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ABSTRACT A complex coupling matrix has been extensively used in lossy filters and negative group delay
devices. For the realization, conventional technique decomposes the complex coupling matrix into lossy
resonators and complex inverters. Since the complex inverter does not follow the passivity in some cases,
the resultant realization may be globally passive but locally active. This paper proposes a new decomposition
technique to ensure the passivity everywhere. It decomposes the complex coupling matrix into a resistive
connection matrix and a conventional real coupling matrix, which are both passively realizable. This
technique provides a passive realization of the complex coupling matrix. Furthermore, a loss equalization
technique is also proposed, to further achieve a uniform quality factor (Q) distribution among all the lossy
resonators. Several illustrative examples and an experimental validation are finally provided.

INDEX TERMS Lossy filter, complex coupling matrix, complex inverter, decomposition, resistive

connection, quality factor.

I. INTRODUCTION

Microwave filters are important components in modern com-
munication systems such as radar, cellular radio and satellite
communications. Based on various applications, these filters
are broadly classified into lossless and lossy filters. Lossless
filters are useful for different cellular radio communication
systems where very stringent requirements are followed in
both base stations and receivers. Synthesis methods for such
lossless filters are well developed and presented in many
literatures [1]-[4]. Also, researcher proposes lossless filter
design in bandpass domain [5] and more advanced filter
design technique using LTCC technology [6]. To cope with
modern communication system, tunable filter design were
proposed in [2]. However all these methods are limited to
lossless filters only. In practical, all lossless filters exhibit
some amount of insertion loss and it becomes prominent for
higher frequencies. Therefore, exact filter synthesis method
should consider loss which is considered as more general
case of filter design. Typically lossy filters are preferred in
satellite communication systems which require high filtering

performances. Depending upon system and position of the
filter, high performance criteria also changes. For example,
insertion loss and power handling criteria are critical param-
eters for output multiplexer (OMUX) filter banks in any
satellite transponder. Therefore, dielectric or cavity filters are
best choices for OMUX. On the other hand, in the receiver
side, input multiplexer (IMUX) filter banks demand a very
flat passband and sharp rejection in the passband edges, but
the loss and power handling performances are secondary
issues. To achieve a flat passband and sharp rejection, in addi-
tion to using high-quality resonators, adaptive pre-distortion
techniques [7] did a good job. But such filters are always
accompanied by nonreciprocal components such as isola-
tors or circulators. Another common technique to achieve the
flat passband and sharp transition is to use lower Q resonators
to form a lossy filter, where the additional loss can be taken
care by low-noise amplifiers (LNA) [8]. Lossy filters can be
a potential solution for IMUX.

Synthesis method for lossy filter was firstly explored in [9]
based on even and odd mode analysis. However, it was only
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limited to symmetric networks. Lossy filter synthesis by pole-
zero approximation based on solving nonlinear least square
problem was discussed in [10] and [11] and demonstrated
successfully in [12]. An exact synthesis technique based on
uneven Q resonators was proposed in [13], where a sharp
transition was achieved by absorbing rather than reflecting
power. This technique brought in complex cross-couplings
as a result of hyperbolic rotations in loss equalization. But it
was limited to symmetric filters as well. Similarly, hyperbolic
reflection was introduced in [14] as a complementary design
tool for lossy filters instead of usual hyperbolic rotation.
However both transformations result lossy outer resonators
only. In [15] and [16], lossy coupling matrix synthesis tech-
nique was introduced to deal with both symmetric and asym-
metric networks using coupled resonator based N+2 coupling
matrix technique. Such lossy filters usually involve the oper-
ation of complex coupling matrices or lossy inverters. Lossy
inverters with lumped components was introduced in [17].
But such designs were suffered from asymmetric responses
specially for low order lossy filters. Design of microstrip
lossy filter for satellite transponder was discussed in [18]. But
such designs mostly suffered from large footprint and poor
stop band performance. Recently substrate integrated waveg-
uide (SIW) lossy filter with flat passband based on multiple
dissipative cross-couplings was presented in [19] and [20]
where sensitive slots were used to design lossy couplings.
Also following the same technique it would be difficult to
design higher order lossy filters due to its realization com-
plexity. In an another recent work [21], double layer based
conventional resistive cross couplings (RCC) was used to
implement lossy filters. But complicated LCP bonded mul-
tilayer PCB technology was used for fabrication. Moreover
filter performances were highly sensitive to multilayer cross-
couplings and even for highly lossy filters it can lead to asym-
metric passband response. Application of lossy microwave
networks are not limited to filters only. Several superluminal
networks were used to design based on synthesis of lossy cou-
pled resonators. More recently, complex coupling matrix was
also applied to the synthesis of negative group delay (NGD)
devices [22]. Both lossy filters and NGD devices promote the
advancement of complex coupling matrix.

Since the invention of complex coupling matrix, it has been
a challenging task to realize and implement lossy couplings.
The complex inverter has the same network architecture as the
classic real inverter except that the inversion values (equal to
the coupling coefficients) are complex. The major challenge
of this realization lies in passive implementation of complex
inverters.

In this paper, we come up with a rigorous passive realiza-
tion technique for complex coupling matrix. Instead of using
complex inverters, we regard series resistive connection as a
new building block and directly extract it from the complex
coupling matrix. Therefore, the complex coupling matrix is
initially decomposed into a resistive connection matrix and
a conventional real coupling matrix. Then both resistive con-
nection matrix and real coupling matrix are realized passively.
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Major contributions of this work include: 1) locally passive
realization of the complex coupling matrix is proposed in a
rigorous manner; 2) resistive connection is extracted as an
individual building block from the coupling matrix for the
first time; 3) a loss equalization technique is also proposed
for the realization of uniform Q distribution among all the
resonators; 4) all passive realization of complex inverters are
presented and discussed.

This paper is organized as follows. Sec. II briefly intro-
duces how complex coupling matrix comes into view in lossy
filter synthesis and subsequently reviews the conventional
techniques to realize it. Sec. III discuss passive realization of
a complex inverter using proposed modified block. Sec. IV
elaborates CM decomposition technique with loss equaliza-
tion strategy. Three numerical examples with an experimental
validation are subsequently provided in Sec. V and Sec. VI,
respectively. A conclusion is finally given in Sec. VII.

Il. REVIEW ON COMPLEX COUPLING MATRIX

Before illustrating the proposed decomposition technique,
we briefly introduce in this section how complex coupling
matrix comes into view in lossy filter synthesis and sub-
sequently review the conventional techniques to realize it,
so that readers have a better understanding of the background.
Here, the complex coupling includes both pure imaginary and
general complex coupling.

o’

A ) .
H 1 non-resonant node = real coupling
-

= = = imaginary coupling

O lossy resonator .
=== complex coupling

O lossless resonator =\\\= resistive connection

FIGURE 1. lllustration of all the symbols used in coupling topology
throughout this paper.

Before going to any detail, we firstly illustrate in Fig. 1 all
the coupling symbols used throughout this paper. Generally,
we distinguish real coupling, imaginary coupling, complex
coupling and resistive connection. Real coupling refers to
the real coupling coefficient in coupling matrix, which is the
same as the one used in lossless filters. Similarly, imaginary
and complex coupling refer to pure imaginary and complex
coupling coefficients, respectively. Further complex coupling
coefficient refers to combination of both lossy and lossless
couplings. Resistive connection is a new building block used
in this paper, which represents a series resistor connected
between two resonators. We emphasize here that resistive
connection is different from imaginary coupling because
they have different network parameters. This will be further
explained in Sec. ITII. We will start with lossy filter synthesis
technique to get better insight into lossy coupling matrix
concept.
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FIGURE 2. 4t-order lossless Chebyshev filter: (a) coupling matrix,
(b) coupling topology, and (c) magnitude responses in low pass frequency
domain.

A. LOSSY FILTER SYNTHESIS

Lossy filter design generally starts with synthesis of char-
acteristic polynomials. The procedure is briefly introduced
in [16]. It begins with a direct synthesis of lossless character-
istic polynomials using the lossless filter design in [4]. Then,
the lossy polynomials is obtained by a direct multiplication
of both transmission and reflection polynomials by a con-
stant attenuation factor, which preserve the polynomial and
network orders. As shown in Fig. 2, let us consider a 4th_order
Chebyshev filter used in [4]. Since the filter is lossless,
the synthesized coupling matrix in Fig. 2(a) contains only
conventional lossless (real) couplings and lossless resonators.
Loss is subsequently incorporated by multiplying scattering
polynomials with proper attenuation constant Ky (=6 dB in
this case). The corresponding lossy coupling matrix and cou-
pling topology are depicted in Figs. 3(a) and (b), respectively.
Note that, loss are concentrated at source and load nodes
only while the inner resonators (2 and 3) are lossless, leading
to a non-uniform Q, distribution. Generally, it is preferable
to distribute the loss equally among all the resonators for
ease of implementation and fabrication. This is achieved by
hyperbolic rotations as described in [13]. After loss equaliza-
tion, the final resultant coupling matrix, coupling topology,
and magnitude responses are presented in Figs. 3(c), (d), and
Fig. 4, respectively. Note that, the coupling matrix contains
several pure imaginary coupling (belonging to special case of
complex coupling) between resonators. This is how complex
coupling comes in the process of loss equalization. Note
that two non-resonating nodes NS and NL (Fig. 3(d)) are
introduced while loss distribution among resonators to avoid
lossy S/L node as discussed in [16].

Let us consider another three-pole pseduoelliptic filter
example. Following above lossy filter synthesis method,
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FIGURE 3. 4th_order lossy Chebyshev filter: (a) coupling matrix,

(b) coupling topology before loss equalization, (c) coupling matrix, and
(d) coupling topology after loss equalization with input/output coupling
ie. MS,NS = M’.,NL = 0.32.
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FIGURE 4. Magnitude responses of the lossy filter in Fig. 3.
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FIGURE 5. Loss equalized 3d_order asymmetric pseduoelliptic filter:
(a) coupling matrix with input/ouput coupling i.e. Mg ns = M y; = 0.21,
(b) coupling topology, and (c) magnitude responses.

the final coupling matrix, coupling topology and magni-
tude responses are depicted in Fig. 5. Note that, the cou-
pling matrix includes real, pure imaginary and complex
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FIGURE 6. (a) Equivalent network and (b) implementation of an imaginary
inverter, and (c) network realization of a complex inverter in [16].

coupling coefficients. This example represents a more general
coupling matrix configuration.

It is important to mention that there exist an alternative
technique to synthesize lossy filters based on even Q coupled
resonators as described in [10]-[12]. This method rely on
pole-zero approximation based on the solution of a nonlinear
least squares problem. In summary, all the existing lossy filter
synthesis techniques deal with multiple lossy cross-couplings
along with conventional lossless couplings.

The above two examples illustrate how complex coupling
comes into view and plays important role in lossy filter
synthesis. It comes as the result of loss equalization in lossy
filters. The recent work on coupling matrix synthesis of
negative group delay devices [22] belongs to the other case
where complex coupling directly comes into the coupling
matrix without performing any loss equalization technique.
In summary, complex coupling matrix is an inevitable syn-
thesis outcome for both lossy filters and negative group delay
devices. Now, we will briefly discuss in the next subsection
the conventional realization techniques for such complex
coupling matrices.

B. REALIZATION OF COMPLEX COUPLING MATRIX

For the realization, the classic technique, e.g. [16], decom-
posed the complex coupling matrix of Fig. 3(c) into coupling
parts and lossy resonators. The coupling parts, including
both imaginary (lossy) and real (lossless) coupling, are real-
ized by inverters. The imaginary inverter has the admittance
matrix as:

[Y]imaginary = |:_0G _0G1| ’ (D

where G is a real value related to the coupling coefficient
M by M = jG. The equivalent network of (1) and its clas-
sic implementation are shown in Figs. 6(a) and (b), respec-
tively. Presence of negative shunt admittances in Fig. 6(a)
makes it difficult to realize using passive components only.
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A passive implementation technique is described in [16] as
shown in Fig. 6(b). However it is not rigorously equivalent to
Fig. 6(a) and (1). For hybrid network realization of complex
inverters as shown in Fig. 6(c), one has to deal with similar
issues.

In summary, the conventional technique involves non-
passive or inexact realization. We will propose a new passive
fundamental block to deal with complex inverter implemen-
tation issue in next section.

Iil. MODIFIED BLOCK
The admittance matrix [Y] of a general J-inverter is

expressed as
1 0 Yo
[ﬂ—[ﬂ% 0}, @

where J equals to the coupling coefficient which can be a
complex or real quantity, and Y is the characteristics admit-
tance of the port.

Let us further consider two special cases. In one case, J is
real then all elements in admittance matrix [Y ] become reac-
tive. Thus, a real inverter is always passive and lossless. This
also explains why real inverters are useful in filter design.
In contrast, all elements in admittance matrix [Y] will be
real when J is pure imaginary. Thus, an imaginary inverter
is always lossy.

Here, we slightly modify the conventional admittance
matrix in (2) of a imaginary inverter to make it completely
passive. The admittance matrix of the modified block is

[Y]mod = Yo I:_G}t G‘il:| ,
where G| and G are two new real quantities in addition to
the original imaginary inverter, J; is a positive real quantity.
Equivalent circuit model is presented in Fig. 7(a). One can
conclude from Fig. 7(a) that all the components are passive
when G| > J; and G, > J;.

o A o

Ji¥o G1=G2=1J;

3

(G1—J:)Yo
0x(*r—2p)
$ I

|

(a) (b)

FIGURE 7. (a) Equivalent circuit model of the modified circuit block in (3),
and (b) its reduction to a series resistive connection at G; = G, = J;.

Consider a special case when G| = G = J;. The admit-
tance parameters of the two shunt components in Fig. 7(a)
become zero, and thus the equivalent network reduces to a
series resistor as shown in Fig. 7(b). The resultant admittance
matrix reads

J: —J
[Y lresistor = Yo |:_~l]i J; l] 4)
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Instead of imaginary inverter, one may use this resistive con-
nection in (4) as a new building block in the decomposition of
complex coupling matrix. The coupling matrix form for this
resistive connection will be

—iJ: i]:
[M Jresistor = [ ji_l ij‘l]l:| (5

One may extract this block directly from the complex cou-
pling matrix using the decomposition technique as illus-
trated in the following section. Previously non-ideal inverter
building block was discussed in [23] as series or shunt stub
to introduce a controllable frequency-dependent coupling
between microwave resonators. But here we will be used (4)
as fundamental building block for passive realization of lossy
cross-couplings.

One should also note that this resistive connection is con-
sidered as the special case of the modified block in (3). It is
always passive. One also has other different forms depending
on the choices of G| and G,. Here, we only consider the
resistive connection (4) for simplicity.

IV. COUPLING MATRIX DECOMPOSITION

A. RESISTIVE CONNECTION EXTRACTION

In the conventional technique, one decomposes all the com-
plex off-diagonal entries into real and imaginary parts, where
each imaginary part form a imaginary sub-matrix, and the rest
form a single conventional matrix, i.e.

N
[M]complex = [M]conv + Z [M]?mag ’ 6)

n=1
where [M]cony is the same as the conventional coupling
matrix where all the off-diagonal entries are real, [M ]i”mag rep-
resents the n™ imaginary coupling, and N is the total number
of imaginary coupling. Consider a second-order example,

—02-j02 —04+j01] [-02-j02 —0.4
—04+4,01 -02-j02 |7 —0.4 —0.2—j0.2

0 jo.1
+ [ jo.r o ] : )
Note that the second part of (7) is an imaginary inverter which
is typically implemented using any one form as depicted
in Fig. 6.
To make all the components passive, we reformulate the
decomposition as

where [M ] ., represents a resistive connection having the
same form as (5), [M],,, is a reformulated matrix different
from [M]cony of (8). To illustrate this decomposition, con-
sider a complex sub-matrix formed by k™ and /™ resonators,
as shown in (9), as shown at the bottom of this page. Note
that, the second part of (9) is a resistive connection between
k™ and /™ resonators. If taking (7) as the example, one has

the decomposition

—02-j02 —04+jo01| [—02—jo1 —04
—0.44,0.1 —0.2—j0.2 | = —04  —0.2—j0.1

—j0.1 jo.1
+|:j0.l —j0.1i|' (10)

Note that, the two parts of (10) are passive. The first part rep-
resents two lossy resonators coupled by a real inverter, which
is implemented using conventional technologies. The second
part is the proposed resistive connection block (5).

In summary, by applying the decomposition technique in
(8) and (9), the complex coupling matrix is divided into a
conventional coupling matrix [M],.,, plus several resistive
connection sub-matrices [M ]?esistor' One may combine all
the resistive connection sub-matrices into a single matrix
[M Jresistor, namely resistive connection matrix, representing
the resistive connection information of all the resonators.
In the implementation, one firstly employs the conventional
technique to implement [M].,,,, and subsequently con-
nects resistors between resonators following [M Jiesistor- This
decomposition guarantees that all the sub-components are
passive, and thus one is able to compare each implemented
sub-component with its ideal circuit counterpart. The overall
procedure is mathematically and physically rigorous. It is
important to note that proposed CM decomposition (8) is
different from typical decomposition (6), as proposed method
always ensure [M Jyesistor Will be set of series resistors con-
nected between resonators.

This new approach of CM decomposition is extremely
useful for lossy filter design and tuning. Firstly, it decom-
poses whole network as lossy part and lossless part which can
be designed simultaneously. Thus it offers an efficient and
fast design approach. Secondly, one-to-one correspondence
between design parameters and coupling matrix elements
reduces the optimization time significantly. Above all simple
passive realization of lossy sub-coupling matrices as series

N resistor blocks, make the design and tuning method superior
[M]complex = (M1.ony + Z M1 itor 8) as compare to all other existing techniques. Recently, such
=l CM decomposition based fast tuning algorithm for lossy
k I k ! k !
k ar —jhi o +jp kK ar —j(Bi—B) o N k - - B
l o+ jp o —jp2 l o a—jB—p) l B —iB
€))
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filters were discussed in [24] to prove the robustness and
extended application of this new technique.

B. LOSS EQUALIZATION STRATEGY
As indicated by (9), the extraction of resistive connection
matrix [M Jeesistor changes the imaginary parts of diagonal
entries in the residual matrix [M],,. Since the imaginary
part of the diagonal entry represents the loss or unloaded
quality factor (Q,) of each resonator, this extraction pro-
cedure leads to a nonuniform Q, distribution in [M],,,
if the original complex coupling matrix has a uniform Q,
distribution. For implementation convenience, one usually
prefers a uniform Q, distribution in [M].,,,. Therefore, one
should consider this decomposition effect when applying the
hyperbolic rotation to the original complex coupling matrix.
Here, we propose a new loss equalization technique that
combines the hyperbolic rotation and decomposition effect.
Firstly, one specifies A as the final imaginary part of all the
diagonal entries in [M ], Then, when applying hyperbolic
rotation to kg, resonator, one enforces the following condition

L

S| R — D RuMu | = A, (11)
1=1,1#k

where Ry(.) is the hyperbolic rotation of the matrix M,
J[.] is the operation of taking the imaginary part. To do this,
the parameter of the hyperbolic rotation Rp(.) is optimized
to satisfy (11). Note that here we used hyperbolic rotation to
distribute losses equally among resonators but it is possible
to achieve the same results by using hyperbolic reflection
operator as described in [14].

To summarize the whole design procedure for a lossy filter,
we provide a design flow chart in Fig. 8.

Polynomial Complex Loss Matrix
] S e
Fabrication ) [M]resistor (Mo
Measurement h Implementation | Implementation

FIGURE 8. Flow chart of a lossy filter design incorporating the proposed
decomposition and loss equalization techniques.

V. ILLUSTRATIVE EXAMPLES

To illustrate and validate the proposed decomposition tech-
nique and loss equalization strategy, three lossy filters are
designed. Without loss of generality, both pure imaginary
coupling and complex coupling cases are presented, both
symmetrical and asymmetrical responses are considered, and
both even-order and odd-order filters are designed.

A. EXAMPLE I: 4t"-ORDER CHEBYSHEV FiLTer
The first example is a 4"-order Chebyshev lossy filter with
8.5 dB insertion loss and 28.5 dB return loss. The synthesized
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TABLE 1. Synthesized polynomials of example I.

E(s) st 4 2.14365% + 3.297452 + 2.8281s + 1.25
P(s) j0.463
Fi1(s) = Faa(s) 0.370s% 4+ 0.370s2 4 0.046
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FIGURE 9. (a) Coupling matrix and (b) magnitude responses of example I
before loss equalization.
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~.-0877
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FIGURE 10. (a) Coupling matrix and (b) topology of example I after loss
equalization with input/output couplings of Mg ys = My y; = 0.303.

polynomials, coupling matrix and magnitude responses are
shown in Tab. 1 and Fig. 9, respectively. Note from Fig. 9(a)
that the loss are mainly distributed in source, load, 1% and 4t
resonators. After loss equalization using the proposed tech-
nique in Sec. IV-B, the complex coupling matrix and topol-
ogy are shown in Fig. 10. Note that, the loss is equalized
among all the resonators, and as a result, four imaginary
coupling coefficients appear in the coupling matrix. One
subsequently applies the proposed decomposition technique
to the complex coupling matrix in Fig. 10(a), leading to four
sub-matrices corresponding to four resistive connections,
as shown in Fig. 11, and one residue matrix corresponding to
the conventional coupling matrix without complex coupling
values, as shown in Fig. 12(a). As expected, the residue
coupling matrix has a uniform loss distribution among all
the resonators. All the resistive connection sub-matrices are
further combined together to form a single resistive connec-
tion matrix and topology, as shown in Fig. 12(b). Therefore,
after the decomposition, one has two matrices in Fig. 12, one
corresponding to the conventional coupling matrix and the
other corresponding to the resistive connection matrix.

B. EXAMPLE II: 4th-ORDER QUASI-ELLIPTIC FiLTer

The second example is a 4M-order quasi-elliptic lossy fil-
ter with 7 dB insertion loss, 32 dB return loss, and two
transmission zeros at = =£2. The synthesized polynomi-
als, coupling matrix and magnitude responses are shown in
Tab. 2 and Fig. 13, respectively. After loss equalization, the
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FIGURE 11. Four resistive connection sub-matrices decomposed from the
complex coupling matrix of Fig. 10(a).
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FIGURE 12. (a) Residue coupling matrix [M]conv and (b) resistive
connection matrix [M],esistor after the decomposition of Fig. 10(a).

TABLE 2. Synthesized polynomials of example II.

E(s) st +2.517553 + 4.3414s% + 4.315s + 2.5524
P(s) j0.2838s2 4 j1.134
Fi1(s) = Faa(s) 0.445s* +0.461s2 + 0.063

complex coupling matrix and topology are shown in Fig. 14.
Note that, the loss is equalized among all the resonators,
and as a result, four imaginary coupling coefficients appear
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FIGURE 13. (a) Coupling matrix, and (b) magnitude responses of
example Il before loss equalization.
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FIGURE 14. (a) Coupling matrix, and (b) topology of example II after loss
equalization with input/output couplings of Mg ys = My y; = 0.398.

in the coupling matrix. One subsequently applies the pro-
posed decomposition technique to the complex coupling
matrix in Fig. 14(a), leading to four sub-matrices corre-
sponding to four resistive connections, as shown in Fig. 15,
and one residue matrix corresponding to the conventional
coupling matrix without complex coupling values, as shown
in Fig. 16(a). As expected, the residue coupling matrix
has a uniform loss distribution among all the resonators.
All the resistive connection sub-matrices are further com-
bined together to form a single resistive connection matrix
and topology, as shown in Fig. 16(b). Finally, one has two
matrices in Fig. 16, one corresponding to the conventional
coupling matrix and the other corresponding to the resistive
connection matrix.

C. EXAMPLE III: 3"9-ORDER FILTER WITH
ASYMMETRICAL REsponse

The third example is a 3'9-order quasi-elliptic lossy filter with
6 dB insertion loss, 28 dB return loss, and one transmission
zero at Q = —2. The synthesized polynomials, coupling
matrix and magnitude responses are shown in Tab. 3 and
Fig. 17, respectively. After loss equalization, the complex
coupling matrix and topology are shown in Fig. 18. Note
that, the loss is equalized among all the resonators, and as a
result, two imaginary and three complex coupling coefficients
appear in the coupling matrix. One subsequently applies the
proposed decomposition technique to the complex coupling
matrix in Fig. 18(a), leading to five sub-matrices correspond-
ing to five resistive connections, as shown in Fig. 19, and
one residue matrix corresponding to the conventional cou-
pling matrix without complex coupling values, as shown
in Fig. 20(a). As expected, the residue coupling matrix
has a uniform loss distribution among all the resonators.
All the resistive connection sub-matrices are further com-
bined together to form a single resistive connection matrix
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FIGURE 15. Four resistive connection sub-matrices decomposed from the
complex coupling matrix of Fig. 14(a).

NS 1 2 3 4 NL NS 1 2 3 4 NL
NS| 0 042 o 0 0 0 NS|-j0.061 0  jo.o61 0 0 0
1 [-0422 -0.0534 0943 0 0272 0 1 0 40.163 0 jo.l63 0 0
21 0 0943 -j0.0534 0878 0 0 j0.0o61 0 0223 0 jo.l 0
310 0 0.878 -j0.0534 0.943 0 30 0 jo1es 0 50223 0 jO.061
41 0 0272 0 0943 -j0.0534 -0.422 410 0 j0163 0 50163 0
NL| © 0 0 0 0422 0 NL| © 0 0 joosl 0  -j0.061

(a) (®)

FIGURE 16. (a) Residue coupling matrix [M]conv and (b) resistive
connection matrix [M],esistor after the decomposition of Fig. 14(a).

TABLE 3. Synthesized polynomials of example III.

E(s) 53 4 (2.2488 — j0.149)s2
+(3.0586 + j0.1686)s + 1.8516 + j0.756
P(s) j0.5s — 1
Fi1(s) = Faa(s) 0.5s% — j0.0745s2 + 0.265s — 0.0035

and topology, as shown in Fig. 20(b). Finally, one has two
matrices in Fig. 20, one corresponding to the conventional
coupling matrix and the other corresponding to the resistive
connection matrix.
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FIGURE 17. (a) Coupling matrix and (b) magnitude responses of example
111 before loss equalization.
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FIGURE 18. (a) Coupling matrix and (b) topology of example IlI after loss
equalization with input/output couplings of Mg yg =M y; = 0.205.
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FIGURE 19. Five resistive connection sub-matrices decomposed from the
complex coupling matrix of Fig. 18(a).
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FIGURE 20. (a) Residue coupling matrix [M]conv and (b) resistive
connection matrix [M]esistor after the decomposition of Fig. 18(a).

In summary, all the three illustrative examples achieve the
expected results, which finally validate the proposed decom-
position technique and loss equalization strategy.
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VI. EXPERIMENTAL VALIDATION

To further experimentally validate the proposed technique,
we physically implement the bandpass version of example I
in Fig. 10 having a loss of 8.5 dB. The specified frequency
range centers at 0.925 GHz with a bandwidth of 85 MHz.
Roger RT Duroid-6010 (tanD=0.0023) substrate with a rela-
tive dielectric constant of ¢, = 10.2 and thickness of 1.27 mm
is used for implementation.
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FIGURE 21. Bandpass version of example I: (a) coupling matrix with
input/output couplings Mg ys = M; y; = 0.1183, (b) coupling topology,
(c) resistive connection matrix [M],gistor, and (d) residual matrix [M]conv.

The synthesized bandpass coupling matrix, topology,
decomposed resistive connection matrix and residue con-
ventional matrix are shown in Fig. 21. According to the
calculation approach in [4], the diagonal entries of Fig. 21(d),
—j0.019, correspond to unloaded quality factors of 230,
which are implemented by 1.2 mm wide half-wavelength
transmission line resonators. All the other real coupling coef-
ficients in off-diagonal entries of Fig. 21(d) are implemented
by coupled-line structures and are extracted using the con-
ventional technique in [4]. Once the conventional coupling
matrix [M ]cony (Fig. 21(d)) is implemented by physical struc-
tures, we connect resistors between resonators according to
the resistive connection matrix in Fig. 21(c) where all values
are calculated according to (4).

Once all initial dimensions are obtained, a full-wave EM
simulations have been carried out using Advanced Design
System (ADS). Global full-wave optimization is performed
to fine tune all parameters including resistors. Fig. 22 shows
the fabricated prototype with optimized parameters. Two
shorted shunt stubs are used at both ports to achieve the
desired input/output coupling (Mg ys and My, nz) values of
0.1183. The final scattering parameters are measured by
using two-port measurement with a Vector Network Ana-
lyzer (VNA). Fig. 23 shows the measured transmission and
reflection magnitude responses in comparison with the ones
calculated from the synthesized coupling matrix of Fig. 21(a).
The measured results agree well with the synthesized ones,
despite a slight deviation probably due to the tolerances
brought by lumped resistors and fabrication.
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FIGURE 22. Fabricated prototype of the lossy filter in Fig. 21.
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FIGURE 23. Measured transmission and reflection responses of the
fabricated prototype in Fig. 22.

VIl. DISCUSSION

We have demonstrated that using series resistor as funda-
mental block accompanied by proposed CM decomposition
for all passive realization of highly lossy filters results easy
tuning with perfect inband matching responses. We can easily
compare this proposed technique with some of the existing
lossy filter design techniques with their responses to prove
the effectiveness of the proposed design method. Most of the
existing works realized lossy couplings by lumped resistor
coupled to resonators via high impedance transmission lines
as shown in Fig. 6(b) in Sec. II-B. For instance [13], [15],
realized lossy cross-couplings using Fig. 6(b) technique
while [25] used nonuniform Q resonators to design lossy
filters. In [25], as expected inband measured results sig-
nificantly deviate from simulated one which suggest such
implementation leads to degradation in filter performances.
Similarly, previous lossy filter work in [13] also suffer from
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mismatch issues. Because for every lossy coupling coeffi-
cients, it introduces many components (as shown in Fig. 6(b))
as a result, not only tuning become difficult but network
becomes more sensitive to tolerances which leads to large
inband imperfection. SIW based lossy filters very often deal
with design complexities related to dissipative couplings [20].
Recently multi-layer PCB technology based lossy filters [21]
were designed using conventional RCC structures for lossy
cross-couplings. In this work, we used simple microstrip
technology to design highly lossy filters by modifying ideal
inverters as fundamental passive resistor blocks. Proposed
method can overcome all these existing problems as it sim-
plify lossy cross-coupling realization by a series resistor.
Also tuning become much easier which results better inband
S-parameters matching as compared to these existing works.
As expected proposed designed are less sensitive to toler-
ances since it uses minimal components which is also clear
from measured responses as depicted in Fig. 23 where some
out-of-band deviation are visible but inband mismatches are
negligible. Therefore this work proposes superior design
methodology as compare to all other existing works.

VIIl. CONCLUSION

Lossy filters are useful for satellite communication systems.
Such filters are often deal with complex coupling matrices.
A decomposition technique for the realization of complex
coupling matrix has been presented. A new building block
called resistive connection has been introduced to the cou-
pling matrix. Proposed method is very useful for complete
passive realization of lossy filters. This technique is versatile
as it can deals with any coupling topology. Three numerical
examples and one experimental validation were provided.
The results finally validated the proposed technique.
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