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ABSTRACT Recently, distributed sustainable data centers based on renewable power generators have been
deployed in order to efficiently reduce both the energy cost and carbon emission. Dynamic right-sizing (DRS)
and frequency scaling (FS) have been considered as promising solutions to tune the computing capacity
corresponding to the dynamic renewable power capacity. However, in existing works, the inaccurate power
prediction and the uncoordinated decision making of DRS/FS still lead to low service quality and high energy
cost. In this paper, we propose a novel joint optimization method for energy efficient distributed sustainable
data centers. The proposed method adopts long short-term memory approach to improve the prediction
accuracy of renewable power capacity for a long period, and unsupervised deep learning (DL) solver to
resolve the coordinated DRS/FS optimization. Furthermore, we present the MACRO/MICRO (MAMI)
time scale-based data center management technique to achieve both high energy efficiency and low wake-
up transition overhead of DRS. To evaluate the proposed DL-based MAMI optimizer, we use the real
trace data of renewable power capacity from the U.S. Measurement and Instrumentation Data Center.
The experimental results demonstrate that our method reduces the energy cost by 25% compared with
conventional metaheuristics while guaranteeing the service response delay requirement.

INDEX TERMS Energy efficiency, renewable energy sources, mathematical programming, unsupervised

learning, economic forecasting.

I. INTRODUCTION

The modern geo-distributed sustainable data centers reduces
the energy cost by using two renewable power sources,
solar (or photovoltaic (PV)) power and the wind power
[1]-[3]. In contrast to conventional grid power from coal
and nuclear plants, sustainable power is (almost) free of fuel
charge and does not generate the significant carbon emission.
After the adoption of Paris climate assignment under the
United Nations Framework Convention on Climate Change
(UNFCCC) in Dec., 2015, countries encourage IaaS suppliers
to operate their data centers based on renewable energy [4].
Facebook has depolyed multiple renewable energy generators
in Los Lunas, New Mexico, Papillion, etc, to supply the
energy requirement from geo-distributed data centers [5].
Apple has developed its own on-site renewable energy gen-
erators of solar, water, wind, and biogas fuel cells. They have
reduced CO, emission by 590,000 metric tons [6].

The exploitation of the on-site renewable power genera-
tion should be carefully treated due to the associated inter-
mittency and the uncertainty. The capacity of solar power
depends on the solar radiation, and the wind power depends
on the regional wind speed [7], [8]. Even in the same region,
fluctuations in power capacity may arise due to changes in
dynamic weather conditions [9]. The geo-distributed sustain-
able data centers need the adaptive request dispatching (RD,
i.e., mapping of data centers to requests) corresponding to
dynamic renewable power capacity, to maximize their energy
efficiency. For power capacity prediction, previous papers
have proposed various methods such as nonlinear auto-
regressive models with exogenous inputs (NARX) [10], esti-
mated weighted moving average (EWMA) [11], and Kalman
filter [12]. Even though such methods show good predictive
performance however, they still exhibit low prediction accu-
racy for irregular renewable power curves during long period.
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Meanwhile, guaranteeing the service quality is also a criti-
cal concern for sustainable data centers. There are two widely
used methods for energy efficient data centers, dynamic right
sizing (DRS) [13] and CPU frequency scaling (FS) [14], [15].
In the DRS, the number of powered-up servers is adjusted
proportionally to the amount of incoming workloads. The
DRS removes the static power consumption of idle servers,
and results in both the energy saving and the high resource uti-
lization. The FS indirectly tunes the power supply for running
servers. The FS can adaptively control the CPU frequency of
servers based on time-varying workloads and power capaci-
ties and results in achieving the efficient dynamic power con-
sumption. However, the coordinated management of DRS/FS
is generally not easy to be designed due to following prob-
lems. First, while FS overhead is negligible, the server wake-
up transition overhead by DRS actuation is serious [13].
Too frequent DRS triggering causes non-negligible long
server downtime, additional energy consumption, and cool-
ing delay [9], [16], [17]. Second, many previous works have
not considered both the DRS and FS as decision variables
simultaneously since the coordination of DRS/FS makes
the optimization problem non-convex [18]-[20]. Obviously,
if we manage the DRS and FS separately, then we fail to
achieve a better energy efficient data center in views of static
and dynamic power consumption of servers.

In this paper, we propose the novel joint optimization
algorithm for energy efficient sustainable data centers. Our
work has following contributions.

o The objective of our optimization method is to find
the optimal decision of DRS, FS, and RD for geo-
distributed sustainable data centers in order to mini-
mize energy cost while guaranteeing the service latency
bound.

+ We propose the MACRO/MICRO (MAMI) time scale
based management for energy efficient sustainable dis-
tributed data centers. In MACRO time scale, the entire
decision variables of DRS, FS, and RD are optimized
simultaneously over the long time period. In MICRO
time scale, given the fixed DRS decision, the decision of
FS and RD are re-optimized corresponding to the work-
load variation for the short-term period. This approach
efficiently reduces the server wake-up transition over-
heads caused by frequent DRS actuation.

o We adopt recurrent neural network (RNN) based long
short term memory (LSTM) method [21], which is
the emerging artificial intelligent approach in order
to improve the prediction accuracy for a long period.
We present the LSTM input/output data structures dedi-
cated to renewable power capacity prediction.

o We design the unsupervised deep learning (DL) solver
for non-convex optimization problem. Due to the benefit
of unsupervised learning (i.e., not requiring labeling
data), we can utilize both the actual and synthetic data
to train the deep neural network (DNN) model [22].
The proposed DL based MAMI optimizer ensures the
rapid output derivation once the DNN model is trained,
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in contrast to conventional metaheuristics which require

non-negligible re-compute time for each state.
In order to demonstrate the performance of the proposed DL
based MAMI optimizer, we use real traces of solar radi-
ation, outside air temperature, and wind speed at various
geo-graphical locations, provided by the U.S. Measurement
and Instrumentation Data Center (MIDC) [23]. Our MAMI
optimizer integrating the LSTM predictor and the DL solver,
outperforms conventional metaheuristics in views of both the
energy cost and the service quaility ensurance of data cen-
ters. Without violating the service latency bound, it reduces
the energy cost about 25% compared to genetic algorithm
(GA) [24]. Furthermore, the proposed optimizer requires the
acceptable computation time (< 1s) for DRS/FS/RD decision
making while the GA requires the undesirable time (> 1hr)
for each decision making step.
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FIGURE 1. Fully connected structure of edge servers and geo-distributed
sustainable data centers.

Il. ENERGY COST MODEL FOR SUSTAINABLE DATA
CENTERS WITH MULTIPLE EDGE SERVERS

We consider / sustainable data centers (DCs) with wind
farms and solar panels, and J multiple edge servers. The
edge servers (ESs) are scattered over multiple distributed
edge zones which are populated areas (e.g., cities) to aggre-
gate and transfer user requests to data centers [25], [26].
We assume that all the DCs and ESs are fully-connected each
other [27]. This is shown in Fig.1. Let [x] = {1,---,x}
denote the set of integer numbers which has x cardinality.
Let T, and K denote the considered continuous time length
and the number of entire discrete time slots, respectively.

The one time slot length is defined as § = % Then the
discrete time slot indices k = 1,2,---, K are mapped to
countinous time intervals [0, §), [§, 26), ---, [(K—1)§, K§),
respectively.
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The geo-distributed sustainable DCs get their power supply
from two main electricity facilities, grid power and renew-
able power generators. Let srk, oaty, and v; denote the
weather condition variables; solar radiation, outside air tem-
perature (OAT), and the wind speed in the i-th DC at time
slot k, respectively. Let spc}'{ and wpc;; denote the solar power
and the wind power capacity based on the weather condition
in the i-th DC at time slot &, respectively. Let m}( and fki denote
the number of powered-up servers and the CPU frequency
value (the same value is set for all servers in DC) in the
i-th DC at time slot k. Let A‘;C and AZ denote the number of
user requests entered to the j-th ES and the number of the
dispatched requests from the j-th ES to the i-th DC at time
slot k, respectively. Let )»}; = Zle AZ denote the sum of
user requests from entire edge servers. This structure is shown
in Fig.2.

datacenter power Pic

i
DRS Actuator m

@ﬁl Grid power

CPU Freq fi |
Modulator = Wka Spck
¥_ Y =gl W|nd € Solar
(i SRS § power power
|\ 1 J iati L
+ - ;|| solar radiation sr
. wind speed vy | | outside air temp oat}.

. i |}
service response delay dk I Geo-location Environment

FIGURE 2. Dynamic Right Sizing (DRS) actuation, CPU Frequency
Scaling (FS), and Request Dispatching (RD) for energy efficient
sustainable data centers, with solar panels and wind farms.

A. RENEWABLE POWER CAPACITY MODEL

1) POWER CAPACITY OF SOLAR PANEL

The solar power is generated by sunlight through the solar
panel converting sunlight into electrical power. The available
solar power capacity spc}; is defined as follows [28]:

spek = n'S'sri(1 — 0.005(0at} — 25)), (1)

where S’ and 7' represent the size of panel area (%) and the
solar panel conversion efficiency (%), respectively. sr,i and
oat,i represent the amount of solar radiance (w/m?) and the
outside air temperature (C), respectively; and they might be
varied according to the dynamic weather condition.

2) POWER CAPACITY OF WIND FARM

The amount of electricity generated by wind farms depends
on the regional wind speed and the blade characteristics.
The approximated wind power capacity wpcf{ is defined as
follows [29]:

0, ifvf{ < V¢
i
Vi, — Vei .
k ci . i
; f — ifvy <V Ly
WPC;C _ Pr r — Ver i XV X Vr ’ 2)
DPr if v, <vj, <veo
0, if vi > veo

where p;, V¢i, Vi, Veo are rated electrical power (w/m), cut-
in wind speed (m/s), rated wind speed (m/s), and cut-off
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wind speed (m/s), respectively. In particular, v.; represents
the wind speed at which the fan blades first start to rotate and
produce the power (usually 3 —5m/s) [7], [30]. v, represents
the upper limit of the permissible wind speed to protect the
turbine from the risk of damage due to strong wind speed
(typically 25 — 30m/s).

B. DATA CENTER POWER CONSUMPTION MODEL

Let u and f denote the average CPU utilization and the CPU
frequency of the arbitrary server in the data center, respec-
tively. According to [31], the server power consumptoin p
based on u and f can be approximated as follows:

p(f,u) = azfu + asf + aju+ ap. 3)

These power model coefficients «g, o1, o2, @3 are derived
from curve-fitting methods. Note that the relationship u = %
holds where A is the service arrival rate [31]. We assume
that the user requests dispatched to the data center are evenly
distributed to all the powered-up servers. That is, the average

CPU utilization for single server in the i-th DC at time slot &
is defined as uk =
of the i-th DC at tlme slot k is defined as follows:

l )\‘l X
+abfy + of = 4 o)
kfk kfk
i

+ aomk )

—~-_ Then, the total power consumption

Plie(mi fis 1) = mi (ify =~

= & +aymfi + oy
k
Note that the static power consumption af) mz can be reduced
only by powering down the idle servers via DRS actuation,
since the adjustment of fki and )»f( affects only the dynamic
power consumption.

C. DATA CENTER SERVICE RESPONSE LATENCY MODEL
For simplicity, we consider only the transactional workload
as the type of user request in this paper. The performance of
transactional workloads can be assesed by using the service
response latency. We use M /M /m queueing model to model
the average service response latency for each DC. The aver-
age service response latency d' for the i-th DC is defined as
follows:

Py 1
mifi = M fk’ ’
where the first term of Eq.(5) denotes the average queue
waiting time, and the second term denotes the average ser-
vice time. We simply assume that Pp = 1 which repre-
sents the probability of requests waiting in the queue refer
to [3] and [32].

d'(mi, i, Ay = ®)

D. DATA CENTER ENERGY COST MINIMIZATION
PROBLEM FORMULATION
Based on the Eq.(1)-(5), the energy cost model for the i-th DC
at time slot k is defined as follows:

= d'(m, . M) * Pl mi L M) — spei, — wpe)t,

(6)
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where (x)T = max(x, 0). For simplicity, the additional oper-
ation cost for solar panels and wind farms is assumed to be
free of charge in this paper. If spc}; + wpc}; > pfjc(m}; , fk", A};),
then the i-th DC is able to process the assigned user requests
A= 2 viel] A{ with zero energy cost. Otherwise, the excess
energy consumption is supported by the grid power generator,
and the energy cost increases as the the amount of excess
energy consumption increases.

The objective of this paper is to find optimal decision for
DC energy cost minmiziation. The decision vector contains
the number of powered-up servers m, the CPU frequency f,
and the request dispatching map A. The predicted renewable
power capacity vectors spc, wpe and user requests A are
given over multiple time slots Yk € [K]. We unfold these
vectors as follows:

I

. m:(m{,~-~ L ATy, My, e ,mf()eR”(

N fz(fll"" ’fll’fZI’”' ,f,ﬁ)eR’K

o A= A2 A AR odt ) e RVK

o spc = (spcl, -+, spch, spch, -+, spch) € RIK

o WpC = (wpc}, . ,wpc’l, wpcé, cee, wpc%) e RIK

e A=(AL - A AL - AL) eRK
Now, we formulate the problem for the energy cost minimiza-
tion of distributed data centers as follows:

Problem 1 (Data Center Energy Cost Minimization):

K I K 1 J
i — i U ij ij
g}RC._ZZCk+ZZZAktp, 7)
k=1 i=1 k=1 i=1 j=1
1 _
Sub.eCtt()*‘}-—.gd, Vie I,Vke K, 8
jectto Tt 1] K1, (8)
mifl— 2L >0, Vielll, Yk € [K], 9)
m' <mj <m', Vielll, Yk € [K], (10)
FI<f<T, Viell vk e K], (11)
1
Zx;{ = A}, VjelJl, Yk € [K]. (12)
i=1

Here, t¥ and p¥ are the trasfer time and the link power
consumption per data unit of user requests from j-th ES to
i-th DC, respectively. The constraint (8) indicates that the
average service response latency can not exceed the prede-
fined latency upper bound d. The constraint (9) indicates
that the number of user requests to dispatch can not exceed
the available computing capacity of the destination DC. If it
is violated, then the involved service response latency may
be infinitely increased. The constraint (10) indicates that the
number of powered-up servers should be adjusted within
the number of total servers in the DC. The constraint (11)
represents the available CPU frequency scaling range. The
constraint (12) indicates that the user requests arrived at the
certain ES should be entirely dispatched to distributed DCs.

Note that Problem 1 has two main challenges. First, too
frequent variation of m may aggravate the DRS wake-up
transition overheads [13], [16]. This indicates that the DC
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energy cost should be optimized with the minimum number
of DRS triggering as possible. Second, the multiplication of
m and f in the constraints (8), (9) makes the Problem 1 non-
convex optimization. This prevents that the general convex
optimizers solve the Problem 1. To overcome these issues,
we propose the novel optimization method in next section.
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FIGURE 3. The structure of the proposed MACRO/MICRO (MAMI)
optimizer, which consists of unsupervised deep learning (DL) solver (for
MACRO time scale decision making) and convex solver (for MICRO scale
decision making).

lll. TEMPORAL MACRO/MICRO (MAMI) SCALE BASED
DATA CENTER ENERGY COST OPTIMIZATION

In this section, we introduce our proposed deep learning (DL)
based MACRO/MICRO (MAMI) time scale optimizer. Fig.3
shows the structure of the proposed MAMI optimzer for geo-
distributed sustainable data centers. The MAMI optimizer
consists of unsupervised DL solver (for MACRO time scale
decision making) and the convex solver (for MICRO time
scale decision making). The long short term memory (LSTM)
based predictor in each DC reports predicted renewable
power capacity sequence to the MAMI optimizer. The request
predictor in each ES reports predicted user request sequence
to the MAMI optimizer. We show a detailed explanation of
the DL solver and the LSTM predictor in section 4.

The MAMI optimizer differentiates the time scale for the
variable m that is sensitive to switching overhead and the
variables f and A that are not sensitive to switching overhead.
On the MACRO time scale, the MAMI optimizer fulfills
the decision making for optimal m’, f, and A. Here, m’ is
the new decision vector defined for the shortened time slots
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k' = 1,---,K’, and it replaces the original decision vector
m. On the MICRO time scale, given fixed m’, the MAMI opti-
mizer elaborately recalculates f and A according to changes
in solar power capacity, wind power capacity, and the user
demands.

A. MACRO TIME SCALE DECISION MAKING

Let K’ denote the number of MACRO time slots such that
K’ < K.Let 8 = g - & denote the MACRO time scale sam-
pling interval where g is the positive integer number. Then,
the MACRO time slot indices k¥’ = 0, 1, - - - , K" are mapped
to 0, 1q, 2q, - - - , K. This relationship is shown in Fig.4. For
the MACRO time scale decision making, we newly define
m = (m/ll, m/lz, e ,m/lg,) € RX" instead of using m € R/X,
Then we formulate the MACRO time scale DC energy cost
minimization problem as follows:

k'=0 k'=1 k'=2 k'=3 k' =K

; E MACRO Time Scale
o—— g

;o 0'=4q5 |

! ! MICRO Time Scale
—

0w

k=0 % k=gq k=2q k=3¢ k=K

FIGURE 4. MACRO/MICRO (MAMI) time scale control period.

Problem 2 (MACRO Time Scale Data Center Energy Cost
Minimization):

K q I K I J
m. C/ = i/ U U l./
RIS 35 9D DI FEE ) ) BPL L/ ARIE
k'=1k=1 i=1 k=1 i=1 j=1
. 1 1 _
subject to Y ; + 5 <d,
Mg e = Mgk qu’+k
Vielll, Vkelql, Vk' e[K], (14)

M = M > 0, Vielll, Vk € [q],
vk e [K'], (15)
m <mj, <m', Vielll, V& e[K'], (16)
[T < Sl ST Vielll, Yk e lq],
vk e [K'], (17)

1 .
y —
2 g = A
i=1

S Vi€ 1, VK €[q],

vk e [K'], (18)
where
Cox = dl(m;cl”fc]lk’+k’ )‘;k’+k) * (pfic(mg”fqlk’+k’ )‘i]k’-i-k)
— SPCr ik — WPCqr 1)
As the size of ¢ increases, the dimensionality of m’
decreases. We can properly tune the DRS wake-up transition
overhead by adjusting g. Note that replacing m using m’

has two advantageous points compared to naively adding the
equality constraints to the Problem 1. First, we decrease the
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computation complexity by reducing the dimensionality of
the decision vector. Second, we avoid the additional compu-
tation burden for equality constraints.

Note that Problem 2 is the non-convex problem due to
the constraints (14), (15) which include the multiplication of
decision variables m and f. In section 4, we show that our
unsupervised DL solver efficiently resolves this non-convex
problem.

B. MICRO TIME SCALE DECISION MAKING

The prediction of renewable power capacity does not always
match with the actual data due to the intermittent and
fluctuated properties of the weather condition (e.g., abrupt
clouds and winds, drastic drop of temperature). Although
the MACRO time scale based decision making efficiently
reduces the DRS wake-up overheads however, it does not
cope well with the renewable power capacity fluctuation
immediately due to the long sampling period of §'.

MACRO Time Scale

MICRO Time Scale

2¢ k=3¢ k=K
|| il :
T \

FIGURE 5. MICRO time scale partial optimization for fand i during
interval [k = ¢,k =K] atk = ¢.

The goal of the MICRO time scale based decision making
is to re-calculate the sophisticated frequency scaling/request
dispatching, so as to complement the MACRO time scale
management. Suppose that the the nontrivial prediction error
for renewable power capacity is identified at k = ¢. In addi-
tion, let spc;(i and wch denote the newly predicted solar and
wind power capacity for time slot k, respectively. This is
shown in Fig.5. The MAMI optimizer partially recalculates
f and A corresponding to the renewaled prediction. To do
this, we define the MICRO time scale based DC energy cost
minimization problem as follows:

Problem 3 (MICRO Time Scale Data Center Energy Cost
Minimization):

K I K I J
min C” := ZZC,:i + ZZAZIU,OU, 19)
£Am’ k=¢ i=1 k=¢ i=1 j=1
1 -
subjecttoﬁ—f——igd, Vi e [1],
m'fi =M i
k=¢,¢c+1,--- K, (20)
m"fl— b >0, Vielll,
k=¢,¢+1,--- K, (1)
[T, Viellk=¢¢+1,-- K,
(22)
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vjelJl,

34 = o,
i=1
k=¢c+1,---,K, (23)
where
K =¢+q—mod(t, g),
m" =m{, k= f£1,
q

f= (f;l"" ’fcl’f§1+l"" ’fié) e RIK=0),

S _ 11 I 411 )i U-(K—¢)
)"_()“ a"'a)"gv)\';'+ls"'a)"l‘()ER )

Cl=d'm" fl, AL (ph (" £l ALY — spefl — wpe)T

Here, mod(a, b) represents the remainder after a is divided
by b. The number of powered-up servers is fixed as con-
stant m"" derived from the optimal decision variable for
the MACRO time scale problem. The MICRO time scale
Problem 3 is resolved over the partial time slots from the cur-
rent time slot index k = ¢ to the next MACRO time slot index
k = K. At every MACRO time slot, the MICRO time scale
optimization can be iteratively conducted corresponding to
the prediction error of renewable power capacity.

Contrary to the Problem 2, the MICRO time scale Prob-
lem 3 can be resolved by using the standard convex optimizer,
since m"" is not the decision variable. Therefore, our DL
solver only focuses on the MACRO time scale Problem 2.

IV. UNSUPERVISED DEEP LEARNING SOLVER WITH THE
LONG SHORT TERM MEMORY PREDICTOR

In this section, we explain the unsupervised deep learn-
ing (DL) solver for non-convex MACRO time scale Prob-
lem 2. Furthermore, we introduce the long short term memory
(LSTM) predictor to foresee the future renewable power
capacity sequence.

A. LONG SHORT TERM MEMORY PREDICTOR FOR
RENEWABLE POWER CAPACITY
The structure of the LSTM network model is shown in the
left part of Fig.6. The notations u;, h;, ¢;, y; denote input
data block, hidden state block, cell state block, and output
response block at training time step ¢, respectively. The output
from hidden state h; is derived from the non-linear hyperbolic
tangent function tanh(x) = ZZ;Z((’;)) = iz—;} The backprop-
agation of LSTM updates the weight parameters between
each block based on the estimation error of output response
sequence compared to the actual one. For details, see [33].
Obviously, the weather condition shows date and time-
related periodical patterns (e.g., as shown in Fig.8). We define
the date variable as the integer number dt € [1, 365] (days)
and the time variable as one within Air € [1, 24] (hours). The
input data sequence with length L is defined as follows:

o), (24)

i
(g, w g,
where
i i i i
u, = (dt;, hr;, spc;, wpc,).
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We also use L for the length of the predicted output respon-
sce sequence. Then, the output response sequence is defined
as follows:

Vitrs1 Yigra2: " Yigor)s (25)

where
y;' = (spc;', wpcf).

After h' is updated, the predicted output response sequence
(y’t:JrLH, e yi+2L) is compared to the measured one
(Viyrq10 7 Yipor) Where y;,; o, is the measured output
data at training time step t + L + [. The backpropagation
is conducted based on the estimation error over the training
time slots ¢, - - - , ¢ + L, and entire network weight parameter
matrices are updated. When closing the enough accuracy
level, the training of LSTM network model is done.

Each DC conducts the inferencing for LSTM network
model. At time slot k, all the DCs send the predicted renew-
able power capacity sequence with L = K to the MAMI
optimizer. If the non-negligible prediction error is identified
in i-th DC at certain time slot k = ¢, then the LSTM
based predictor re-trains the network model and the i-th DC
sends the updated output response to the MAMI optimizer.
The MICRO scale solver (i.e., convex optimizer) resolves the
Problem 3 with updated prediction data of renewable power
capacity.

B. UNSUPERVISED DEEP LEARNING BASED SOLVER FOR
MACRO TIME SCALE OPTIMIZATION

The goal of our unsupervised DL solver is to find the (approx-
imated) optimal decision vector for the non-convex MACRO
time scale Problem 2. To do this, we design the customized
loss function for the DNN model training. The conventional
loss function structures for supervised and unsupervised DL
method are defined as follows [22], [34]:

s 1 Nmb .
@MW0=ﬁ;z}Wmlm=DMWWﬁW)Q®
mb_q
Nmb
EY (W)= " > 0'@iy = DNN(va; w).  (27)
mo =1
W; = W;_| — ;| VwEp,, (W, _1). (28)

Here,w,0,0’,E ]{,mb, and E ,‘\‘,mb represent the network weight
parameters, the supervised DNN loss function, unsupervised
DNN loss function, average value of supervised DNN loss
function, and the average value of unsupervised DNN loss
function, respectively. N,,;, and DNN represent the minibatch
size and the DNN model, respectively. v, Zg), 2() repre-
sent the input data, the label data corresponding to v(;), and
the estimated output data corresponding to v, respectively.
t and o represent the DNN training time slot index and
the learning rate, respectively. Note that Eq.(28) represents
the gradient based formula for updating network weight
parameters.
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FIGURE 6. Proposed structure of unsupervised DL solver for MACRO Time Scale Problem and LSTM based renewable power capacity predictor.

In particular, we adopt the Eq.(27) to our proposed DL
solver. In order to find the feasible solution for the MACRO
time scale Problem 2, we add the simple penalty term &,
which penalizes the violation of constraints (14) - (18).
Consequently, we define our unsupervised DNN loss function
as follows:

0'(v; ) = C'(x = DNN (v; w)) + d(x), (29)
where
1 1 _
CD(X)_ZZZ%( /l i i + i _d)+
k/—l k—l i= 1 My gk )‘qk/+k qu’+k
- Z Z Z ¢P051(mk’ qk/+k ;k/+k)_
k’_l k=1 i=1
LYY ~fo" Sl — T
K=1k=1 i=I
K 1

+ 37 i pun’ — mi)* + plml, — 7))

k’_l i 1

+ZZ¢A|ZA” AL

k=1 j=1 i=1

and ¢ = (Pa, Pposi, ér, df @m» b, P2) 1s the set of penalty
weight values for contraint violation. Here, (x)~ = min(x, 0).

The inferencing input data v and the inferencing output
data x in our DNN loss function are defined as follows:
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| — 1 R 1 oo
oV = Ouryr o Yigrrr Yiprgo > Yigor) €
R2IL
2 —_— 1 ... ] 1 ... J
o Vo= (Mg s Mgy Mg o Aigor) €
R‘]L
o V— (Vl, V2) e RZILJrJL

’
o X = (m/, f’ x) = RIK +IK+1JK

For DNN training, the MAMI optimizer collects the his-
torical data of renewable power capacity and user requests.
If we do not have enough training dataset, then we can use
the synthetic dataset which is randomly generated according
to the predetermined distribution within the available ranges.
The structure of the unsupervised DL solver is shown in the
right part of Fig.6. The batch normalization technique [35] is
applied to each hidden layer to avoid the gradient vanishing
and exploding problems. We use the well-known rectified
linear unit (ReLLU) [36], [37] as the activation function for
each neuron in our DNN model.

Algorithm 1 describes the MACRO time scale DC
energy cost minimization procedures. The MAMI opti-
mizer gathers the predicted renewable power capacity v! =
(¥} 4141 »Yiipy) from LSTM predictor in each DC i =
1,---,I (line 01). The MAMI optimizer gathers the amount
of predicted user requests v> = (At+L+1’ e l+2L)
from each ES j = 1,---,J (line 02). The input data
vector v for DNN inferencing is generated resulting from
integration of vl and v? (line 03). The decision variable
x = (m', f, 1) is derived from inferencing the DNN model
DNN (line 04).
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Algorithm 1 MACRO Time Scale DC Energy Cost
Minimization

INPUT

Trained DNN model DNN with weight parameters w

OUTPUT

MACRO time scale optimal decision x = (m/, f, 1)

01 : gather predicted renewable power capacity from

LSTM predictorineachDC 1, --- , I,

1 _ oyl 1
V=g Yigor)

02 : gather predicted user requests from edge servers (ESs),
vZ = (A! N
t+L+1° » Bpor
03 : generate DNN input data vector v = (v!, v?)
04 :x = (m’,f, L) <— DNN(v; w)
05 : return X

Algorithm 2 MICRO Time Scale DC Energy Cost
Minimization
INPUT
Starting MICRO time slot index, k = ¢
Number of powered-up servers m”!, - - -, m"! by Eq.(24)
Newly predicted solar power capacity
spc,f,k:{,~-~ ,f{,‘v’ie 7]
Newly predicted wind power capacity
wpel k=¢,-- K, Vielll
OUTPUT
MICRO time scale partial optimal decision f, A
01 : build C” by using Eq.(19)
02:f, A “«— solving MICRO time scale Problem 3
03 : return f, A

TABLE 1. Parameters for data center energy cost minimization problem.

Notation Values
number of DCs [ 3
number of ESs J 5
MACRO / MICRO sampling period K =1,K =12
bound for powered-up servers m, m 1,20 (x10%)
bound for CPU frequency f, f 0.5,4 (Ghz)
transfer time per request ¢ 0.1 (sec)
transfer power per request p 1 (W)
required frequency per request 1 (Ghz)
power coefficients as, az, a1, ag 30, 100, 10,1.2
penalty Tactors Gum, mr. 61, 07> P Gposi 103
penalty factor ¢y 10°

Algorithm 2 describes the MICRO time scale DC energy
cost minimization procedures. This algorithm is triggered
whenever the significant prediction error for renewable power
capacity is identified. The MICRO time scale cost function
C” is built based on the error identification point k = ¢,
the number of powered-up servers resulting from MACRO
time scale optimization m”!',--- , m”!, and the newly pre-
dicted solar/wind power capacity sch , wch sk = & K ,
Vi € [I] (line 01). The partial optimal solutions f and A
overk=¢,---, K are re-calculated via the standard convex

optimizer (line 02).
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FIGURE 7. Curves of solar radiation, outside air temperatue, and wind
speed during 2018.10.01-2018.10.08 (8days) at DC1 (Univ of Nevada), DC2
(0ak Ridge National Lab), and DC3 (NREL National Wind Technology
Center, M2) [23]. (a) Actual solar radiation sr', sr2, sr3 (w/m?2).

(b) Actual outside air temperature (OAT) oat', oat?2, oat> (C). (c) Actual
wind speed v', v2,v3 (m/s).

V. EXPERIMENTAL RESULTS

In our experiment, we deploy the physical machine with CPU
17-3770, gtx1080 (8GB), memory 16GB in order to train the
LSTM model and the DNN model. We use CUDA 8.0 and
cuDNN 5.0 [38] to accelerate the DNN training speed based
on GPU. We use Keras 2.0.8 [39] APIs with Tensorflow
framework 1.4 [40] in order to design the customized model
structure of LSTM and DNN. To verify the performance of
the proposed MAMI optimizer, we use real trace data of solar
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FIGURE 8. Estimated curves of solar power capacity and wind power
capacity during 2018.10.01-2018.10.08 (8days) at DC1 (Univ of Nevada),
DC2 (Oak Ridge National Lab), and DC3 (NREL National Wind Technology
Center, M2) [23]. (a) Available solar power capacity spc!, spc2, spc3 (kW).
(b) Available wind power capacity wpc!, wpc?, wpc3 (kW).

TABLE 2. LSTM / DNN training parameters.

Notation Values
number of training samples 6 x 107
number of test samples 9 x 103
LSTM batch-size 30
LSTM maximum epochs 100
LSTM hidden size 20
LSTM activation, optimizer, loss tanh, Adam, MSFE
LSTM timestep L 12
DNN batch-size 32
DNN maximum epochs 400

DNN models

1 FN -1 BN -1 ReLU

DNN activation, optimizer, loss

ReLU, Adadelta, 6’

DNN input dim, output dim

132,219

radiation, outside air temperature (OAT), and wind speed
from geo-distributed DC regions in U.S [23]. We consider
three regions: DC1-University of Nevada, Las Vegas (Par-
adise, Nevada); DC2-Oak Ridge National Labotary (Eastern
Tennessee); DC3-NREL National Wind Technology Center,
M2 (Boulder, Colorado).

Fig.7 and Fig.8 show the curves of solar radiation, OAT,
wind speed, solar power capacity, and wind power capac-
ity during 2018.10.01-2018.10.08 (8days) at DC1 (Univ
of Nevada), DC2 (Oak Ridge National Lab), and DC3
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FIGURE 9. Prediction results for normalized solar radiation, outside air
temperature (OAT), and wind speed during 2018.10.01-2018.10.08 (8days)
at DC1 (Univ of Nevada) by the LSTM predictor. (a) Normalized solar
radiation at DC1, sr!. (b) Normalized OAT at DC1, oat!. (c) Normalized
wind speed at DC1, v'.

(NREL National Wind Technology Center, M2). As shown
in Fig.7-(a) and Fig.8-(a), the available solar power capac-
ity strongly depends on the amount of solar radiation (the
OAT influences are low). Similarly, the available wind power
capacity is proportional to the wind speed as shown in
Fig.7-(c) and Fig.8-(b). Note that the solar power capac-
ity curve shows the regular patterns over time of the day.
Contrary to DC1 and DC3, the available wind power capac-
ity of DC2 is quite low due to the slow wind speed. This
indicates that the accurate prediction for the solar power
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FIGURE 11. Prediction results for normalized solar radiation, outside air
temperature (OAT), and wind speed during 2018.10.01-2018.10.08 (8days)

at DC3 (NREL National Wind Technology Center, M2) by the LSTM
10%). This differentiated assignment

attempts to avoid the rejection of entered user requests,

as much as possible.

10%) to all the constraint terms except for request

Table 2 presents the associated parameters for LSTM/DNN
training. We retreive the training input dataset including

request. Note that we should define the proper penalty weight
hourly solar radiation, OAT and wind speed data from

values for each constraint term in Eq.(30) to accurately find
the feasiable solution. We assign the same penalty weight

predictor. (a) Normalized solar radiation at DC3, sr3. (b) Normalized OAT
have equal transfer time and power consumption per an user

at DC3, oat3. (c) Normalized wind speed at DC3, v3.

dispatching constraint (

values (

©)

FIGURE 10. Prediction results for normalized solar radiation, outside air
(b)). This indicates that the prediction for the wind

The Table 1 presents the associated parameters for the
energy cost minimization problem. We consider 3 geo-
plicity, we assign the same bound of powered-up servers,
bound of CPU frequency, and power coefficients for all the
DCs. Every communication links between DCs and ESs

power capacity may show the lower accuracy than the solar
distributed DCs (DC1, DC2, and DC3) and 5 ESs. For sim-

power capacity depicts the irregular and intermittent patterns
power capacity.

capacity is relatively easy. Meanwhile, the curve of the wind
(Fig.8

temperature (OAT), and wind speed during 2018.10.01-2018.10.08 (8days)
at DC2 (Oak Ridge National Laboratory) by the LSTM predictor. (a)

Normalized solar radiation at DC2, sr2. (b) Normalized OAT at DC2, oat2.

() Normalized wind speed at DC2, v2.
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FIGURE 12. Experimental Results of DNN training progress with d = 0.7sec for MACRO time scale problem optimization.
The average degree of violation for all constraints involved in the MACRO time scale problem asymptotically decreases as
the DNN training progresses. The average energy cost approaches the (approximated) optimal value 240kWh as the DNN
training progresses. (a) Average violation of m: (m’ —m')*. (b) Average violation of m': m —m')*. (o Average violation
of fi: (Fi — £i)+. (d) Average violation of F : (f/ — F')*. (e) Average violation of d: (d’ — d)*. (f) Average violation of queue
delay positivity: (m' + f/ — 17)~. (g) Average violation of request dispatching: | Y-}_, A# — A/|. (h) Average energy cost: C'.

DC1-DC3 during 2010.10.08 - 2018.10.09 (8years). The total
number of data is about 7 x 10°. We split the entire dataset
into two groups, training dataset (6 x 10°) and test dataset
(9 x 10*) for training validation. We set the maximum epochs
for LSTM training as 100, however the early-stopping is
possible when the LSTM loss function value reaches the
predefined accuracy level. The associated SGD optimizer for
LSTM is Adam, which exploits the adaptive estimates of
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lower-order moments for stochastic gradient based optimiza-
tion [41]. We adopt mean squared error (MSE) as the LSTM
loss function [21], [42]. To foresee the hourly renewable
power capacity for a half day, we set the LSTM timestep
length as L = 12.

For DNN training, we use the training datset which is
composed of historical renewable power capacity, and the his-
torical amount of user requests. For renewable power capacity
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FIGURE 13. Comparision results of proposed DL based MAMI optimizer and the rank based genetic algorithm [24] in temrs of energy cost (kWh) and the
service response latency (sec). (a) Energy cost at 2018.10.10 (case1). (b) Energy cost at 2018.10.15 (case2). (c) Energy cost at 2018.10.20 (case3). (d) Service

response latency with d = 0.3s, 0.5s, 0.7s, 0.9s at 2018.10.10 (case1). (e) Service response latency with d = 0.3s, 0.5s, 0.7s, 0.9s at 2018.10.15
(case2). (f) Service response latency with d = 0.3s, 0.5s, 0.7s, 0.9s at 2018.10.20 (case3).

data, we adopt the same input data used for LSTM training.
For user request data, we generate the synthetic raw dataset
following the normal distribution with mean value 10* and
standard deviation 9 x 10°. The dimension of the DNN input
data is (21 + J) % K. The dimension of the DNN output data
isI xK'+1%xK +J xIxK. Therefore, for] = 3,J = 5,
K’ = 1, K = 12, the dimension of the input data is 132 and
the dimension of the output data is 219. Our DNN model is
simply composed of 1 fully connected hidden layers, 1 batch
normalization layer [35] and 1 rectified linear unit (ReLU)
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layer [36]. As described in section IV, we use Eq.(29) as
the customized loss function for our unsupervised DL solver.
The maximum epochs for DNN training is empirically set
as the fixed value 400. Although the network depth level
is not high, via the experimental results, we found that the
trained DNN model draws the desirable solutions under var-
ious renewable power capacity conditions (refer to Fig.13).
Fig. 9, 10, amd 11 show the prediction results for
normalized solar radiation, OAT, and wind speed during
2018.10.01-2018.10.08 (8days) at DC1-3 by using the LSTM
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TABLE 3. Solar power capacity (kW), wind power capacity (kW), and amount of user requests (x103) at 06:00am - 05:00pm, 2018.10.10 (casel),

2018.10.15 (case2), and 2018.10.20 (case3) in DC1 (Univ of Nevada), DC2 (Oak Ridge National Lab), and DC3 (NREL National Wind Technology Center, M2).

casel 6 7 8 9 10 11 2 13 14 15 16 17
spct 1.527 | 126.527 | 360.413 | 569.747 | 610.532 | 835.034 | 858.660 | 813.360 | 734.051 | 576.706 | 272.166 | 95.3713
spc? 0 1.923 36.864 | 158.964 | 406.702 | 606.504 | 606.337 | 294.938 | 349.724 | 294.810 | 156.204 | 90.665
spc? 0 2.555 33290 | 65.668 | 95.149 | 139.913 | 158.996 | 81.163 | 56.9876 | 126.449 | 24.522 5.511
wpet 0 0 38.15 22.04 0 0 0 0 0 33.2 60.12 85.92
wpc? 0 0 0 0 0 0 0 0 0 0 0 0
wped 0 0 454 0 0 0 4.67 6.47 0 0 0 0
Al 5.655 10.889 7.744 18.185 0.925 12.786 5.655 11.493 15.214 8.335 7.808 9.372
A2 14.500 | 15914 | 13.603 12.477 5.983 13.882 12.553 12.034 11.493 7.105 10.39 6.55
A3 12.553 | 9.4584 | 10.5838 | 154448 | 10.0884 | 6.4708 | 9.4944 | 8.5887 5.249 4.925 10.494 5.389
At 9.494 | 11.179 | 11219 8.382 7713 10.707 9.744 8.822 10.262 9.142 17.829 8.595
A® 9744 | 11.164 6.437 4272 11.499 7211 14.5 10.209 12.186 7.227 12.766 7.171
case2 6 7 8 9 10 11 2 13 14 15 16 17
spc 0 122.428 | 383.696 | 608.429 | 782.346 | 886.969 | 922.833 | 874.476 | 753.805 | 567.274 | 334.968 | 93.354
spc? 0 1.033 60.392 | 218.703 | 338.902 | 282.429 | 325.549 | 469.593 | 157.523 | 101.514 | 90.71 77.106
spc? 0 42.644 | 271.412 | 508292 | 692.262 | 820.888 | 886.987 | 849.992 | 743.096 | 565.099 | 337.979 | 106.925
wpe' | 159.6 76.62 134.68 | 222.18 | 244.81 21823 | 480.14 | 510.41 438.01 34599 | 292.15 | 232.73
wpc? 0 0 0 0 0 0 0 0 0 0 0 0
wped 0 0 0 0 18.17 11.87 53.05 0 0 0 0 0
Al 9.251 6.941 5513 10.553 15.371 7213 10.985 9.088 13.352 9.660 10.106 8.5
A2 8.781 8.867 10.16 8.753 10.157 6.923 7367 12.068 13.783 11.128 7.815 15.594
A3 8.881 9.993 7.567 8.433 14.225 11.127 13.666 | 14.091 15.111 10.629 | 14.913 471
At 10.756 | 7.767 16.871 6.753 7.385 9.235 12.802 | 10.654 5.96 12.786 7.855 5342
A5 11.447 | 11.484 8.565 10.978 7.621 6.601 8.768 14.574 11.3 12.438 14.168 6.991
case3 6 7 8 9 10 I 2 13 14 15 16 17
spcl 0 97.717 | 325.938 | 526.574 | 676.233 | 774.136 | 808.664 | 703.192 | 357.659 | 473.933 | 205.607 | 43.374
spc? 0 0.0204 5.164 25314 | 50.640 | 139.909 | 272.479 | 371.189 | 504.172 | 366.566 | 369.647 | 153.665
spc3 0 30742 | 210576 | 405.228 | 562219 | 689.989 | 758275 | 717.89 | 615.738 | 461.738 | 258.707 | 56.626
wpet 0 0 0 0 21.48 214.7 150.08 136.7 60.4 0 0 0
wpc? 0 0 0 0 0 0 0 0 0 478 36.81 7.29
wped 0 0 0 0 0 443 46.85 84.68 93.01 88.86 78.81 0
Al 12.306 | 14.409 5.998 10.317 11.181 11.52 10.676 6.705 7.951 12.484 9.657 9.32
A2 8.849 8.228 10.739 2.817 11.203 12.632 16.033 11.095 10.35 7.535 14.933 1.946
A3 6.859 10.288 12.342 10.88 6.381 7.633 10.148 9.898 10.186 6.383 13.807 9.663
At 12.616 | 8.304 9.508 10.653 8.489 9.111 7.091 9.361 7.545 15.032 | 11.155 9.586
A® 7.658 11.549 | 13.161 8.791 6.224 10.198 11.33 10.83 12.8 14.626 | 11.987 8.72

based predictor. The amount of solar radiation shows the
regular patterns over distributed DC regions, as shown in
Fig.9-(a), Fig.10-(a), and Fig.11-(a). The OAT curves of
DC1 and DC3 have somewhat irregular patterns (Fig.9-(b),
Fig.11-(b)), while the DC2 has the regular OAT pattern
(Fig.10-(b)). The wind speed curves of DC1 and DC3 also
show aperiodic patterns (Fig.9-(c), Fig.11-(c)), while the
DC2 has the periodic wind speed patterns (Fig.10-(c)).
Note that the LSTM predictor achieves the high predic-
tion accuracy under both the regular weather conditions and
the irregular ones. However, for some control time points
(e.g., 10/7/2018, 08:00 a.m in Fig.9-(a)), the transient predic-
tion error for the renewable power capacity is identified. For
such cases, the MICRO time scale management of the MAMI
optimizer copes with the changing capacity patterns.

Fig.12 shows the results of DNN training progress for
the customized loss function Eq.(29). The service response
latency bound is d = 0.7sec. The violation of box con-
straints m, m, f f is diminished along the progress of DNN
training, as shown in Fig.12-(a), (b), (c), and (d). Inter-
estingly, in Fig.12-(d), the violation of constraint for CPU
frequency upper bound f is consistently increased until the
epoch = 250, and after then, it is drastically decreased.

VOLUME 7, 2019

This is because, as shown in Fig.12-(a), the DNN training is
firstly performed aims to increase CPU frequency f, in order
to mitigate the violation of the service response latency bound
caused by the insufficient initial m. When m reaches a suf-
ficient size at epoch = 250 however, the DNN training
again performs weight parameter updating toward reducing
the violation of CPU frequency upper bound. Fig.12-(e), (f),
and (g) show the degrees of constraint violation for service
response latnecy bound, the positivity of queue time, and
the request dispatching, respectively. In Fig.12-(e) and (g),
the associated constraint violation curves fall down during
epoch = 0 — 60, increase during epoch = 60 — 120, and
decrease consistently after epoch = 120. This is because,
both the amount of the rejected requests and the service
response latency are decreased, due to the increasing negativ-
ity of queue time m x f — A (the excessive request dispatching
to DCs) until epoch = 60, as shown in Fig.12-(f). However,
after epoch = 60, updating the weight parameters in the
direction of reducing the positivity violation of queue time
is performed. Consequently, as shown in Fig.12-(h), our DL
solver results in the network weight parameters which draw
the minimized energy cost without any serious constraint
violation.
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In order to investigate the performance of our proposed
DL based MAMI optimizer, we test three real cases based
on renewable power capacity trace data during 12 hours:
casel (2018.10.10, 06:00 am - 05:00 pm at DC1-DC3); case2
(2018.10.15, 06:00 am - 05:00 pm at DC1-DC3); and case3
(2018.10.20, 06:00 am - 05:00 pm at DC1-DC3). The amount
of user requests are randomly generated by using normal dis-
tribution with average 10* (regs/sec) and standard deviation
9 x 103, The associated trace data is shown in Table 3.

We adopt the rank based genetic algorithm (GA) [24]
based DC management scheme as the conventional approach
to compare with our proposed one. This scheme uses the
adaptive penalty method by which the penalty weight values
are iteratively updated during evolution phase according to
the degree of constraint violation. It can be used to solve the
constrained non-linear programming problem. For the GA
scheme, we set the population size = 1000 in which each
chromosome has 3177-bits binary genes. In addition, we set
the mutation probabilty = 0.3, the selection pressure = 3
for roulette wheel procedure [9], and the evolution
steps = 12000, respectively. Especially, we use the elitisim
approach to guarantee the stable convergence to the optimal
solution [43].

Fig.13-(a), (b) and (c) show the DC energy cost of the
proposed MAMI optimizer and the rank based GA scheme.
Note that the MAMI optimizer outperforms the GA scheme
for every case regardless of the renewable power capacity
condition. The MAMI optimizer achieves in average the
reduction of energy cost about 25% compared to the GA
scheme. The experimental results of service response latency
of DC1-DC3 for every case are shown in Fig.13 (d)-(f).
Note that the rank based GA scheme does not satisfy ser-
vice response latency bound even for rather loosed values
d = 0.75,0.9s. This indicates that the GA scheme is
not suitable for resolving the complex constrained problem.
Contrary, even for the tight constraint value d = 0.3sec,
the MAMI optimizer consistently satisfies the service
response latency bound constraint for all cases. This indi-
cates that the MAMI optimizer can generate the DNN
weight parameters deriving feasible solution under all cases.
We argue that the MAMI optimizer can be a promising alter-
native for the conventional metaheuristics so as to solve the
complex constrained optimization problem.

Furthermore, once the DNN model training is completed,
the computation time for DNN inferencing is generally negli-
gible. We found that the average inference time of our trained
DNN model is less than 1s. Moreover, the DNN training time
is acceptable. We found that the average training time for our
DNN model is less than 30min. However, the rank based GA
scheme needs the unacceptable re-computation time at each
control time step. The average computation time required for
the GA scheme appeared in Fig.13, is long than 10Ar.

VI. CONCLUSION
In this paper, we proposed a deep learning (DL) based novel
optimizer using long short term memory (LSTM) prediction
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in order to achieve the energy cost efficient geo-distributed
sustainable data centers. To the best of our knowledge,
this is the first study to propose the data center energy
cost optimization by using unsupervised DL method as the
constrained non-convex problem solver. We proposed the
temporal MACRO/MICRO (MAMI) time scale management
technique in order to efficiently achieve the coordinated deci-
sion making of dynamic right sizing (DRS) and the CPU
frequency scaling (FS), and the request dispatching (RD).
This technique minimizes the energy cost of data centers
without the unacceptable DRS wake-up transition overhead.
To demonstrate the performance of our proposed DL based
MAMI optimizer, we used 7 * 10° real trace data of renew-
able power capacity from U.S. Measurement and Instrumen-
tation Data Center (MIDC). The adopted LSTM predictor
showed the accurate prediction results for fluctuated solar and
wind power capacity. The DL solver shows that it gradually
approaches the feasible optimal solution for constrained non-
convex optimization problem. Compared to the conventional
rank based genetic algorithm (GA), on average, the proposed
DL based MAMI optimizer reduces the DC energy cost about
25% for real trace data while gauranteeing the service quality
requirement.
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