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ABSTRACT An autonomous underwater vehicle (AUV) is an economical and safe tool that is well-suited for
search, investigation, identification, and salvage operations on the sea floor. Path planning technology, which
primarily includes modeling methods and path search algorithms, is an important technology for AUVs.
In recent years, the AUV path planning technology has rapidly developed. Compared with land robots, AUVs
must endure complex underwater environments and consider various factors, such as currents, water pressure,
and topography. Challenges exist in terms of online obstacle avoidance, three-dimensional environment path
planning, and the robustness of the algorithms. Adapting a complex environment and finding a suitable
path planning method comprise the main problem that must be solved. In this paper, we summarize the
principles, advantages, and disadvantages of modeling and path search technologies for AUVs. The most
prominent feature of this paper is to summarize the improvement methods of various technical shortcomings
and improve the original methods, such as dynamic obstacle avoidance, optimization path, coverage, and
processing speed. In addition to summarizing the characteristics of each algorithm, this paper intuitively
demonstrates the experimental environment, the real-time nature, the path planning range of the AUV, and
so on. We also discuss the application scenarios of various modeling and path search technologies for AUVs.
In addition, we discuss the challenges of AUVs and the direction of future research.

INDEX TERMS AUV, path planning, model building, path search.

I. INTRODUCTION
The 21st century is the century of oceans, which account
for 71% of the world’s total area of oceans. Oceans are
rich in mineral resources, marine biological resources, and
renewable energy sources, such as tidal energy and wave
energy. Oceans are important assets for the sustainable devel-
opment of human society [1]. Therefore, the development
of oceans and the associated competition have become the
strategic focus of many developed countries, and these goals
have become pursued with increasing fierceness. Compared
with other underwater vehicles that can be explored, such
as manned ships, and float platforms, AUVs have numerous
advantages such as underwater payload capacity, maneu-
verability, and depth of activity despite their high cost
and short battery life. In a variety of marine technologies,
autonomous underwater vehicles (AUVs) can be used for

comprehensive surveys and studies in areas where the depth
cannot be reached by general diving technology; their ability
to accomplish various missions have brought marine devel-
opment into a new era [2].

An AUV is an important part of a robot [3] because it pos-
sesses a variety of sensors, which are not limited by time and
space, and autonomous navigation and obstacle avoidance
capabilities; in addition, AUVs can autonomously perform
specific underwater tasks [4]. AUV development involves
high technologies, such as mechanics, fluid mechanics,
hydroacoustics, optics, electronic communication, naviga-
tion, automatic control, computer science, sensor technology,
bionics, artificial intelligence, and many other contemporary
achievements. The important application value of AUVs has
received an increasing amount of attention by scientists and
technologists in the civil and military fields, and in-depth
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FIGURE 1. The relationship of AUV autonomous navigation structure.

research has been conducted [5], [6]. In the field of marine
engineering, AUVs are employed for the structural inspection
of dams, installation/disassembly of underwater bases, obser-
vation of underwater targets, and search and rescue; they also
aid divers. In the field ofmarine scientific research, AUVs can
be deployed to conduct data collection in a marine environ-
ment, investigate underwater shipwrecks, perform geological
and geomorphological exploration of the seabed, and explore
petroleum and other resources. In themilitary field, AUVs are
used in mine countermeasures, target detection, intelligence
gathering, surveillance and reconnaissance, environmental
data collection and anti-submarine warfare. As human activ-
ity space gradually expands into the marine sector, AUVswill
have an important role in ocean exploration [7], [8].

An AUV is an underwater development tool for human
exploration of oceans with the greatest potential, especially
for underwater observation and underwater operations [9].
In recent years, the attention given by various countries
to marine resources has promoted the vigorous develop-
ment of underwater vehicle technology. Scientific research
support and funding for AUVs have increased, and con-
siderable progress has been made in path planning tech-
niques. The development of AUV path planning technology
lags behind AGV (Automated Guided Vehicle), because
AGV is in a two-dimensional static environment that is
less affected by environmental factors, and AUV is more

subject to the requirements of complex dynamic environ-
ments. Many modeling methods and path search algorithms
are only available for 2D environments [23]. Even compared
with the UAV (Unmanned Aerial Vehicle), which is also
a three-dimensional path plan, AUV has the problems of
high experimental cost, poor underwater visibility, ocean cur-
rent interference, and difficulty in recovering after loss [65].
To achieve autonomous navigation of underwater robots,
a variety of techniques is required to collaborate on an
AUV. We describe the relationship of various technologies
in Fig. 1. Path planning is an important link. Its task is
to determine an initial state (position and attitude) to reach
the target state (position and posture) without a collision
path in an environment with obstacles according to a cer-
tain evaluation standard based on the establishment of an
environmental model [10], [11]. First, to improve the perfor-
mance of an AUV, we must improve the efficiency of the
AUV, including mechanical improvements (reduce friction
and improve material strength), automation (path planning
and path tracking), and reduced loads. Second, we must
improve the capability of AUV batteries [164]. This paper
reviews the development of path planning technology with
regard to automation technology. The steps of AUV and their
path planning techniques are similar to those of AGV and
UAV. The main parts of path planning include environmental
modeling and path search. Before an AUV uses a search
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FIGURE 2. Path planning technologies for AUV.

algorithm for path planning, we must describe the physical
environment of an AUV as a form of computer identification.
This process is referred to as environmental modeling, and
reasonable environment modeling is beneficial to reduce the
number of searches. Different path search algorithms are
based on different environmental models. Each search algo-
rithm has unique characteristics. The search speed, robust-
ness, search path length and smoothness are suitable for
2D/3D underwater environments, and differences in online
searches may exist. We also discuss the improved algorithms
in the text. A suitable 2D/3Dmodel should be built according
to the complexity of the underwater environment and the
requirements of the path search algorithm [155], which is
responsible for searching the feasible space of the path from
the environment model and producing a feasible path. For the
search path problem for path planning in a two-dimensional
environment, researchers proposed numerous theories and
methods, some of which can be easily extended to three-
dimensional space. However, some methods are not eas-
ily achieved in three-dimensional space because robots are
extended to 3D space after the campaign space, and its kine-
matics and dynamic constraints become very complex [13].
However, the existing two-dimensional path planning tech-
nology cannot satisfy the needs of the ocean exploration
field. Many technologies for 3D path planning have also
been proposed. Although the computation of 3D path search
algorithms is complex, they are more suitable for modeling
complex environments. The following factors must be con-
sidered in AUV path planning: the underwater environment
has uncertainty and dynamic characteristics (especially the
influence of the ocean), the real-time nature, effectiveness and
optimality of the planning algorithm, and the ability to satisfy
the constraints of AUV ontology motion [14].

This article reviews the path planning techniques of AUVs
and analyzes the pros and cons of various technologies. The
structure of this paper is illustrated in Fig. 2. Researchers
can refer to this document to understand the AUV path
planning techniques, find inspiration and choose the correct
methods for better scientific research. This article is divided
into four sections. The significance of AUVs and the devel-
opment of the technology are discussed in the first section.

The establishment of the model, which primarily involves the
rule model and the irregular model, is discussed in the sec-
ond section. Path search techniques are presented in the
third section, which primarily include the geometric model
search method, probabilistic sampling-based algorithms, arti-
ficial potential field algorithms, and intelligence algorithms.
Finally, our conclusions are presented in the fourth section.

II. MODEL-BUILDING METHODS FOR PATH PLANNING
The definition of an environment model is an abstract or for-
mal description of the structure and function of the environ-
mental system [11]. Prior to path planning, the AUV should
change the original form of the external environment into a
work form that is suitable for the internal environment of
the planning. The reasonable modeling method is beneficial
for reducing the amount of calculation in the path planning,
which accelerates the speed of operation and reduction in
storage. Different planning methods for AUVs should be
modeled based on different environments [155]. The model is
divided into two types according to the types of components.
The first type is the regular grid representation model, which
primarily represents the surface of the seafloor by a regular
grid of squares, cubes, rectangles and cuboids. The second
type is the irregular grid representation model, in which
triangular, polygonal or irregular shapes serve as the basis
of the model unit. We compare the two methods in Table 1.
The environment in which we apply the methods of various
environmental models is classified in Fig. 3.

A. REGULAR GRID TERRAIN MODEL
The regular grid terrain model employs a regular shape to
express underwater environment information. For the regular
grid model, each component is identical and its data struc-
ture is simple, easy to manage, store, and retrieve. Thus,
the memory space is small, and the construction of complex
models based on the seafloor environment is not needed. The
choice of grid size will directly affect the performance of
the search algorithm [13]. If the grid selection is small, and
the environmental resolution is high, although the amount
of environmental information is stored and the interference
signal is relatively increased, the decision-making workload
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TABLE 1. Underwater model establishment method.

FIGURE 3. Environmental model applicable environment.

is increased, which eventually reduces the real-time perfor-
mance of the system and causes slower planning [15]. Con-
versely, although the anti-jamming capability is strong, the
amount of stored environmental information is small, and the
speed of decision-making is accelerated. Due to the decrease

in resolution, the model it is not conducive to planning an
effective path in a dense obstacle environment. The selection
of the grid size is also related to the performance of the sensor
and the volume of theAUV. The size of the grid is based on the
size of the AUV, and it should usually satisfy the requirement
that the mobile AUV can safely move within a free grid. This
model is very convenient for the analysis and calculation of
terrain; thus, it is extensively employed [16].

1) GRID MODEL
The grid method divides an AUV workspace into a regular
grid. Each grid can have two states: a free grid and an obstacle
grid. In a two/three-dimensional grid, a black square/cube
represents the obstacle in the raster array, and a white
square/cube represents the free space. Because this method
is simple and easily implemented, it is one of the most com-
mon modeling methods for AUVs [17]. It has the ability to
represent irregular obstacles and applies to all types of tradi-
tional or intelligent algorithms; thus, it is employed in under-
water 3D space path planning of AUVs in the environment
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modeling in [18]–[20]. However, this space partition contains
a vast amount of data, which occupiesmost of the resources of
a system. For an extensive range of underwater environments,
Wang et al. [22] and Tanakitkorn et al. [165] disregard the
water depth, which simplifies a three-dimensional space to
a two-dimensional underwater environment model based on
the grid method for an AUV. Although the environmental
information is lost, it saves the system space and achieves
satisfactory results.

2) CELL TREE MODEL
Due to the low efficiency of the grid method for an AUV,
the octree model is proposed based on the grid method, and it
overcomes the defects of the uniform grid method. An octree
has a large advantage in its algorithmic structure: if a pointer
is used for a link between a node and its children, the tree has
to be fully instantiated [29]. An octree model is a recursion of
free space into multiple subspaces, and the obtained subspace
can have three states: free subspace, obstacle subspace and
mixed subspace. For the mixed subspace, we must continue
to divide the space until all subspaces are free subspaces or
obstacle subspaces [24], [25]. Zhang [166] uses the octree
model to reflect a real underwater environment. However,
this model has three main drawbacks. First, since the initial
space (or image) is transformed in the tree data structure,
the spatial neighborhood of each block is not easily defined.
Second, the paths of the AUV generated by the octree are
suboptimal because they are limited to the parts between
the block centers. Third, many smaller obstacles exist in the
environment, for which its use can be less efficient; thus,
it is primarily applied between the larger obstacles for AUV
path planning [1284]. Hornung et al. [29] exploit a new open
source framework for 3D environment models based on the
octree model that has three main features. The first feature
relates to the exploration of an unknown environment and
represents the capabilities of an undeveloped area. The sec-
ond feature represents the probability state. The third feature
represents the next state, which is calculated according to
the probability function to the initial position state, in such
a manner that not only the protection is protected from noise
but also the map can be modified when the environmental
information changes. They use an octomap to zoom in or out
as needed and refer to the octomap for an AUV in more
detail in article [31]. If a nearby obstacle is perceived dur-
ing the mission, Hernandez et al. [30], [32] use the open
source framework to adjust and plan a collision-free path
in an unknown environment for AUV. However, they con-
duct experiments in two-dimensional space and disregard the
influence of depth. Their next experimental plan is to expand
into three-dimensional space and consider the impact of sea
currents on path planning. A quadtree model that does not
consider depth is also applied to underwater model building.
Compared with the octree model, which can be applied to
three-dimensional space, the quadtree model for an AUV can
only be applied to two-dimensional space due to its structural
characteristics [33]. However, it can record information of all

regions and effectively compress the information in the two-
dimensional environment [34].

B. IRREGULAR GRID TERRAIN MODEL
An irregular grid terrain model expresses an underwater
environment with irregular graphics for an AUV; this model
chooses the shape of the graphics according to the subma-
rine topography [35]. Compared with the regular grid terrain
model, the modeling is more complex and consumes a large
amount of space. However, it can completely describe the
structural features of the seabed terrain and has high storage
efficiency. This model can be used for a large volume of
terrain information, is easily updated, and has variable res-
olution according to the shape of the seabed terrain, which
enables the terrain to be simplified [47].

1) VORONOI DIAGRAM MODEL
The Voronoi diagram, which is also known as the Thiessen
polygon or Dirichlet diagram, consists of a series of con-
tinuous polygons that are composed of vertical bisectors
that connect the straight lines of two neighbors [37]. The
vertices of a Voronoi graph simultaneously belong to three
Voronoi polygons, and each Voronoi polygon has only one
node. This method can contain a large amount of data for a
complex terrain, is convenient when considering the topog-
raphy of the seabed, and can facilitate simplification of the
terrain. The greatest advantage of Voronoi diagram-based
environment modeling is that the path in the road map is
the Voronoi edge, which is the mid-perpendicular to the
discrete center of an obstacle, which can ensure that the AUV
is far from the obstacles during operations [38]. However,
the storage is large, and the path length is not guaranteed
to be optimal. Dong et al. [185] mark the position of an
obstacle in a two-dimensional Voronoi diagram and generate
an approximate path to connect the initial and the targets
via the Voronoi processor. In the field of model building,
compared with two-dimensional space, the Voronoi map is
extensively employed in three-dimensional model building.
They simplify the 3D underwater environment to generate a
3D Voronoi diagram that produces a global roadmap, which
is a common modeling method that ensures a safe path
for an AUV. Some examples of underwater modeling for
AUV using Voronoi diagrams are provided in [40]–[43]. The
advantage of the Voronoi diagram is that the generated path
is relatively safe and located far from obstacles, and the
path search is conducted on the curves or surfaces; however,
the generated path is not very smooth. In response to this
problem, Candeloro et al. [44] added a Fermat spiral segment
that is based on the Voronoi diagram model and proposed a
curvature continuous model-building algorithm for an AUV;
the spiral of Fermat is used to smooth the path and provide
curvature.

2) DELAUNAY TRIANGULATION MODEL
Delaunay triangulation is a one-to-one correspondence with
the Voronoi diagram and the three node Voronoi polygon
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that connects three concurrent nodes form a Delaunay trian-
gle [45]. For this reason, this model has the same advantages
and disadvantages as the Voronoi diagram model. However,
the modeling method based on the Delaunay triangle model
only needs to change the vertex coordinates of the storage
edge when the obstacle moves, and reconstruction of the
triangulation network is not needed. As a reciprocal Voronoi
graph, Delaunay triangulation empty circle characteristics
and minimum angle maximization properties ensures that no
Delaunay triangulation exists in too slender and narrow a
triangle, which renders the triangulation construction more
reasonable and accurate, because it maximizes the minimum
inner angle of all triangulations [46]. Thus, this model is
extensively applied numerous times in the path planning
of AUVs in map building [46]–[50]. An improved growth
algorithm of the triangulation was designed for an AUV
that fuses the idea in the divide-and-conquer algorithm by
Wang et al. [36]; it expands the baseline based on the regional
discrimination principle of the linear equations and searches
for the third point using the minimum cosine criterion, which
accomplishes realistic 3D seabed terrain vector modeling
based on measurement of the data of a sea trial.

3) VISIBILITY GRAPH SPACE MODEL (C-SPACE MODEL)
The visibility graph space method is also referred to as the
c-space model. According to the size and shape of moving
objects, the c-space model expands obstacles according to the
proportion and narrows the robot to be small. The free space is
constructed using the predefined basic shape to describe the
robot and the surrounding environment, and the free space
is represented as a connected figure [51]. For obstacles with
different regular geometric entities in sparse and dense areas
of the sea floor, Li et al. [4] and Wang and Xiong [52]
proposed a path planning algorithm that is based on visibility
graph geometry theory for an AUV, which models a 3D ocean
model with conventional geometric entities for planning and
simulating a path in the 3D environment. Englot et al. [205]
and Petres et al. [86] modeled using the c-space method and
applied to real AUV path planning experiments. Gal [53]
proposed an improved visibility graph space model for an
AUV, which primarily reduces the number of building nodes
to achieve a fast calculation time. Based on this informa-
tion, the spiral algorithm is added to better achieve obsta-
cle avoidance. The advantage of the visibility graph model
are intuitive: the shortest path can be easily identified. The
disadvantage is that once the starting point and the target
point change, the view has to be reconstructed; thus, a lack of
flexibility exists. This method has poor local path planning
capability and is suitable for global path planning and path
planning within the continuous domain [54].

In the analysis of the aspects of modeling, different envi-
ronmental models are created as required for AUVs. Con-
ventional grid terrain models use rule shapes to express
underwater environmental information. The model is simple
and requires a small amount of computation but it does
not accurately reflect the seabed environment. This model

is suitable for an environment with a low requirement for
modeling accuracy—a simple undersea environment with
few obstacles. Compared with regular grid terrain models,
irregular mesh modeling is computationally more complex
and can realistically reflect the environment of the seabed.
The irregular mesh model is suitable for modeling with
high accuracy and a complex undersea environment. Due
to the influence of underwater environmental clarity, and
because it is a dynamic environment, establishing an accu-
rate underwater model for an AUV is challenging. Unlike
two-dimensional modeling of the ground, the computa-
tional complexity of three-dimensional modeling increases
as the dimension increases. Therefore, many studies disre-
gard the height information in complex 3D modeling and
create a 2D model on a cross-section of the underwater
surface. Although the computational complexity will be
reduced, a two-dimensional model cannot fully reflect the
three-dimensional underwater environment. With an increase
in the computing speed and the need for a complete environ-
ment, underwater 3Dmodeling will replace 2Dmodeling and
become mainstream.

III. PATH SEARCH ALGORITHM FOR PATH PLANNING
The path search algorithm is a method that is based on an
established environment model and searches for the path
between the starting point and the end point of the plan [55].
The primary problem that these AUVS must solve when they
are free to operate in space is a path acquisition problem.
This problem usually depends on the position information
of the robot and the target point. A reliable and effective
algorithm is needed to obtain an optimal trajectory to connect
two points while satisfying various types of constraints, such
as avoiding obstacles and objects, a minimum turning radius,
maximum acceleration, maximum energy consumption and
low time consumption [56]. The AUV path search algo-
rithm has achieved fruitful results and has been extensively
applied, and the factors that must be considered in an AUV
path search algorithm include environmental uncertainty and
dynamic characteristics, real-time, validity and optimality of
the planning algorithm, and satisfy the constraints of the robot
body’s ability tomove [57]. For the problem of path searching
in a two-dimensional environment, the researchers proposed
numerous theories and methods, some of which can be easily
extended to three-dimensional space; but some methods are
difficult to implement in 3D space. The main reason is that
the kinematics and dynamics constraints become very com-
plex when the robot’s active space is extended to 3D [58].
This section summarizes the existing literature in four parts:
methods based on a geometric model search, probabilistic
sampling-based algorithms, an artificial potential field algo-
rithm, and an intelligence algorithm. The two-dimensional
and three-dimensional path search methods applied to AUVs
are analyzed and compared regarding their advantages and
disadvantages, and then improved algorithms are derived.
The real-time performance, optimization performance, and
dependence on the environment model of the algorithm are
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also considered, with a comparison, and references are pro-
vided for future in-depth research. In Tables 2 to 5, we sum-
marize and comment on the application of various path search
methods for AUVs. In Tables 3 and 4, a special column is
not listed in the table since the path search scope is point to
point. The premise of all the algorithms in Table 3 is that the
environment information of the plan needs to be known, all
of which are global search, and the algorithm of Table 4 is
unknown to the environment, all of which are local search,
so Tables 3 and 4 do not list the global/local column. Table 2 is
a single AUV, so we did not list the number in Table 2. At the
same time, we compare the performance of four different
search algorithms in Table 6.

A. ALGORITHMS BASED ON THE GEOMETRIC
MODEL SEARCH
Geometric model search algorithms are classical path search
algorithms, which belong to the category of discrete opti-
mal programming [59]. This part of the algorithm is more
traditional; the implementation process is relatively sim-
ple, the technology is relatively mature, and the establish-
ment of the model is very strict, which is closely related
to the results of the implementation of the final planning
path. We summarize the relationship among several algo-
rithms for the AUV in Fig. 4 and note that the current two
algorithms—Boustrophedon decomposition and Internal Spi-
ral Algorithm (ISA)—remain the main coverage class path
search algorithms of current robots.

FIGURE 4. The relationship of geometric model search algorithms.

1) DIJKSTRA’S ALGORITHM
Dijkstra’s algorithm applies a greedy strategy that employs
a breadth-first search to settle the single-source shortest
path issue with weighted digraphs or undirected graphs; it
declares an array to hold the shortest distance from the
source point to each vertex and saves while finding the set
of vertices for the shortest path, the algorithm eventually
obtains a shortest path tree [60]. Arinaga et al. [61] applied
Dijkstra’s algorithm to a global path search for AUVs in
an underwater environment; the algorithm can avoid a set
of obstacles and reach the end. However, the experiment

remained only in the simulation stage and did not consider the
environmental impact on the path search; their next step is to
conduct experimental verification in the tank. Eichhorn [62]
solved the AUV single-source shortest path problem using
weighted directed graphs that are based on the classical
Dijkstra algorithm, and the addition of time information as
an additional dimension in the graph has the advantage of
using the Dijkstra algorithm to generate exact solutions in
a time-varying environment. Soulignac et al. [199], [200]
proposed a method for AUV path planning, it similar to
the Dijkstra’s algorithm called sliding wavefront expansion
method, which combines the effective cost function and the
continuous motion model, the simulation results show good
global optimality. Kirsanov et al. [63] improved the Dijkstra
algorithm to improve the AUV dynamic obstacle avoid-
ance problem; only two-dimensional paths were used in the
experimental simulation. Although the modified path length
increased by 0.18 percent, the proposed algorithm takes into
account the current elements and corrects the path appropri-
ately. Because Dijkstra’s algorithm traverses all nodes and
obtains the shortest path, the shortest path is obtained with a
high success rate and satisfactory robustness [64]. However,
traversing nodes and low efficiency are fatal shortcomings
when they are applied to large-scale complex path topological
networks [60].

2) A∗ ALGORITHM
TheA∗ algorithm adds the estimated cost of the target point to
the current node based onDijkstra’s algorithm [66]. Dijkstra’s
algorithm is equivalent to the case in which the valuation
section of the A∗ algorithm is zero. The A∗ algorithm is the
most efficient direct search solution for the shortest paths in a
static road network and is a common heuristic for many other
problems. The algorithm can be further understood by the
formula f(n) = g(n)+h(n), where the left side of equation f(n)
represents the cost estimate of the object from the initial state
through state n to the target state, the right side of equation
g(n) is the actual cost from the initial state to state n in the
state space, and h(n) is the estimated cost of the best path
from state n to the target state [72]. Choosing the evaluation
function f(n) in the A∗ algorithm is extremely important, and
the choice of the evaluation function is related to the planning
of the shortest and best path of the AUV [68]. An advantage
of using the A∗ algorithm to obtain a heuristic path with a
low cost and optimal solution is that it can be interrupted
and recovered in time during the planning process. In [69],
the role and advantages of the A∗ algorithm in the path
search task of the AUV underwater complex environment are
proved. During modeling and simulation, Garau et al. [71]
and Li et al. [67] considered the influence of marine envi-
ronmental factors, such as ocean currents, and implemented
a path search with the A∗ algorithm. Lefebvre et al. [70]
added a hierarchical technique to the A∗ algorithm to increase
the processing speed. The simulation proved that the path
length was increased by 2%, but the processing speed was
increased by 10%. Yan et al. [194] proposed an improved
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TABLE 2. Geometric model search algorithms.

A∗ algorithm; the main difference is that a circular search is
added, and the main role of the circular search is reflected in
the extended node, which solves the discretization and dis-
continuity of the traditional extended node for an AUV with

improved efficiency and traversability. In addition, the virtual
terrain is constructed to convert the underwater 3D path plan-
ning into 2D path planning. The search space dimension is
reduced by one level, and the search speed is also accelerated.
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TABLE 3. Probabilistic sampling-based algorithms.

TABLE 4. Artificial potential field type algorithm.

The experimental simulation proves that this algorithm is
more suitable for motion limitation; the processing speed
increased by 25.3% and search path length is reduced by
5.3%. However, the A ∗ algorithm gradually determines the
next path grid by comparing the heuristic function values
of the current path’s neighbor grids. When multiple mini-
mums exist, the A ∗ algorithm cannot guarantee the optimal

path of the search. The improved A∗ algorithm designed
by Zhang et al. [55] is applied to the global path search of
complex ocean current disturbances in coastal environments.
First, a stable ocean current model is constructed according
to the characteristics of ocean currents. Second, by analyzing
the speed and force of an AUV in ocean current navigation,
the conditions of the A∗ algorithm for the outward extension
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TABLE 5. Intelligence algorithms.
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TABLE 5. (Continued.) Intelligence algorithms.

TABLE 6. Performance comparison of four path search algorithms.

of the adjacent two nodes are determined. In addition, Bezier
curve theory is applied to optimize the path.

3) D∗ ALGORITHM
The routing algorithm of the Mars rover core in the United
States employs the D∗ algorithm [73]. The D∗ algorithm
is very effective in searching a route in a dynamic envi-
ronment. The D∗ algorithm is a dynamic A ∗ algorithm
and an incomplete replanning algorithm that use original
planning information. With a combination of optimality and
real time, the D∗ algorithm completes a combination of
global planning and local information, with a combination of
offline planning and online planning [74]. In [75] and [76],

D∗ algorithm employed to ensure an AUV’s path imple-
mentation. Miotto et al. [75] integrated the D∗ algorithm,
B-spline curve generator and model predictive control algo-
rithm to form a guidance and control path planning system.
Experimental simulations show that this method can achieve
dynamic obstacle avoidance.

4) D∗ LITE ALGORITHM
The D∗ Lite algorithm is based on the Dijkstra algorithm
and is oriented to the algorithm of the optimal path search
problem, with the starting point changing with time and a
fixed target point [72]. This algorithm is simpler than the
Dijkstra algorithm, and its planning; therefore, its suitability
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for an underwater dynamic path search is proven in [76]
and [77]. The high efficiency of the D∗ Lite algorithm for
an AUV in an underwater environment is proven in [78] by
simulation in 2D and 3D environments. DAO∗ can quickly
replan the framework according to changes in the environ-
ment at any time during the exercise while accounting for
the uncertainty of motion. Chung and Huang [79] combine
the DAO∗ algorithm with the D∗ Lite algorithm and propose
a new planning system. Experiments have shown that the
algorithm successfully navigates in an unknown environment
that involves large motion uncertainties and increased speed
by 2% while reducing the length of the search path by 5%.
However, the D∗ Lite algorithm cannot adaptively address
the complex path search of an environment. When the local
environment is carefully planned, it will cause a substantial
loss of time and efficiency [80].

5) FAST MARCHING ALGORITHM (FM)
The fast marching (FM) algorithm is similar to Dijkstra’s
algorithm, with the exception that the Dijkstra algorithm
updates with the Euclidean distance between two nodes,
whereas the FM method updates with an approximate partial
differential equation reduced by the nonlinear Eikonal equa-
tion [81]. The FM method is an interface evolution tracking
algorithm that is based on level set theory. The simulation
results in [82]–[84] show that the method has satisfactory
reliability and convergence and can satisfy the real-time
requirements of an AUV control system. Yu and Wang [83]
considered the maneuvering constraints of an AUV, such as
the turning radius, safety depth and risk of avoiding collisions
with obstacles. The FM algorithm was applied to a large 3D
environment of the AUV and solved the search after the AUV
became lost by navigating security and energy consumption
issues. Yu et al. [85] proposed a hybrid search fast travel
method (HSFM) that is based on the FM algorithm. This new
algorithm renders an AUV more competitive in underwater
dynamic obstacle avoidance, while reducing the path and
time and introducing multiple constraints and decision cri-
teria, such as currents, shoals, coral reefs, dynamic obstacles
and navigation rules, and the underwater current is processed
according to the relationship between the gradient line and
the characteristic line in the speed curve. The simulation
shows that the 3D continuous smooth path can be effectively
generated in an underwater discrete representation, and the
time of the HSFM algorithm replanning satisfies the require-
ments of online planning time. Compared with theMSA∗ and
A∗ algorithms, HSFM has significant advantages in terms
of the time and cost. Petres et al. [86] proposed a new FM
algorithm combined with the A∗ algorithm, which improved
the accuracy of the path search and enabled limited curvature.
This finding is convenient for AUVs of various sizes, and a
resolution scheme is designed to improve the speed of travel.

6) LEVEL SET METHOD (LSM)
The level set method (LSM) employs a backtrack isomet-
ric contour to obtain the optimal path. When applied to

the path search, the greatest advantage of the LSM is that
it can effectively simulate the dynamic process. Therefore,
this method can be used to solve the problems caused by
underwater dynamic factors [87]. Subramani et al. [88] and
Lolla et al. [89], [90] used the LSM to coordinate the problem
of ocean current processing with the planning time. In [89],
an optimization scheme is designed to integrate 3D ocean
modeling and a time-optimized LSM. This scheme can pre-
dict ocean currents and facilitate the rapid coordination of
AUV development of dynamic control schemes. The level set
method was also developed in [91] and [92] to predict the
time-optimal path of an AUV in a powerful, continuous and
dynamic ocean current. Unlike the article in [89], an accurate
partial differential equation is added to the article in [91]
and [92] that govern the stochastic time optimal reachability
fronts and time-optimal path. A disadvantage of the LSM
is that some obstacles fail to capture all of their interests
when they are embedded in other obstacles, and the risk of
lacking data exists due to a gap in the obstacle causes a
slow processing speed. Xu et al. [196] proposed a highly
efficient and improved method of level set calculation. When
an AUV detects a new obstacle, it rebuilds only part of the
level set, which substantially improves the efficiency of the
LSM and renders it suitable for moving the AUV’s navigation
path planning. Using the level set method for global path
planning on a raster map, the results are smoother than the
traditional search method path. With an increase in the map
size, the amount of calculation rapidly increases with the
scale of the map using the LSM for global path planning.
The idea of a narrowband level set is to limit the task of
constructing the level set to a specific area. Outside the
given area, the algorithm is not processed, and the amount of
computation is reduced, whereas the improved narrowband
level set algorithm can be applied to AUV underwater path
planning [93].

7) BOUSTROPHEDON DECOMPOSITION ALGORITHM
The boustrophedon decomposition algorithm is commonly
employed; it is a simple coverage path search method. The
algorithm needs to divide the total environment into subareas
and then cover them by a simple ‘‘comb’’ reciprocation [57].
Paull et al. [95] applied the cattle cultivation method to real-
ize the coverage path search of AUVs. Although the realiza-
tion process is simple, the uncovered area will also increase
with an increase in the obstacles. The improvement is to
perform a second reciprocal advance that is perpendicular
to the first direction of travel. Although the efficiency is
reduced, the coverage is effectively improved. Garcia and
de Santos [96] achieved online coverage of AUVs by detect-
ing all critical points and providing online generation of
adjacency graphs. This algorithm can be applied to under-
water environments while performing an online path search
for automatic underwater robots. Galceran and Carreras [97]
proposed a new algorithm for an AUV that is based on a
decomposition algorithm to improve the coverage and add
surface gradients to the underlying algorithm. The algorithm
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scans each cell and determines the best direction; it is used
to cover each cell on a turn-by-turn basis to maximize the lap
spacing in the search path, simulation results show that path
search length is reduced by 34%.

8) INTERNAL SPIRAL ALGORITHM (ISA)
Similar to the principle of the boustrophedon decomposition
algorithm, the internal spiral algorithm (ISA) enables an
automatic underwater robot that moves along the boundary
of the covering area. The robot moves the obstacle along the
edge or adopts an obstacle avoidance strategy, and it moves
‘‘spiral’’ and arrives at the center of the environment [98].
Compared with the ‘‘comb’’ font path, the ‘‘spiral’’ path
has a difficult problem due to the lack of a distinct turning
point. The robot needs a sign that indicates when to enter
the next inner circle [99]. Due to its simple implementation
process, the ISA has applications in covering path searches
of AUVs [100]. Based on the internal spiral path search algo-
rithm, Lee and Lee [101] combined the internal plane terrain
coverage algorithm and the mixed decision module and pro-
posed a hybrid terrain covering framework that includes tech-
nology for an AUV that accounts for the three-dimensional
environment of various surface conditions and enables the
efficient exploration of all environments. We identified and
selected the most appropriate technology according to the
changes in the inclined surfaces. Simulation results show that
although the coverage rate has decreased by 0.3%, the pro-
cessing speed has increased by 15.5%, the search path length
has decreased by 32.1%, and the energy utilization rate has
increased by 55%.

9) OTHER METHODS BASED ON
A GEOMETRIC MODEL SEARCH
Yin et al. [102] proposed an AUV path planning algorithm
that is based on sector scanning to reduce the frequency
of a path search and they solved the problem of poor flex-
ibility due to the nonresponse of the AUV operation and
frequent control instruction problems in a path search. This
approach improves the operability of the response path plan-
ning results. In the underwater environment with sparsely
distributed obstacles, Cao and Sun [103] designed a plan-
ning algorithm for the shortest tangent path of an AUV.
The algorithm effectively reduces the space complexity of
the calculation; the implementation process is simple the
amount of calculation is small, and the operation efficiency
is effectively improved. In [104] and [105], the path search
problem of AUVs in online obstacle avoidance in an under-
water unknown environment with random shaped obstacles is
investigated, and a real-time rolling path searchmethod based
on fuzzy control is proposed. Although this type of rolling
optimization cannot obtain the ideal global optimal solution,
it can repeatedly perform the optimization calculation for the
deviation of each sampling time and can perform fast local
obstacle avoidance in real time. A fuzzy BK-product method
is proposed in [106] and [107] to address the dynamic obsta-
cle avoidance problem of AUVs. The experimental results

demonstrate that the proposed methodology enables AUVs
to safely navigate through obstacles. The performance of
dynamic obstacle avoidance of the fuzzy BK-product method
and the A∗ algorithm under water were compared in [69]. The
simulation results show that the fuzzy BK-product method
algorithm for the path search of an AUV is substantially
faster than the A∗ algorithm. Galceran et al. [108] did not
overoptimize the AUV underwater navigation environment.
By considering the vehicle’s position uncertainty and the
complex environment in an ocean, a replanning algorithm
was proposed based on random trajectory optimization. The
experiments show that the algorithm replans a path to handle
the actual target structure perceived in situ. Morin et al. [145]
proposed an offline hybrid algorithm based on traveling
salesman problem and dynamic programming to solve the
problem of coverage path planning with imperfect extended
detection (CPPIED). It does not need to be customized for
each environment, so it can adapt to the general complex
seabed environment. Eichhorn et al. [203] used the TVE
(time-varying environment) algorithm to solve the AUV
ocean current interference problem. The simulation shows
that this method has good robustness.

B. PROBABILISTIC SAMPLING-BASED ALGORITHMS
Probability sampling-based algorithms, such as the
probabilistic roadmap method (PRM) [109] and the rapidly
exploring random tree (RRT) [110], show superiority
in their theoretical properties (in terms of probability
integrity or asymptotic optimality), which renders them
among successfulmethods for AUVpath search. Note that the
premise of completing the sampling algorithm is to have the
corresponding environmental information of the operating
area. This approach usually samples the environment as a set
of nodes or other forms and then maps the environment or
randomly searches to find a path. Although the search speed
is fast, the search path is usually suboptimal, and finding the
path in a narrow channel is difficult [111].

1) PROBABILISTIC ROADMAP METHOD (PRM)
The probabilistic roadmap method (PRM) establishes a
roadmap by sampling in the position attitude space and using
the A∗ algorithm or similar A∗ algorithm to query the path
on the roadmap. The core of this approach is sampling and
building the roadmap [112]. The PRMmethod can effectively
avoid obstacles while accurately modeling in the posture
space. The path planning problem for an AUV in underwater
three-dimensional space and complex constraints is effec-
tively solved in [113], and the underwater test is verified
by this study. Huang et al. [114] employed the probabilistic
roadmap method for automatic path search and designed
the shortest path distance between two islands, which has
been applied to the planning of submarine cables. When
constructing the roadmap, the sampling of roadmap nodes is
based on the random sampling technique, which incorporates
randomness into the route search and prevents the final search
route from being the optimal route [115].
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2) RAPIDLY EXPLORING RANDOM TREE (RRT)
The rapidly exploring random tree (RRT) algorithm has a
powerful spatial search ability: it uses a special incremen-
tal method to construct its search; this method can quickly
shorten the expected distance between a random state point
and the tree [116]. During the learning phase, the RRT
does not need to sample the configuration space and build
a roadmap, and it proves to be complete in probability. For
single query problems, RRT is faster compared to PRM [117].
Tan et al. [118] and Heo and Chung [119] employ RRT algo-
rithms to quickly and efficiently search an underwater space.
Using the random sample points of the state space, the search
for an AUV is guided to a blank area to complete the route
setting for the initial route. However, the path searched by the
RRT algorithm is not the optimal path, and no target exists in
the search process; the resource consumption of the algorithm
is relatively large, and is the algorithm is likely to suffer the
problem of finding a local minimum [120]. Many variant
algorithms of the RRT algorithm are extensively applied in
path searches for AUVs. The RRT∗ algorithm can converge
to the optimal solution, can implement a path search in a
two-dimensional environment and can address multidimen-
sional environments while using RRT∗ algorithms; since the
algorithm is uniformly sampled, no local minimum condi-
tions will exist [32]. Carreras et al. [121], [122] employed
the RRT∗ algorithm to perform two-dimensional AUV path
searches online. The 3D simulation results show that the
adaptability of this method in real complex underwater envi-
ronments is excellent. In [31] and [32], the RRT∗ algorithm
was utilized to perform experiments on three-dimensional
path planning for an AUV in real sea areas and achieved
satisfactory results. However, the processing speed of the
RRT∗ algorithm is substantially slower than that of the RRT,
especially for large areas [21]. This method was also applied
in the indoor water tank in [123], and the number of under-
water vehicles was increased to four. Bi-RRT is a double-tree
expansion algorithm that is more efficient than the RRT
single-tree algorithm. This algorithm extends the random tree
from both ends of the set path, and the initial point and the tar-
get point extend in opposite directions. After the random node
is selected, the first tree is selected, and then the second tree is
selected. The tree expands with the newly generated node as
a random target and changes the expansion order of the two
trees in the next iteration. Kim et al. [124], [206] applied the
Bi-RRT algorithm to the autonomous navigation of an under-
water hovering autonomous underwater vehicle (HAUV),
and the autonomous hovering has considerable advantages
in the inspection of the underwater environment. Simulation
experiments show that this algorithm generates a stable and
reliable path for the H-AUV. However, both Bi-RRT and
RRT encounter the problem of being easily trapped in local
minimums. Li et al. [125] proposed an improved algorithm
for an AUV path search—Li-RRT. In contrast to the typical
RRT, it utilizes the liveness of each node to guide the expand-
ing process of the random search tree, and more efficient or

useful nodes will pop out to enhance the property of explo-
ration. Using the tools’ attraction sequence, the theoretical
analysis has indicated that liveliness-based RRT enhances
the expanding speed. Simulations are also provided to show
the effectiveness of Li-RRT. Yan et al. [126] proposed the
DD-RRT algorithm, which differs from the traditional RRT
algorithm; with this tool, the circular arc of the Dubin curve
was increased. The simulation results show that the algorithm
optimizes the path while the AUV practices autonomous
obstacle avoidance, which is the most prominent point of this
algorithm. Hernandez et al. [127] proposed the homotopy
RRT (HRRT) algorithm, which uses topology information
to guide the path search; this data improves the speed and
practicability of the algorithm, and the results of the AUV
simulation show that the new method improves the running
speed compared with RRT. Yu et al. [128] proposed a routing
optimization algorithm for the smooth-RRT algorithm, which
increases the convergence factor, angle factor and greedy
algorithm to improve the growth point, exploration point and
optimization path of the extended tree; moreover, it satis-
fies the special requirements of the shortest distance and
maneuverability of the AUV. The simulation results show that
the method can quickly complete the path search, improve the
search efficiency and shorten the planning distance.

C. ARTIFICIAL POTENTIAL FIELD TYPE ALGORITHM
The artificial potential algorithm [129] and BUG algo-
rithm [130] are extensively employed in the field of online
obstacle avoidance. They have low requirements for the com-
plexity of the dynamic environment; the calculation is small
whereas the speed of path search is very fast but it often does
not obtain the optimal path. For large obstacles in a com-
plex environment, failure may occur during the path search
of AUVs.

1) ARTIFICIAL POTENTIAL FIELD (APF)
The APF algorithm was proposed by Khatib [129]. This
algorithm was originally applied to the path search prob-
lem of the robotic arm in operational space and has been
extensively utilized by robotic path planning [131]. The basic
premise of this algorithm is to construct a potential func-
tion, in which obstructions generate repulsive forces, target
points produce attractive forces, and the size and direction
of the resultant force guides the speed and direction of the
robot motion [132]. The path search based on the artifi-
cial potential field in the static environment is mature, and
the global optimal path search algorithm in the dynamic
environment is not mature due to its simplicity, security,
speed, and ease of implementation. Solari et al. [133] and
Subramanian et al. [134] applied this algorithm to an under-
water dynamic path search. Their results indicate that accu-
rate dynamic obstacle avoidance does not occur, the body of
the AUV was swinging when walking in a narrow channel,
and the ‘‘self-locking’’ phenomenon was caused by local
minima. Because the underwater environment continually
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changes; this approach requires the path search algorithm to
satisfy the real-time requirement and achieve certain accu-
racy. Thus, the traditional artificial potential field method
cannot satisfy the requirements and must be improved.
Regarding dynamic obstacle avoidance, Cheng et al. [135]
added a velocity synthesis algorithm for AUVs to artificially
avoid obstacles in the artificial potential field algorithm, sim-
ulation results show that the speed is increased by 15.1%
while avoiding obstacles accurately. In [136], a dynamic
formation model for Multi- AUV with a complex underwater
environment was developed. This model combines the APF
algorithm and particle swarm optimization (PSO) algorithm,
and the role of the variable-size PSO is to find a path that is
optimized by dynamically adjusting the number and distribu-
tion of path nodes. Saravanakumar and Asokan [137] com-
bine the line-of-sight (LOS) method and APF algorithm for
an AUV to develop autonomous path tracking and an obstacle
avoidance algorithm. In addition to reducing the amount of
computation during the heading correction, the LOS algo-
rithm can optimize the trajectory of the AUV turning when
the waypoint is changed. Das et al. [138] employed a clonal
selection optimization algorithm to study the path search
algorithm of AUV formation and added the APF algorithm
for dynamic obstacle avoidance. Some improved algorithms
have appeared to address the problem that this algorithm
can easily fall into a local minimum. In [139], the APF
algorithm is combined with the virtual force concept and is
simulated in an unknown two-dimensional unstructured envi-
ronment. The results show that this algorithm can overcome
the local minimum problem that is associated with potential
field methods. The directional search method is combined to
complete the sampling of the potential field, and an algorithm
for AUV named MPPF is developed based on the potential
field method. Simulation experiments show that the local
minimum in 2D space can be easily overcome by the multiple
potential field method (MPPF) in [140]. The premise that
the MPPF method is extended to a three-dimensional under-
water environment to avoid local minima is to reduce the
burden of the positive proportional factor of fine-tuning the
potential function. In [141], in addition to automatic obstacle
avoidance with the application of the APF algorithm, for
problems with the AUV’s body swinging while walking in a
narrow passage, the state-dependent Riccati equation method
is introduced to optimize the optimal high-order sliding mode
control, which enhances the robustness of the AUV motion
control and mitigates the chattering effect of the decoupling
system. Fiorelli et al. [201] used the APF algorithm and vir-
tual bodies method to control the Multi-AUV formation. The
results of the marine experiments show that there is good
control potential in gradient climbing and feature tracking
cooperation.

2) BUG ALGORITHM
The bug algorithm is a fully stressed algorithm. In this type of
algorithm, a mobile robot advances along the shortest straight
line that connects the target point and the starting point;

it uses an edge tracking method to bypass the obstacle when
an obstacle is encountered and then proceeds along a straight
line [130]. The AUV path is proved by simulation in under-
water two-dimensional space; the BUG algorithm minimizes
the computation of the robot while ensuring the convergence
of the path [120]. However, the shortest path that is generated
is not optimal. Putra et al. [142] utilized the bug algorithm
to perform emergency obstacle avoidance in the local area of
the AUV and proved the capability of a powerful emergency
obstacle avoidance function by the simulation result.

D. INTELLIGENCE ALGORITHMS
Intelligence algorithms have an important and effective role
in addressing the path search problem with the information
in a complex dynamic environment; thus, this algorithm is
suitable for the path search of AUVs. However, the intelli-
gence algorithm is emergent and has widespread problems,
such as slow processing speed, poor stability and real-time
capability, and it can easily fall into a local optimum [143].
We classify them according to their characteristics in Fig. 5.
With the development of technology, we believe that these
algorithms will become mainstream.

FIGURE 5. Classification of intelligent algorithms.

1) PARTICLE SWARM OPTIMIZATION (PSO)
Particle swarm optimization (PSO) is a heuristic algorithm
that is based on the predation and return of bird popu-
lations [144]. The basic idea of finding the optimal path
involves iterative methods in the process of bird movement
via the individual cooperation mechanism in the group.
Cao et al. [20] and Sun and Liu [146] have adopted the
PSO algorithm for obstacle avoidance and trajectory opti-
mization of AUV path searching functions, and simulation
experiments show that this algorithm is simple, easily imple-
mented and is not very sensitive to the population size
and has excellent robustness and a fast convergence speed.
However, the particle swarm optimization algorithm also
finds that the optimal solution is the local optimal solu-
tion. The convergence speed of the algorithm in the initial
stage of the search is fast, and the convergence speed in
the late stage of the search is slow; thus, many improve-
ments to this method have emerged. In [147], a cubic spline
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optimization algorithm based on the improved PSO algorithm
is proposed to address Multi-AUV path search problems.
Since the central path is described by a cubic spline, the path
search is equivalent to the parameter optimization of a partic-
ular cubic spline. In this manner, the convergence of the path
can be significantly improved. Zhuang et al. [148] proposed
a hybrid PSO-LPM algorithm that combines the Legendre
pseudospectral method (LPM)with the PSO algorithm. Com-
pared with the standard PSO algorithm, the new hybrid
PSO-LPM algorithm for an AUV can find better trajectories
and successfully implement real-time obstacle avoidance in
static obstacles and moving obstacles with different levels of
positional uncertainty via replanning schemes. The stability
of the proposed programming algorithm is verified by the
Monte Carlo simulation method. Quantum Behavior Particle
Swarm Optimization (QPSO) is an improved algorithm for
the original PSO. The advantage of QPSO is the ability to
assume that each particle in the population has quantum
behavior rather than applying the updated standard of the
speed and position used in PSO, simulation results show that
the search path length is reduced by 2.3% in the absence of
obstacles and by 2.8% in the presence of obstacles [149]. The
particles of the quantum system appear at any position with
a certain probability distribution, which enables the global
search to be completed. Zeng et al. [150] employed theQPSO
algorithm for the path search of AUVs. Simulations also
showed that the path has a reasonable global search. It is
worth mentioning that the control parameters of the PSO
algorithm are relatively few and easy to control GA compared
the QPSO algorithm, but the QPSO algorithm has fewer
control parameters than the PSO algorithm [168].

2) ANT COLONY OPTIMIZATION (ACO)
The ant colony optimization algorithm (ACO) is a probabilis-
tic algorithm that is inspired by ants to obtain the optimal
path when searching for a path while searching for food. This
algorithm has the characteristics of distributed computing,
positive information feedback and a heuristic search. ACO
is a heuristic global optimization algorithm in evolutionary
algorithms [152]. Compared with other algorithms, the ACO
algorithm has low requirements for the selection of initial
lines and is highly robust. Advantages of the ACO algorithm
is that it can be applied to the underwater 3D path search prob-
lem and its parameters are relatively small and do not require
manual adjustment [204]. The ant colony algorithm can be
used to solve some AUV problems that have not obtained a
valid algorithm, such as the TSP problem [153]–[155]. How-
ever, the ant colony algorithm has a slow convergence rate and
is easily trapped in a local optimum. In contrast to the genetic
algorithm, the ant colony algorithm lacks early information
and slow convergence in the later period. Therefore, many
improved ant colony algorithms are proposed for underwa-
ter path searching [195]. Zhang and Jia [34] introduced a
penalty factor in the ant colony algorithm to maintain a safe
distance between the AUV and the barrier and combined the
quadtree algorithm for a two-dimensional underwater path

search simulation. The results show that dynamic obstacle
avoidance is achieved, and falling into the local optimum is
not easy. Based on the previous research, they replaced the
quadtree algorithm with an octree tree algorithm. The same
result also extends from the previous two-dimensional space
to three-dimensional space; however, the simulation speed of
AUV is slower than that in two-dimensional space. but the
algorithm completed the search requirements for underwater
three-dimensional space [12]. Wang et al. [156] proposed a
hybrid adaptive ACO algorithm for AUV path planning. The
simulation results show that the algorithm can effectively
overcome the problem of slow convergence and can easily fall
into a locally optimal solution, but the optimal path length is
reduced by 14%. TheACO algorithm is characterized by slow
convergence in the early stage and fast convergence in the
later stage. Although the ant colony algorithm has reasonable
feedback characteristics, the solution speed is slow due to the
lack of an initial pheromone.

3) WOLF PACK ALGORITHM (WPA)
The wolf pack algorithm (WPA) simulates the predatory
behavior of a wolf group and its prey distribution mode and
abstracts three types of intelligent behavior—walking, calling
and besieging—as well as and the ‘‘winner is king’’ wolf
generation rule and the ‘‘strong person survival’’ of the wolf
group renewal mechanism to realize the optimization in the
complex search space. Shen et al. [158] use the algorithm
to study the navigation and path planning of AUVs. The
algorithm has satisfactory convergence and global optimiza-
tion and strong robustness. However, the algorithm has more
parameters to set than other methods and is relatively com-
plex. Zhang et al. [159] added the Dubin curve by establish
an underwater environmental threat model with AUV con-
straints. They proposed that the Dubin curve can be employed
to satisfy the angle control constraints and adjust the turning
radius to satisfy the control constraints. The simulation results
show that the improved WPA does not prematurely converge
has high convergence speed, excellent local search ability,
high dimensionality, high precision and multipeak functions,
and the search time is reduced by 6.3% while the search path
is reduced by 57.3%.

4) SIMULATED ANNEALING ALGORITHM (SA)
The simulated annealing algorithm (SA) is an annealing
process that mimics solid matter. By setting the initial tem-
perature, the initial state, and the cooling rate to ensure
that the temperature continually decreases, the probabilistic
jump feature is used to perform a random search using the
neighborhood structure of the solution space [160]. With the
advantages of simple description, flexible use, and fewer
restrictions on the initial conditions, Couillard et al. [161]
applied the simulated annealing algorithm to the underwater
path search and completed practical experiments. The results
show that this algorithm for an AUV has a reasonable effect
on a large turning radius. However, defects of the algorithm
include slow convergence and poor randomness. At the same
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time, it is easy to fall into local minimum. In order to avoid
localminima,Witt andDunbabin [202] use simulated anneal-
ing or local random search with dynamic node allocation for
refinement and use group search methods to increase search
space. Experiments have shown that the proposed optimal
path provides 32% energy savings compared to the straight-
line task of equivalent total length and average velocity
(estimated at 7.1 ampere hours) in still water.

5) GENETIC ALGORITHM (GA)
The genetic algorithm (GA) is a computational model that
simulates Darwin’s genetic selection and natural elimina-
tion in the process of biological evolution. The ideology of
the GA originates from the natural laws of biogenetics and
the survival of the fittest and is an iterative process search
algorithm that is implemented according to the principles
of genetics [162]. Similar to the PSO algorithm, the GA
iteratively finds the optimal solution by a random solution and
evaluates the quality of the solution via adaptability. Although
the PSO has ‘‘cross’’ and ‘‘change’’ and the algorithm rules
are simple, the GA has a memory function. Compared with
the PSO, the advantage of the GA is that it can find the global
optimal value according to the optimal value of the current
search during the search process [163]. In [94] and [57],
the GA algorithm is applied to AUV path planning to solve
the traveling salesman problem (TSP). Ataei and Yousefi-
Koma [57] use theGA algorithm to implement a global search
in the 3D environment of the TSP problem. Zadeh et al. [94]
designed a path planner to use GA algorithm for global
search path and PSO algorithm for local search path. The
simulation results show that the generated collision-free path
solves the TSP very well. Since the GA only needs to know
information about the objective function, it must be contin-
uously differentiable and has a wide range of adaptability
[188]. In [165]–[169], the genetic algorithm is used for path
searching for AUVs and the findings prove that it can be
applied to online path search and dynamics avoidance. How-
ever, its drawbacks are that it will fall into a local optimal
solution, has poor stability and the calculation time is excess.
The long computation time is a common weakness of all
biointelligence algorithms. Note that the genetic algorithm
has a rapid global search capability in the early stages of
the population evolution, whereas the search speed is slow
in the later period. However, the genetic algorithm can be
easily combined with other algorithms and can fully exploit
its advantages in an iterative approach. Cheng et al. [26]
proposed a dynamic programming (DP) path planner for an
AUV based on a GA algorithm. The DP-based determinis-
tic crossover operator replaces the random-based crossover
operator in the GA algorithm. The simulation results show
that the speed of the proposed path planner is faster than the
speed of the path planner based on the genetic algorithm.
Wang et al. [170] employed an adaptive genetic algorithm
to simulate the motion of an AUV. The results show that
the stability of this method has been significantly improved,
and the occurrence frequency of the locally optimal

solutions has been reduced. At the same time, the speed has
increased by 39.8%. Tanakitkorn et al. [165] presented a GA
pathfinder with an improved fitness function for overactuated
AUVs, which differs from previous research. Considering
the energy consumed by the smooth path of the path search
and the energy consumed by the AUV body to control the
turn, the two factors are considered and then compromised
to obtain the best solution. Yao and Zhao [197] proposed
an improved GA algorithm that combines the Greywolf opti-
mization (GWO). The GWO can make the GA algorithm
behave like an ideal direction in the mutation process. The
simulation shows that the convergence speed is faster, and the
path search length is reduced by 0.73%.

6) DIFFERENTIAL EVOLUTION (DE)
The principle of the differential evolution algorithm is very
similar to the genetic algorithm; however, in the mutation
operation, individuals are perturbed using the difference
vectors between individuals in the population to achieve
individual variation [172], [173]. The robustness of the dif-
ferential evolution algorithm is better than that of a genetic
algorithm [174]. These algorithms have achieved satisfactory
results on the AUV path search problem. Li et al. [175]
employed the differential evolution (DE) algorithm to solve
the obstacle avoidance problem in AUV three-dimensional
path search and achieved excellent results in the simulation.
At the same time, he proposed an improved differential evolu-
tion quantum artificial bee colony (DEQABC) optimization
algorithm to solve the multi-AUV optimal task allocation
method. The simulation results show that the DEQABC algo-
rithm converges faster than the artificial bee colony (ABC)
algorithm in terms of the running time and number of iter-
ations and effectively improves the AUV distributed multi-
tasking performance [176]. Mahmoud Zadeh et al. [27] used
the four evolutionary path planning methods of PSO, BBO
(Biogeography-Based Optimization), DE and FA to solve the
underwater rendezvous problem. Simulation shows the FA
planner shows better performance in making use of favorable
current flow for AUVmaneuverability and collision. In terms
of minmum difference between the path time and rendezvous
time (time optimality condition), the Performance of the PSO
and DE path planner is better.

7) ARTIFICIAL NEURAL NETWORK (ANN)
The artificial neural network (ANN) is a type of network
that simulates the thinking ability of the human brain and
realizes the function of nonlinear algorithms using a large
number of simulated neurons. The generalization perfor-
mance of this algorithm is poor, and the processing speed
is slow. Due to other powerful learning, adaptive capabilities
and strong robustness, many applications exist in the AUV
path search for collision avoidance [177]–[185]. In [28],
the biologically inspired neural network (BINN) embedded
in a self-organizing map (SOM) neural network. In this
approach, the SOM neural network was developed to assign
the Multi- AUV team to multiple target locations in an
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underwater environment. Then, in order to avoid obstacles
and speed jumps for each AUV accessing the corresponding
target location, BINN is used to update the weight of the win-
ner of the SOM and implementMulti-AUV path planning and
effective navigation. In addition, an ANN can be easily com-
bined with other algorithms, and therefore, its improved algo-
rithm and its combination with other algorithms have become
a hot topic in the field of path search. Ni et al. [39] introduced
the target attractor concept for an AUV to improve the com-
putational efficiency of neural activity. Cao and Zhu [186]
proposed an algorithm for Multi-AUV that combines ANNs
and velocity synthesis (VS) to eliminate the effects of currents
in a multirobot collaborative path search. Later, they mixed
the bioinspired self-organizing map (BISOM) algorithm to
ensure the stability of environmental modeling in [187].
Combined with the ant colony algorithm design synthesis
algorithm in [9], the simulation completed the requirements
of dynamic obstacle avoidance and a path search of an AUV
and considerably improved the speed of the path search. The
method was tested in [16] but the experimental object was
limited to indoor mobile robots.

8) OTHER INTELLIGENCE ALGORITHMS
When addressing path search problems in the context of com-
plex dynamic environmental information, inspiration from
the natural world can have a very important role. In addition
to the above, there are many other intelligent algorithms.
The Q learning algorithm, which is similar to a dynamic
programming algorithm, provides an agent in a Markov envi-
ronment. Gautam and Ramanathan [188] uses the Q learning
algorithm for a path search and compare it with a genetic
algorithm, ant colony algorithm and particle swarm algo-
rithm. The simulation results show that modeling this algo-
rithm is simple and does not require extensive training data.
The algorithm has been tested for the SLOCUM glider and
can be extended for use in any standard AUV. However, the
disadvantage of falling into a local minimummust not be dis-
regarded. Bozejko et al. [190] employed a tabu search (TS)
algorithm for an AUV to avoid the problem of falling into
a locally optimal solution by introducing a flexible storage
structure and corresponding promotion rules and avoided
some satisfactory conditions by contempt criteria and then
implemented global optimization. However, TS has a strong
dependence on the initial solution. A better initial solution
can increase the convergence speed of the TS, which renders
the TS algorithm a better solution in the solution space.
Barua et al. [151] used the method of ‘‘chase the rabbit’’ to
plan the path of lemniscate shape, and the real underwater
experiment by AUV showed that the algorithm has faster
calculation speed. Even in the face of a powerful current,
it can perform tasks steadily. Liu et al. [191] present a 3D
path search method for an AUV based on a modified firefly
algorithm (FA). The simulation results show that this method
has a fast convergence speed and can find an effective path
in the 3D environment. However, the FA-based method is a
new swarm intelligence (SI) algorithm, which is not perfect in

terms of theoretical research that has not been proven in terms
of mathematical theory. In addition, this method does not
temporarily support a dynamic underwater environment. The
experimental scheme is based on the fact that the operating
environment is static and has known obstacle information.
Yordanova et al. [198] used the Markov model to predict the
path state of Multi-AUV. It can be used for dynamic obstacle
avoidance of Multi-AUV, but it is not suitable for long-term
prediction in path planning system. In [192], it applied the
imperialist competition algorithm (ICA) to solve the optimal
path search problem of AUVs that run in clutter, turbu-
lence and complex underwater environments. The ICA was
employed to optimize the coordinates of a set of control
points to generate a curved spline path. They tested the
ICA-based path planner to find the best trajectory for AUV
navigation in a variable ocean environment. Compared with
PSO and GA, ICA has a high convergence precision, fast
convergence and strong global convergence. In [193], the
proposed improved IFPA is used to solve the AUV path
search problem in both 2D space and 3D space and can find
a path with a shorter sailing distance and effectively avoid
threats.

Various methods of path searching of AUVs in 2D/3D
underwater space are analyzed. We explain and analyze their
basic working principles and application scope for these
methods and compare their real-time abilities, the complexity
of the algorithms, their environmental adaptability, and the
smoothness of the planning paths. Many methods can be
combined and applied; however, they will not change the
limitations of various algorithms.
• Algorithms Based on the Geometric Model Search, they

have the advantages of simplicity and convenience in con-
structing environmental obstacle information. The method
can use variousmature graph search algorithms to obtain opti-
mal solutions, is suitable for static environments and offline
planning, and is also most stable and mature. The algorithm
is the best verification platform for new search algorithms.
• Probabilistic Sampling-based Algorithms are mature,

and the search speed is fast. However, the search path is often
not the optimal path; it is resource-consuming and largely
dependent on the environment. The search path is suitable for
a global offline path search.
•Artificial Potential Field Type Algorithms, they have low

requirements for the complexity of the dynamic environment
and low computational complexity, utilizes a fast path search
and is extensively used in a local path search for rapid obsta-
cle avoidance.
• Intelligent algorithms have an effective role in path

searching with complex dynamic environment information;
thus, this type of algorithm is very suitable for path searches
for AUVs. However, problems exist, such as slow processing
speed, poor stability, and easily falling into local optima,
as listed in Table 5. Although this type of technology is
not mature, research on this method has increased in recent
years. This algorithm will become the mainstream of future
research.
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Due to the limitations of experimental conditions,
the majority of the research remains in the experimental sim-
ulation stage, and most studies involve offline simulations.
Although some studies have also been conducted in real
underwater environments, they have not reached the level
of robustness and reliability that can be applied in practice.
Manymature algorithms are not sufficiently effective to adapt
to a complex underwater environment, and some intelligent
algorithms have problems such as immature algorithms, poor
robustness and slow running speed. When performing com-
plex tasks, they often require multiple AUV collaborations to
complete the tasks. According to our observations, research
in recent years has rapidly developed in the fusion of multiple
algorithms, which combines the advantages of various algo-
rithms that are fused into an improved algorithm or a new
algorithm. For example, the genetic algorithm has a strong
global search ability and robustness. Although it rapidly
converges in the early stage, it cannot use the feedback of the
system and easily generates a large number of unnecessary
redundant iterations in a later stage, which causes a decrease
in the convergence speed. To address the problem of slow
convergence, many studies can combine a genetic algorithm
and an ant colony algorithm to improve the parameters of the
ant colony algorithm by the selection, crossover and mutation
of genetic algorithm operators [157]. We believe that this
hybrid algorithmwill be observed in the path search of AUVs.
In the future, a developer must address a strong flow field,
irregular terrain and obstacles in an AUV underwater path
search. This approach requires us to develop an efficient
algorithm for a complex underwater environment.

IV. CONCLUSION
This paper summarizes the path planning technology of
AUVs, including the modeling method and path search algo-
rithm. Modeling methods are divided into two main cate-
gories: the regular grid terrain model and the irregular grid
terrain model. The advantages and disadvantages of various
modeling methods and the modeling methods for different
environments are analyzed. Path search algorithms include
four major categories: methods based on geometric model
searches, probabilistic sampling-based algorithms, artifi-
cial potential field algorithms, and intelligence algorithms.
We introduce the advantages and disadvantages, the basic
principle and complexity, the robustness and the environment
for all types of algorithms. The most important objective of
this paper is to determine which algorithms are improved
algorithms and the corresponding shortcomings of the algo-
rithms. An AUV must function in a complex underwater
environment and consider various factors, such as the water
flow,water pressure and topography. In online obstacle avoid-
ance, many challenges exist in 3D path planning and algo-
rithm robustness. The robust method is fast but has difficulty
adapting to the complex underwater environment. While the
fast-developing intelligence algorithm has shown a strong
adaptability to the environment in recent years, the devel-
opment is not mature, and the speed of calculation is slow.

In future research, we must increase the speed of 3D model
calculations. Each path search algorithm has its own advan-
tages and disadvantages. We need to combine the advan-
tages of the algorithm for algorithm fusion. Although the
research on intelligent path-based search technology has not
yet matured, it still needs to be improved in terms of robust-
ness. However, because it can adapt well to the seabed envi-
ronment, related research has grown exponentially, which
will become the focus of future development. Multiple AUV
cooperation can be employed for complex underwater tasks.
At the same time, there is a complex environment in the
ocean, so how to overcome the current problem and avoid
the local minimum problem is also an important research
direction. Finally, we hope that the simulation results can be
applied to underwater experiments with visible results.
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