with the source mesh. However, in this process, some rough
patches in the target mesh may intersect. It is also possible
that three points are collinear. Thus, our method allows users
to move some target points to avoid this problem and thus

1freely available at http://www.cs.cmu.edu/%7Equake/triangle.html
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generates a legal triangular mesh for the target image. This
operation does not change the connectivity.

Hence, the target mesh and the source mesh have the
same topological structure and connectivity. They have equal
number of rough patches and the correspondence between
source rough patches and target rough patches is bijective.
Thus we build a rough-patch-to-rough-patch correspondence,
which is very important for the reason that it represents the
important feature correspondence to some extent since the
vertices of rough patches are all feature points.

FIGURE 8. Triangulations. (a) Patch layout after constrained Delaunay
triangulation. (b) Patch triangulation.

Figure 8 shows the source mesh and the target mesh with
the vertices shown in Fig. 6. Thus there exists a one-to-one
correspondence between each patch of the source triangular
mesh and the corresponding patch of the target triangular
mesh.

b: PATCH TRIANGULATION
The patch triangulation substep is to further triangulate each
large rough patch into a triangular mesh, aiming to form a
denser triangular mesh of the source image and the target
image, which enables more accurate calculation of the pix-
els in intermediate images generated in the sixth key step
‘‘intermediate image generation’’.

After the first substep, i.e., ‘‘constrained Delaunay triangu-
lation’’, most triangles (rough patches) as shown in Fig. 8(a)
are large. In order to achieve a better deformation effect and
a low time complexity, in this second substep, our system
automatically does conforming constrained Delaunay trian-
gulation only to large rough patches. Based on the three
vertices and three edges of this triangle (rough patch), we still
use the tool ‘Triangle’ [28], which provides multiple con-
strained (conforming) Delaunay triangulation methods with
high quality. We use ‘‘Triangle −pq xx.poly’’ command to
triangulate a planar straight line graph into quality mesh
with no angles smaller than 20 degrees. In this process,

new vertices (called Steiner points) will be generated along
the edge of the triangle or inside the triangle. That’s why we
can finally turn each triangle into a triangular mesh patch
which contains quite a few vertices in addition to the three
vertices of the triangle.

Note that in this patch triangulation process, new points
may be generated in one rough patch, aiming at dividing it
into denser segmented patches. Some of these new points
are generated along the boundary edges of a segmented
patch. However, two adjacent segmented patches must share
one common edge, but the number of points on this common
edge in two adjacent segmented patches may be unequal.
To deal with this problem and to form a whole triangular
mesh for the source image or target image, a re-triangulation
process is applied to these segmented patches.

The algorithm of re-triangulation can be described as fol-
lows: (i) First, for each segmented patch S, for each boundary
edge ei (i= 1, · · · , n, where n denotes the number of boundary
edges of patch S) of this patch, let Pei1 and Pei2 denote
the set of points on edge ei in S and the set of points on
this edge in the adjacent triangular patch which shares the
common edge ei with S, respectively. (ii) Let Pei = Pei1∪Pei2 ,
which denotes the set of all points that locate on edge ei.
(iii) After obtaining each points set Pei for all boundary edges
of patch S, do triangulation to patch S based on boundary
points set P =

⋃n
i=1 Pei and thus we obtain a new triangular

patch Snew.
After re-triangulation to all segmented patches, all com-

mon edges between two adjacent patches share the same
edge points. Then we combine each new triangular patch
into one entire dense triangular mesh. Finally, the source
mesh and target mesh are both dense triangular meshes. Thus
we obtain a segmented-patch-to-segmented-patch correspon-
dence. Thus rough patches become segmented patches. For
example, as shown in Fig. 8(b), the source hole rough patch
(the eye of the source duck) and the target hole rough (the
eye of the target duck) patch are triangulated to be a triangular
mesh, respectively. Figure 8(b) shows two dense meshes after
patch triangulation. Thus, two sparse triangular meshes as
shown in Fig. 8(a) turn to two dense triangular meshes as
shown in Fig. 8(b).

5) CONSTRAINED MESH MAPPING ESTABLISHMENT
A good deformation effect requires the correspondence
between the source mesh and the target mesh, since only by
taking advantage of the correspondence, can we gradually
deform a sourcemesh into a target mesh. However, after patch
triangulation, the number of new small triangles generated in
a source segmented patch and that in its corresponding target
segmented patch are always different, resulting in different
mesh topologies of the source segmented patch and target
segmented patch. Different topological structures mean that
the correspondence of the source mesh and the target mesh
cannot be constructed directly. Therefore, the fifth key step is
to establish a constrained mesh mapping between the source
mesh and the target mesh. A preferred method for mesh
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parameterization [29]–[31] is harmonic map, which is of a
great value due to its advantages (e.g., minimizing angle
distortion, preserving aspect ratios of triangles, etc).

Suppose Os and Ot denote the source mesh and the target
mesh, respectively. Ps ∈ Os and Pt ∈ Ot are a pair of
segmented patches, both of which are genus-0 surfaces with
only one boundary. Our task is to find a bijective and smooth
mapping φ : Ps→ Pt .
Instead of computing the mapping directly, we firstly

parameterize Ps to the unit disc using harmonic map,
i.e., f : Ps → D such that 4f = 0. The process of
harmonic map is as follows: Let Vj denote a boundary vertex
of Ps, Vi denote an inner vertex of Ps, and E denote the
elastic energy of the whole patch. The boundary point Vj
is mapped to the boundary point V ∗j of D using arc length
parametrization, and then the interior point Vi is mapped to
the interior point V ∗i of D by minimizing E according to
Eq. 2. After letting the partial differential of E be equal to
zero as expressed in Eq. 3, we can obtain the interior point
V ∗i as given in Eq. 4, where αij serves as spring constants
as defined in Eq. 5, in which Lij denotes the length of edge
{i, j} as measured in the initial patch mesh Ps, and Areai,j,k
denotes the area of face {i, j, k} as measured in Ps. Note that
each interior edge {i, j} is incident to two faces, say {i, j, k1}
and {i, j, k2}, so the right part of Eq. 5 has two terms. Note
also that each boundary edge is incident to only one face so
that the right part of Eq. 5 should have only one term in case
{i, j} is a boundary edge.

E =
1
2

∑
{i,j}∈Edges(Ps)

αij||V ∗i − V
∗
j ||

2 (2)

∂E
∂Vi
=

∑
{i,j}∈Edges(Ps)

αij(V ∗i − V
∗
j ) = 0 (3)

V ∗i =
∑

j:{i,j}∈Edges(Ps)

αijV ∗j (4)

αij =
L2ik1 + L

2
jk1
− L2ij

Areai,j,k1
+
L2ik2 + L

2
jk2
− L2ij

Areai,j,k2
(5)

Likewise, we also parameterize Pt to a unit disc using
harmonic map g : Pt → D′. Via harmonic map, we can
minimize the angle distortion and preserve aspect ratios of
triangles. We subsequently figure out a bijective mapping
between two unit discs h : D → D′ using harmonic map
4h = 0, so as to minimize the angle distortion and preserve
aspect ratios of triangles. More details about harmonic map
and its applications can be found in [26] and [32].

Thus, the constrainedmapping between two patches can be
obtained by the composite mapping φ = f ◦h◦g−1 as shown
in the commutative diagram below. We prove its bijectivity
and discuss its metric distortion in Section IV.

FIGURE 9. Constrained patch mapping. The source triangular patch
shown in (a) is mapped onto a circular domain and thus the source
circular patch shown in (c) is obtained. The target triangular patch shown
in (b) is mapped onto a circular domain and thus the target circular patch
shown in (d) is obtained. Then we establish a map between two circular
patches shown in (c) and (d). In this way, we can build the constrained
patch mapping between the source patch shown in (a) and the
corresponding target patch shown in (b).

After building a constrained mapping between each pair of
corresponding segmented patches, our method automatically
combines all constrained patch mapping together to form
a constrained mesh mapping which maps the entire source
mesh to an entire target mesh. Thus the correspondence
between two meshes is rebuilt. An example of constrained
patch mapping is shown in Fig. 9.

6) INTERMEDIATE IMAGE GENERATION
After the constrained mesh mapping between the source
mesh and the target mesh has been obtained, the intermediate
meshes can be figured out. Hence, the final step is to generate
the intermediate shapes and fill in the intermediate shapes
with pixels. Thus, this step can be divided into two substeps,
i.e., intermediate mesh calculation and intermediate images
generation.

a: INTERMEDIATE MESH CALCULATION
Our method utilizes linear interpolation to generate the inter-
mediate meshes based on the mapping between the source
mesh and the target mesh. It calculates the position of each
vertex v in the intermediate mesh by linear interpolation of
the position of the corresponding vertex vs in the source mesh
and the position of the corresponding vertex vt in the target
mesh.

p(v) = (1− µ) ∗ p(vs)+ µ ∗ p(vt ) (6)

where µ ∈ [0, 1] is a parameter controlling the interpola-
tion and function p(v) denotes the position of vertex v. Our
method in total generates fifty intermediate meshes in each
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FIGURE 10. Intermediate mesh sequences and intermediate images.
(a) From left to right: intermediate mesh #5, intermediate mesh #15,
intermediate mesh #25, intermediate mesh #35, intermediate mesh #45.
(b) From left to right: intermediate image #5, intermediate image #15,
intermediate image #25, intermediate image #35, intermediate
image #45.

deformation case. Figure 10(a) shows five uniformly selected
intermediate meshes from fifty frames for duck deformation.

b: INTERMEDIATE IMAGES GENERATION
Forward mapping may induce ‘hole’ problems which means
that there exist some missing pixels that cannot be calculated.
In order to avoid the ‘holes’, instead of interpolating the
corresponding source pixel and target pixel directly to find
the intermediate pixels, our method starts from the position of
each intermediate pixel of each intermediate image and finds
the corresponding source pixel and target pixel, respectively.
For each intermediate pixel pi, our method first finds the
small triangle t in which it locates, and the position of pi
(barycentric coordinates of pi) can be represented as the
linear combination of the coordinates of three vertices v1, v2,
and v3 of this triangle. As each triangle in the intermediate
mesh corresponds to one triangle in the source mesh and
one triangle in the target mesh, our method then finds the
corresponding small triangle ts in the source mesh and the
corresponding triangle tt in the target mesh, and applies
the same linear combination of the barycentric coordinates
to these two triangles, to obtain the position of corresponding
pixel ps in the source image and pt in the target image. Finally,
our system calculates the pixel value of pi using the linear
interpolation:

pi = (1− µ) ∗ ps + µ ∗ pt (7)

where 0 ≤ µ ≤1. In total, fifty intermediate images are gen-
erated in each deformation case. In Fig. 10(b), five uniformly
selected intermediate images with pixels and corresponding
meshes are displayed.

IV. BIJECTIVITY AND MINIMIZED DISTORTION
A. BIJECTIVITY
In this subsection, we prove that our established mesh map-
ping presented in Section III-B.5 is a bijective mapping.
Theorem 1: The mapping between a pair of segmented

patches, i.e., the source patch Ps and the target patch Pt , is a
bijective mapping. ♠

Proof: Consider a pair of segmented patches. The map-
ping is obtained byφ = f ◦h◦g−1. Notice that the boundary of
the source segmented patch is mapped to the boundary of the
target segmented patch via arc length parametrization and that
the mapping of the corresponding boundaries are bijective.
Lipman [33] proved that as long as the boundary of the source
domain is mapped bijectively to a simple polygonal curve,
then this map is a global bijection between the source domain
and the target domain bounded by this curve. Therefore,
the mapping between this pair of segmented patches is a
bijection.
Theorem 2: The constrained mesh mapping between the

source mesh and the target mesh is bijective. ♠

Proof:Theorem 1 tells us that themapping between each
pair of segmented patchesPs and Pt is bijective. Since there is
a one-to-one correspondence between all pairs of segmented
patches, after we connect all the patch mappings together to
form an entire mesh mapping, we can conclude that the entire
mapping between the source mesh Os and the target mesh Ot
is bijective.

B. MINIMIZING DISTORTION
Harmonic maps minimize metric dispersion, which is a mea-
sure of metric distortion [34]. Therefore, our final mesh
mapping φ = f ◦ h ◦ g−1 can minimize metric dispersion
because f : Ps → D, g : Pt → D, and h : D → D′ are all
harmonic maps.

Harmonic map has quite a few good properties. To name
a few, for a harmonic map f : Ps → D, (i) it is infinitely
differentiable on each face of Ps; (ii) it is independent on
the triangulations of Ps; (iii) the harmonic map tends to
minimize such distortion while maintaining the embedding
and attempting to preserve aspect ratios of triangles.

V. RESULTS
This section reports and discusses the results generated by
our image deformation method. Many deformation results
demonstrate that our deformation method can achieve natural
image deformation with user-controllable guaranteed feature
correspondence in real time. In addition, we also compare our
results with the results generated by existing techniques.

A. SMOOTH DEFORMATION RESULTS
Our deformation method can generate various smooth defor-
mation results. Due to limited space, we only list several
deformation examples in this subsection. Note that each
deformation example in total has fifty frames, from which
we uniformly select five or six frames with the source and
the target images being the first and last frames for each
deformation example, due to space limits.

Figure 11 shows two flower deformation examples.
Observe that one round blue flower is deformed into a fluted
purple flower, and each intermediate image shows a complete
and natural flower, as shown in Fig. 11(a). Similar successful
flower deformation results can be found in Fig. 11(b).
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FIGURE 11. Flower deformation examples. In each subfigure, the first
image and last image are the source image and target image, and others
are intermediate frames. (a) Flower deformation. (b) Flower deformation.

FIGURE 12. Face deformation examples. In each subfigure, the first image
and last image are the source image and target image, and others are
intermediate frames.

Figure 12 shows two human face morphing examples.
Observe that two male faces are gradually deformed into
female faces, with smooth and natural deformation effects.
Each intermediate image in between the source image and
the target image shows a clear, complete and flawless
human face.

Figure 13 describes four animal deformation examples.
These image deformation sequences perfectly show that a
yellow duck image is deformed into another yellow duck
image (shown in Fig. 13(a)), a dog image is deformed into
another dog image (shown in Fig. 13(b)), a standing fat
elephant is deformed into a jumping thin elephant (shown
in Fig. 13(c)), and a purple monkey is deformed into a green
monkey (shown in Fig. 13(d)). Observe that each intermediate
image shows a complete and seamless transition from the
source image to the target image.

Some more deformation examples are shown in Fig. 14,
where a dancer is seamlessly transited into another dancer
with different poses as shown in Fig. 14(a), a real
umbrella image is deformed into a cartoon flower as shown
in Fig. 14(b), a green leaf is deformed into a pinkish purple
flower as shown in Fig. 14(c), and a male student’s face is
gradually deformed into a female student’s face as shown
in Fig. 14(d).

FIGURE 13. Animal deformation examples. In each subfigure, the first
image and last image are the source image and target image, and others
are intermediate frames. (a) Duck deformation. (b) Dog deformation.
(c) Elephant deformation. (d) Monkey deformation.

In summary, various results displayed in the above men-
tioned figures show quite satisfying deformation. Each object
in the in-between images looks good. During the deformation
process, not only the inner features are well preserved but also
the shape has a smooth transformation due to the existence of
the contour features.

B. COMPARISON WITH CONVENTIONAL METHODS
We compare our image deformation method with existing
image deformation methods such as [9] and [35]. We report
the comparison results as follows.

1) AVOIDING FADE-IN AND FADE-OUT EFFECTS BY
CONSIDERING CONTOUR CONSTRAINTS
Figure 15 shows two groups of deformation sequences.
The top intermediate images are generated by another tech-
nique which only considers inner features while disregarding
the contour. The bottom intermediate images are generated
by our method, which can extract both the contour and
inner features. In order to explore whether the contour fea-
ture has an important influence on the deformation effects,
we let the users specify the inner features (e.g, the eyes,
nose, mouth and eyebrow) when applying both of the
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FIGURE 14. More deformation results. In each subfigure, the first image
and last image are the source image and target image, and others are
intermediate frames. (a) Dancer deformation. (b) Umbrella-flower
deformation. (c) Leaf-flower deformation. (d) Students’ face deformation.

FIGURE 15. Comparison: results without considering contour
constraints vs. results by our deformation system which considers
contour constraints. From left to right: Frame #0, Frame #16, Frame #32,
Frame #49. In each subfigure, the source image and target image are
Frame #0 and Frame #49, and others are intermediate frames. (a) Fade-in
and fade-out effects without contour constraints. (b) Smooth and natural
effects with contour constraints.

two techniques. When only considering the inner features,
the intermediate images have a fade-in and fade-out effect
and a blur on the boundary, as shown in Fig. 15(a). When
both the inner features and contour feature are considered,

FIGURE 16. Comparison: results without considering contour
constraints vs. results by our system which considers contour constraints.
From left to right: Frame #0, Frame #10, Frame #20, Frame #30,
Frame #40, Frame #49. In each subfigure, the source image and target
image are Frame #0 and Frame #49, and others are intermediate frames.
(a) Fade-in and fade-out effects without contour constraints. (b) Smooth
and natural effects with contour constraints.

FIGURE 17. Comparison: results without considering contour
constraints vs. results by our system which considers contour constraints.
From left to right: Frame #0; Frame #10; Frame #20; Frame #30;
Frame #40; Frame #49. In each subfigure, the source image and target
image are Frame #0 and Frame #49, and others are intermediate frames.
(a) Fade-in and fade-out effects without contour constraints. (b) Smooth
and natural effects with contour constraints.

the intermediate images do not suffer from this problem,
as shown in Fig. 15(b), where each intermediate image shows
a considerably real and natural face.

When deforming two flowers with different shapes, the top
flowers as shown in Fig. 16(a) generated by other techniques
without considering contour constraints have a really worse
appearance due to the lack of the contour feature, especially
in Frame #20 and Frame #30. The cross dissolve problem
is much severer in Fig. 17(a). In contrast, the intermediate
flowers generated by our method are natural and smooth, as
shown in Fig. 16(b). Similar deformation results generated by
ourmethod can be seen in Fig. 17(b), where each intermediate
leaf does not have any cross dissolve problem and is deformed
from the source image to the target image smoothly and
naturally.

From the above examples, we find that the advantage of
our method is considerably obvious since we take the con-
tour constraints into consideration in addition to the interior
feature constraints. Thus, we can conclude that due to the

5218 VOLUME 7, 2019



Y. Liu et al.: 2D Image Deformation Based on Guaranteed Feature Correspondence and Mesh Mapping

contour constraints, our technique produces a smoother, more
natural and more realistic image deformation.

2) RELIEVING TEDIOUS OPERATIONS FOR USERS
Our deformation system provides users with a fast and intu-
itive deformation experience. One important novelty of our
method is we extract the contours automatically whereas
existing techniques either ignore contour constraints [1] or
sketch contours manually [9].

The significance of automatic contour extraction is consid-
erably evident, especially when the features of two images are
only the contours, like in Fig. 13(d). In this case, users do not
need to sketch any curve, in that (i) our system automatically
extracts the contour, and (ii) the source image and target
image have no interior features. Thus, there is no tedious
work for users and they can enjoy the entire natural automatic
deformation process. In fact, even if there are some interior
features inside the objects of interest, the improvement of our
technique is still obvious as in such situations users only need
to sketch several interior feature curves and do not need to
manually sketch the contours.

In contrast, some existing techniques like [9] need to let
users sketch the contour. Of course, such techniques can lead
to the same result as our method. However, notice the fact
that the user-sketching process has a complete control on
the final result, which means the deformation completely
follows the drawn outline. Hence, a successful deformation
by such techniques requires users’ skills and experiences,
and also leads to tedious work for users. In principle, a good
deformation tool should strive to minimize the manual effort.

TABLE 1. Average time comparison of the contour extraction step of our
method with traditional methods.

Table 1 compares the average time used for automatic
contour extraction and manually sketching contours. Observe
that our automatic contour extraction saves a lot of time,
no matter the contour is simple or complex. Hence, another
advantage of our method is the automation of contour extrac-
tion relieves the cumbersome operations for users.

3) PROVIDING AN INTUITIVE USER-
CONTROLLABLE INTERFACE
Some existing deformation methods like [31] lack a high-
level control structure, making it inconvenient for users to
deform images. To resolve this problem, we provide an intu-
itive user-controllable image deformation interface.

Our interface guides the user clearly and conveniently so
that the user can control the deformation process. With our
interface , users can load a source image and a target image,
then automatically extract the contours of the objects of
interest, subsequently sketch several interior features (if any)
inside the contours and set corresponding points, then our

system does triangulations and constructs a bijectivemapping
between the source object and the target object, and finally
shows the morphing results.

This interface enables users to enjoy a convenient image
deformation experience. It does not require tedious or com-
plex operations and users just need to click two or three menu
items. Through this interface, users can realize image defor-
mation and watch the image deformation results immediately
and intuitively.

4) ACHIEVING PLEASING MORPHING
BETWEEN DIFFERENT OBJECTS
Traditional cage based methods such as [35]–[37] usually
rely on a manually modeled cage. Some of these methods
have the problem that the cage is hard to manipulate man-
ually. However, our technique avoids such problems since
our approach automatically constructs amapping between the
source object and the target object, which is invisible to users.
Our deformation method can achieve pleasing morphing
results between different objects (even if two objects have
different interior features and colors) as shown in Fig. 11,
Fig. 12, Fig. 13, and Fig. 14, in that it establishes a bijective
mapping between the mesh of the source object and the
mesh of the target object, whereas most existing cage-based
deformation [36], [38] can only deform a source object into
the very similar object with a somewhat different shape or
pose but with the same color values. In other words, most
existing cage-based deformation techniques can only some-
how ‘edit’ a given image, but cannot morph an image into a
new image with different colors as they cannot generate new
colors. Therefore, given a source image and a target image,
cage-based deformation techniques usually cannot deform
the given source image into the given target image.

FIGURE 18. Comparison: results by traditional cage-based methods vs.
results by our method. From left to right: Frame #0; Frame #10;
Frame #20; Frame #30; Frame #40; Frame #49. In both (a) and (b),
the source image and target image should be Frame #0 and
Frame #49 of (b). Others are intermediate frames.

For example, a red object surely cannot be deformed into
a green object if we use some existing traditional cage-based
deformation techniques. Image deformation results such as
the monkeys shown in Fig. 13(d) cannot be generated by
traditional cage-based deformation. Another simple example
is shown in Fig. 18, where a traditional cage-based method
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can enlarge the image object but cannot generate new color,
so that its deformation result, i.e., the last image shown
in Fig. 18(a), has the same color as the source image, so the
target image, i.e., the last image shown in Fig. 18(b), cannot
be deformed into with this kind of traditional cage-based
methods. In contrast, our deformation system can easily
deform such kind of images.

Even if the source image and the target image have the
same or similar colors, traditional cage-based deformation
techniques still cannot transform the source image into the
target image. Take the yellow duck shown in Fig. 13(a) as
an example. The wing of the target yellow duck cannot be
generated by traditional cage-based image deformation tech-
niques although the source duck and the target duck have
almost the same color. The reason is that traditional cage-
based deformation can only change the shape, pose or size of
the features but cannot introduce new pixel values. However,
our deformation method can easily achieve such kind of
morphing.

TABLE 2. Comparison of our method with other methods.

C. SUMMARY AND DISCUSSION
After making comparison with existing deformation meth-
ods, we summarize the main characteristics of our method
and other methods, and list the differences in Table 2. As our
method automatically extracts contours of the object of inter-
est, it reduces tedious work for users. As our method allows
a user to specify inner features, it preserves inner feature
details. As our method takes both the contours and inner
features as constraints, it avoids fade-in and fade-out effects
and thus can produce smooth deformation. As our method
provides an intuitive interface, it provides a more conve-
nient user experience. As our method establishes a mapping
between the source and target meshes, it can achieve pleasing
deformation between different objects.

VI. CONCLUSION
In this paper, we propose a 2D image deformation method
based on guaranteed feature correspondence and mesh map-
ping. Our method first automatically extracts contours of
two images and allows users to specify some inner features
on both images, and then automatically constructs a guar-
anteed feature correspondence and applies triangulation on

both images. Subsequently, our method automatically estab-
lishes a constrained mesh mapping between the source image
mesh and target image mesh through harmonic maps. After
calculating the intermediate triangular meshes and pixels
of intermediate images, our method achieves a smooth and
natural deformation process. Regarding our mesh mapping,
we also prove its bijectivity and discuss its distortion metrics
and other properties. Compared with traditional works, our
method relieves the cumbersome operations for users by
extracting image contours automatically, avoids face-in and
fade-out effects by considering contour constraints, provides
an intuitive user-controllable interface, and achieves pleas-
ing morphing between different objects. Various deforma-
tion examples show that our image deformation method can
deform images smoothly and naturally.
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