
Received November 11, 2018, accepted December 5, 2018, date of publication December 19, 2018,
date of current version January 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2888627

TT-Miner: Topology-Transaction Miner for
Mining Closed Itemset
BO LI 1, ZHENG PEI 2, KEYUN QIN3, AND MINGMING KONG2
1School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
2School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
3School of Mathematics, Southwest Jiaotong University, Chengdu 611756, China

Corresponding author: Zheng Pei (pqyz@263.net)

This work was supported in part by the National Nature Science Foundation of China under Grant 61372187, Grant 61473239, and Grant
61702317 and in part by the Scientific and Technological Project of Sichuan Province under Grant 2018GZ0256.

ABSTRACT Mining frequent closed itemsets (FCIs) from transaction databases is a fundamental problem in
many data mining applications. All the enumeration algorithms enumerate FCIs by adding a singleton item
to an itemset and then checking whether it is closure. In order to reduce enumerations, we enumerate FCIs
by adding an itemset to the existing FCI itemset. To this end, we first analyze a binary relation on the set of
itemsets in transaction databases, show co-occurrence relation among items, and prove that the relation is
reflexive and transitive. Next, we use the relation to construct a topology for the set of itemsets and prove that
all FCIs are included in the topology. Then, we construct a topology-transaction tree (TT-tree) and provide a
topology-transaction miner (TT-Miner) algorithm for enumerating FCIs in the TT-tree. Finally, an extensive
experimental evaluation on a number of real and synthetic databases shows that the TT-Miner is an efficient
and scalable algorithm compared with the previous methods.

INDEX TERMS Data mining (DM), frequent closed Itemsets (FCIs).

I. INTRODUCTION
Mining frequent patterns or itemsets [1] is a popular data
mining task that is a fundamental and essential to awide range
of data mining applications. These applications include the
discovery of correlation or causal relations [2]–[4], sequen-
tial patterns [5]–[8], multidimensional patterns or association
rules [9]–[20], etc. The task can be described as: Given a
transaction database and a user-specified minimum support,
find all itemsets that occur in (frequency) no less than the
minimum support. Those itemsets are called frequent item-
sets (FIs), and the minimum support (minSup) is a percentage
of the database.

The early and common way to traverse the nodes of a tree
is breadth-first. The most famous and earliest implementation
of FIs mining in this way is Apriori by Agrawal et al. [1]
which is a bottom-up, breadth-first search algorithm testing
candidates by scanning database many times. It uses the
downward closure property to prune unfrequent itemsets,
if an itemset is frequent, all its subsets must also be frequent.
It uses a prefix tree data structure built level by level. Each
new level is constructed by creating a child node for every fre-
quent item set on the upper level. The support of each candi-
date is counted by access the transaction database.Most of the

proposed FIs mining algorithms are apriori-style algorithm.
They have a good performance for short FIs minging, where
the transaction databases are sparse such as supermarket sale
database. But they have not a satisfactory performance for
long FIs mining, where the transaction databases are dense
such as gene database.

Afterwards, depth-first search is popular and more effi-
cient, known from algorithms such as Eclat [21]. Eclat is
a famous algorithm best described with the concept of an
enumeration tree, for the wide variation in the different strate-
gies used by it. It first proposed prefix-based equivalence
classes as a means of independent sub-lattice mining. After
partitioning the candidate set into disjoint groups, Eclat uses
a candidate partitioning approach, intersects tid lists recur-
sively. There are many variations of Ecalt algorithms have
been proposed [22].

Other pattern-growth mining methods proposed along the
years, such as FP-growth, proposed by Han et al. [23] is
a depth-first, partitioning-based, divide-and-conquer search
algorithm and uses FP-trees to store frequency informa-
tion of the original database. Its advantage is that fre-
quent itemsets are generated in a compressed form by
just scanning database two times, and it performs well.

10798
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-3345-8339
https://orcid.org/0000-0001-5757-6607

B. Li et al.: TT-Miner for Mining Closed Itemset

It uses relatively complicated data structures for searching the
FP-tree.

A major problem in applications of FIs mining is that the
volume of the FIs is often extremely large. A particularly
interesting form of concise representation is that of closed
itemsets [24]. A frequent closed itemset (FCI) is included in
no other frequent itemset included in the same transactions.
Closed sets are lossless in the sense that they can be used to
uniquely determine the set of all frequent itemsets and their
exact frequency, which are suitable for generating rules [25].

There are several famous and efficient FCIs mining algo-
rithms have been proposed. CHARM [25] is a FCIs mining
algorithm, using the vertical representation of databases and
diffset for efficient closure checking operation and fast sup-
port computing. It simultaneously searches both the itemset
space and transaction space over a novel IT-tree search space,
and uses an efficient hybrid search methods to skip many
unnecessary enumerations.

FPclose [11] is a variant and improvement of FP-growth on
FCIs mining. A significant part of mining time in FP-growth
is spent on visiting the tree. FPclose uses a special data struc-
ture FP-array to greatly improve the need to traverse on FP-
tree. If the input database is sparse, the array based technique
performs well, for the array can save the traversal time. If the
input database is dense, the tree based representation is more
compact. FPclose has a mechanism to identify the database
is sparse or dense in order to select proper data structure.
FPclose counts the number of nodes in each level of the
tree. If the upper quarter of the tree contains more than 15%
of the total number of nodes, the database is likely sparse.
Then, FPclose uses an array in the next level of mining [22].
Otherwise, it still use tree base representation. It also uses a
CFI-tree for closure checking of frequent itemsets efficiently.

LCM [26] uses a purely vertical and a purely horizon-
tal representation data structure in parallel. Its processing
scheme is like a variant of the Eclat algorithm, but use a
new technology named Occorrence Deliver to replace the
intersection of transaction index lists. LCM constructs the
conditional transaction database only to readmemory linearly
and stores the transaction indices through direct access. It pro-
poses prefix-preserving closure extension, which combines
tail-extension and closure operation to enumerate frequent
closed itemsets directly [27].

All the enumeration algorithms so far, enumerate FCIs
by adding a singleton item to an itemset and then checking
whether it is closure. In other words, the length of an closed
itemset is k , which means the generation process contains k
enumerations except failure enumerations. Can we reduce the
number of enumerations of a FCI to less than the length of
it ? In other words, can we enumerate FCIs by adding an
itemset to a known FCI itemset ? The answer is yes, if we
take advantage of co-occurrence relation among items, see
Fig. 1. Theoretically, the powerset of items set naturally forms
a powerset lattice, also called as the itemset lattice. In the
itemset lattice, items a and b are frequent items, but {a, b}
may be unfrequent, hence using frequent items to generate

FIGURE 1. Enumeration methods comparison: (a) Traditional methods by
adding one item to a itemset at a time; (b) The proposed TT-Miner by
adding a itemset (topologicalbasis) to a itemset at a time, k ≤ j ′ , |Bj | ≥ 1.

FIs directly may be not very efficient. From the point of view
of algebras, FIs are naturally used to obtain a relation R on
the set of items I , i.e., item a is in the relation R to item b
if there exists a frequent itemset contains a and b. In other
words, canwe construct amore compressed relation on the set
of items I , and the relation allows us to use several frequent
items to generate FIs at a time. In our earlier paper [28],
we propose a novel method to generate the formal concept
lattice, which is based on a topology for attributes of a formal
context. The topology for attributes is induced by a reflexive
and transitive relation on the set of attributes. By defining an
equivalent relation on the topology for attributes, we prove
that the formal concept lattice and the quotient topology for
attributes decided by the equivalent relation is isomorphic.
In this paper, we analyze the reflexive and transitive relation
on the set of items I , and construct the topology for items
of transaction databases to explain co-occurrence relation
among items. It is more important that we propose topology-
transaction tree (TT-tree) to fast construct the topology for I ,
and obtain FCIs from TT-tree.

Compared with enumerating many possible subsets by
singleton items in the existed methods, generating FIs, FCIs
based on the baseBI of the topology TI can reduce the search
space, save running time and the size of memory, efficiently.

A. CONTRIBUTIONS
We introduce Topology-Transaction Miner (TT-Miner),
an efficient algorithm for enumerating all the frequent closed
itemsets. The major contributions of the paper are summa-
rized as follows:

1) We reveal a co-occurrence relation between items,
described by topologicalbasis.

2) We use the set of topologicalbasis and the set of trans-
actions to construct a novel TT-tree search space, which
is condensed and contains the set of all FCIs.

VOLUME 7, 2019 10799

B. Li et al.: TT-Miner for Mining Closed Itemset

3) TT-Miner mines FCIs in TT-tree, which enumerates
FCIs by adding itemsets (topologicalbasis) to pre-
existing itemsets.

The organization of this paper is as follows: In Section II,
prepares the basic notion and definitions. In Section III,
we analyze the reflexive and transitive relation on the set
of items, and use the relation to construct the topology for
the set of items, and prove that FCIs are contained in the
topology. Then we use the topology and transaction pairs
to construct TT-tree structure. In Section IV, we provide
the design and implementation of TT-Miner algorithm, and
explain some popular techniques used for reducing computa-
tion time. In Section V, we select various databases to show
TT-Miner for mining FCIs and compare TT-tree method with
the existed method. We conclude the paper in Section VI.

II. PRELIMINARIES
A. FREQUENT ITEMSETS MINING
Mining frequent itemsets (FIs) can be explained as follow-
ing [1], [25], [26]: Let I = {i1, i2, · · · , im} be a set of m
items, the database D be a set of n transactions, each one
identified by its unique tid and contains a set of items. The
set of all tids of D is denoted as T = {t1, t2, · · · , tn}. The
transaction database D is noted as D = (T , I). The set
I ⊆ I is also called an itemset and a set T ⊆ T is called
a tidset. If ‖I‖ = k , then I is called a k-itemset . Table 1
shows an example of a transaction database D. There are
five items, I = {i1, i2, i3, i4, i5}, and six transactions, T =
{t1, t2, t3, t4, t5, t6}. Each tid denotes a transaction, which is
determined by a subset of I, i.e., the first transaction is t1,
which is determined by {i1, i5} ⊆ I.

For an itemset I , we denote its corresponding tidset as t(I),
which is the set of all tids of transactions that contain I as a
subset, i.e., in Table 1, t({i1}) = {t1, t2, t5}, t({i1, i2}) = {t5}.
For a tidset T , we denote its corresponding itemsets as i(T),
which is the set of items common to all the transactions with
tids in T , e.g., i({t1}) = {i1, i5}, i({t1, t2}) = {i1}. An itemset
I is contained in a transaction t ′, t ′ ∈ T , if I ⊆ i(t ′), and t ′ is
called an occurrence of I . We note that,

t(I) =
⋂
i∈I

t(i). (1)

i(T) =
⋂
t∈T

i(t). (2)

The support of an itemset I , denoted by σ (I), is the per-
centage of transaction inD containing I , i.e., σ (I) = |t(I)|/n,
n is the volume of transactions. Given the user defined min-

TABLE 1. A transaction database.

imum support minSup. If σ (I) ≥ minSup, then itemset I is
frequent. An frequent itemset I is closed if there exists not
proper superset I ′ ⊃ I with σ (I ′) = σ (I). Alternatively,
an frequent itemset I is closed, if and only if i(t(I)) = I [29]
.As an example in Table 1, σ ({i1}) = |t({i1})|/6 = 3/6 =
0.5, σ ({i3, i4}) = |t({i3, i4})|/6 = 1/3, σ ({i3, i4, i5}) =
1/3. If minSup = 1/3, then {i1}, {i3, i4} and {i3, i4, i5}
are frequent. i(t({i3, i4, i5}) = i({t2, t3, t4, t5, t6} ∩ {t5, t6} ∩
{t1, t3, t5, t6}) = i({t5, t6}) = {i1, i2, i3, i4, i5} ∩ {i3, i4, i5} =
{i3, i4, i5},i(t({i3, i4})) = {i3, i4, i5}. So, {i3, i4, i5} is closed,
and {i3, i4} is not closed.

All the existing methods enumerate itemsets by adding
singleton items to pre-existing itemsets, such as Apriori,
FP-tree, CHARM and LCM. Our method is quite different
from others, for TT-tree is constructed by elements of the
topologicalbasis, which are itemsets itself.

III. TOPOLOGY-TRANSACTION SEARCH TREE
In this section, we first give some formal expressions on
transactions and items, then we induce a binary relation on
the set of items and prove that the relation is reflexive and
transitive, more important, we prove all the FCIs are included
in the topology, which is generated by the relation on the
set of items. Finally, we give a algorithm to calculate the
topologicalbasis.

A. THE REFLEXIVE AND TRANSITIVE RELATION ON THE
SET OF ITEMS
Intuitively, i(T) is the maximum itemset contained in each
transaction of T , e.g., i({t4, t5}) = {i2, i3}∩{i1, i2, i3, i4, i5} =
{i2, i3} in Table 1, itemset {i2, i3} is the maximum itemset
contained in t1 and t2. Based on Eqs.(1) and (2), we can easily
obtain the following properties about t(I) and i(T) [28].
Property 1: In D = (T , I), let itemsets I1 and I2 of I,

transaction tid subsets T1 and T2 of T . We have

1) If I1 ⊆ I2, then t(I1) ⊇ t(I2);
2) If T1 ⊆ T2, then i(T1) ⊇ i(T2);
3) t(I1 ∪ I2) = t(I1) ∩ t(I2);
4) i(T1 ∪ T2) = i(T1) ∩ i(T2);
5) t(i(t(I1))) = t(I1);
6) i(t(i(T1))) = i(T1).

Definition 1: For any transaction database D = (T , I)
and each item ik ∈ I, the association items set of ik is

C(ik) = {ik ′ |∀ik ′ ∈ I, ik ′ ∈ i(t(ik))} =
ik∈i(tk)⋂
∀tk∈T

i(tk). (3)

From the algebraic point of view, C(ik) is the maximal
itemset which are contained in those transactions containing
item ik , e.g., in Table 1, C(i1) =

⋂i1∈i(tk)
∀tk∈T i(tk)= i(t1)∩ i(t2)∩

i(t5) = {i1, i5} ∩ {i1, i3} ∩ {i1, i2, i3, i4, i5} = {i1}, C(i2) =
{i2, i3}, C(i3) = {i3}, C(i4) = {i3, i4, i5} and C(i5) = {i5}.
Naturally, for each itemset Ik of I, the association items set

10800 VOLUME 7, 2019

B. Li et al.: TT-Miner for Mining Closed Itemset

of Ik is determined by

C(Ik) =
Ik⊆i(ti)⋂
∀ti∈T

i(ti).

Property 2: For any transaction database D = (T , I) and
ij ∈ I, if ik ∈ C(ij), then C(ik) ⊆ C(ij).

Proof: According to Eq.(3), if ik ∈ C(ij), then

ik ∈ C(ij) =
ij∈i(ti)⋂
∀ti∈T

i(ti),

this means that item ik is contained in transactions containing
item ij, or transactions that contain item ij must contain
item ik , hence,

C(ik) =
ik∈i(ti)⋂
∀ti∈T

i(ti) ⊆
ij∈i(ti)⋂
∀ti∈T

i(ti) = C(ij).

Definition 2: For any transaction database D = (T , I),
a binary relation on I is called as the association relation on
I if for any ij and ik in I,

RI (ij, ik) =
{
1, if ik ∈ C(ij),
0, if ik /∈ C(ij).

(4)

Intuitively, the association relation can be understood as
co-occurrence relation among items, e.g., the association
relation on I of Table 1 is shown in Table 2, RI (i2, i3) = 1
means that transactions containing i2 must contain item i3,
hence we further confirm that the support of i3 is not less than
the support of i2, or if i2 is a frequent item, then i3 must be a
frequent item, such information is useful to analyze FIs and
FCIs.

TABLE 2. The association relation on I of Table 1.

Property 3: For any transaction database D = (T , I),
the association relation RI on I is such that

1) Reflexivity: ∀ij ∈ I, RI (ij, ij) = 1;
2) Transitivity: ∀ij, ik , il ∈ I, if RI (ij, ik) = 1 and

RI (ik , il) = 1, then RI (ij, il) = 1.

Proof: Reflexivity is obvious. We only prove transitiv-
ity, according to Property 2 and Eq.(4), if RI (ij, ik) = 1 and
RI (ik , il) = 1, then il ∈ C(ik) ⊆ C(ij), hence RI (ij, il) = 1.

In Table 2, we notice that RI may be not symmetry, e.g.,
RI (i2, i3) = 1 but RI (i3, i2) = 0, this means that RI is not
necessary an equivalence relation on I.

B. THE TOPOLOGY FOR THE SET OF ITEMS
In this section, we construct the topology for the set of items
based the association relation RI on I and prove that FCIs
are contained in the topology, then we provide Algorithm 1
to calculate the topologicalbasis BI .

Algorithm 1 Calc-Topologicalbasis(D,minSup)
Input: D = (T , I), minSup.
Output: BI .

Method:
1) Read D, save it as horizontal format H and vertical
format V , where |H | = n, |V | = m.
2) for i := 1 : m do
3) if |V [i]|/n ≥ minSup do
4) C(i) = H [V [i, 1]]
5) for j := 2 : |Vi| do
6) C(i) := C(i) ∩ H [V [i, j]]
7) end
8) insert C(i) to BI
9) end for
10) sort BI with the descending order of |C(i)|
11) return BI

The binary relation, especially the equivalence relation,
has been widely used in rough set theory [30]–[39]. In [28],
we proved that a reflexive and transitive relation on I can
be used to determine lower approximation of subset of I
and construct a topology for I. According to Property 3,
the association relation RI on I can be used to construct a
topology for I, i.e., for any itemset I ⊆ I, RI can be used to
determine lower approximation of I as follows:

RI (I) = {ij|∀ij, ik ∈ I,RI (ij, ik) = 1 implies ik ∈ I }

= {ij|∀ij ∈ I,C(ij) ⊆ I }.

Theorem 1 [28]: For any transaction database D =

(T , I), 1) TI = {RI (I)|∀I ⊆ I} is a topology for I;
2) BI = {C(i)|∀i ∈ I} is a base for the topology TI .
1) and 2) in Theorem 1 means that the topology TI for I

can be generated by the base BI , i.e., for any RI (I ′) ∈ TI ,
RI (I ′) = ∪ij∈I ′C(ij), e.g., according to Table 2, Table 3 is a
topologicalbasis for the topology, the topology for I is TI =
{∅, {i1}, {i3}, {i5}, {i1, i3}, {i1, i5}, {i2, i3}, {i3, i5}, {i1, i2, i3},
{i1, i3, i5}, {i2, i3, i5}, {i3, i4, i5}, {i1, i3, i4, i5}, {i1, i2, i3, i5},
{i2, i3, i4, i5}, {i1, i2, i3, i4, i5}}.

The pseudocode for calculating topologicalbasis BI
appears in algorithm 1. The algorithm starts by reading trans-
action database D, and saving it as horizontal format H
(itemsets) and vertical format V (tidset) in Line 1. The C(i) is
initialized by the row of V [i, 1] in H in Line 3, where V [i, 1]
is the first tid of the ith vertical list. Line 6 means C(i) is
calculated by set intersection operation of all the horizontal
format lists corresponding to the tidset of item i. We then
insert C(i) to BI , it should be noted that all the members
of BI are identical, and |BI | ≤ I. Then sort BI with
the descending order of each topologicalbasis’s cardinality

VOLUME 7, 2019 10801

B. Li et al.: TT-Miner for Mining Closed Itemset

in Line 10. After we return, the topologicalbasis BI has
already been generated. As an example calculating C(i1) of
i1 in Table 1, V1 = {1, 2, 5}T , so C(i1) = H [V [1, 1]] ∩
H [V [1, 2]] ∩H [V [1, 3]] = H [1] ∩H [2] ∩H [5] = {i1, i5} ∩
{i1, i3} ∩ {i1, i2, i3, i4, i5}} = {i1}.
What’s more, we find that topologicalbasis has some

important properties as follows:
Property 4: In D = (T , I), for any item i ∈ I, its corre-

sponding topologicalbasis is C(i), the set of topologicalbasis
is BI ,

1) ∀i ∈ I, i ∈ C(i);
2) ∀i ∈ I, |C(i)| ≥ 1;
3) |BI | ≤ |I|.
1) and 2) in Property 4 show that all items are included in

their corresponding topologicalbasis, and the volume of each
topologicalbasis is greater than or equal to 1. It should be
noted that, if item i occurrence in an itemset X and |C(i)| >
1, i ∈ I, then all the items in C(i) besides item i will
occurrence in X , in other words, C(i) \ i is co-occurrence
with item i, i.e., shown in Table 3, the topologicalbasis of
item i2 isC(i2) = {i2, i3}, i2 occurrences in {i2, i3}, {i1, i2, i3},
{i2, i3, i5}, {i1, i2, i3, i5}, {i2, i3, i4, i5}, {i1, i2, i3, i4, i5}, then
i3 occurrence in those itemsets as well.

TABLE 3. A base for the topology TI of Table 1.

3) in Property 4 shows that the topologicalbasis space is
no bigger than the item set space. In other words, different
item may have a same topologicalbasis, e.g., in Table 1,
if add a new item i6 into I, its tidset is {t1, t2, t5}, then
t(i6) = {t1, t2, t5}, and C(i6) = {i1, i6} = C(i1), so item
i1 and i6 have a same topologicalbasis. If two or more items
have a same topologicalbasis, we only save one copy of it to
topologicalbasis set BI . From this point of view, this can be
viewed as a attribute reduction method.
Property 5: For any transaction database D = (T , I).
1) ∀i ∈ I , supports of i ∈ I and C(i) are equal, i.e.,

|t(i)|
n
=
|t(C(i))|

n
;

2) ∀ik ∈ C(ij), the support of ik is more than or equal to
the support of ij, i.e.,

|t(ik)|
n
≥
|t(ij)|
n
;

3) if I is a frequent itemset such that i ∈ I , then

|t(I ∪ C(i))|
n

=
|t(I)|
n
.

According to Eqs.(1)-(3) and Property 1, the property
can be easily proved. Such as in Table 1, i3 ∈ C(i2) and

|t(i3)|
6 =

|{t2,t3,t4,t5,t6}|
6 =

5
6 >

1
3 =

|t(t2)|
6 , if we fix minSup =

1
3 , i2 is a frequent item due to |t(i2)|6 =

|{t4,t5}|
6 =

1
3 =

|t(C(i2))|
6 =

|t({i2,i3})|
6 =

|{t4,t5}|
6 , then {i2, i3} is also a FIs, these

can help us to fast generate FIs.
To detail all FCIs are in the topology, we need an equiv-

alence relation ∼= on the topology TI , the equivalence rela-
tion ∼= is determined by support of element of TI , i.e., for
any two elements Ij and Ik of TI , Ij ∼= Ik if and only if
t(Ij) = t(Ik), then we can obtain equivalent classes TI/ ∼= of
TI , and each equivalent class contains closed itemsets [28].
Property 6 [28]: For any transaction database D =

(T , I) and [Ij] ∈ TI/ ∼=, if Imaxj ∈ [Ij] is such that ∀I ′j ∈ [Ij],
I ′j ⊆ Imaxj , then Imaxj is a closed itemset.
Intuitively, every element [Ij] ∈ TI/ ∼= is consisted by

elements of the topology TI which are contained in the
same transactions, hence all elements of [Ij] own the same
support |t(Ij)|/n, the closed itemset Imaxj is the maximum
element of [Ij] according to inclusion relation. Naturally,
if Ij is frequent, then Imaxj is a FCIs, e.g., in the topol-
ogy for I of Table 1, TI/ ∼== {∅, [{i1}], [{i3}], [{i5}],
[{i1, i3}], [{i1, i5}], [{i2, i3}],[{i3, i5}], [{i3,i4, i5}],[{i1, i2, i3},
{i1, i3, i5}, {i2, i3, i5}, {i1, i3, i4, i5}, {i1, i2, i3, i5}, {i2, i3, i4,
i5}, {i1, i2, i3, i4, i5}]}, in which, {i1}, {i3}, {i5}, {i1, i3},
{i1, i5}, {i2, i3}, {i3, i5}, {i3, i4, i5} and {i1, i2, i3, i4, i5} are
closed itemsets.

In summary, we confirm that the topology TI for I con-
tains all FCIs, the base BI of TI can be used to generate all
of them according to Properties 5-6.

IV. TT-MINER ALGORITHM DESIGN AND
IMPLEMENTATION
In this section, we first introduce some basic notions of
TT-tree in IV-A. And then, we give two basic algorithms
for showing the processes of constructing TT-tree in IV-B
and mining FCIs in IV-C. Then, we present an efficient
algorithm TT-Miner for mining FCIs, which includes enu-
merating closed candidates in TT-tree and checking closure
of them, in IV-D. Last, we give some techniques to reduce
computation time and memory usage, in IV-E.

A. TT-TREE OF THE TOPOLOGY TI FOR I
Now, we give some basic notion of TT-tree. According
to Theorem 1, the topology TI for I of D = (T , I)
can be generated by revisiting elements of the base BI of
TI . Inspired by hash-tree in Apriori, FP-tree in FP-growth
and IT-tree in CHARM method, here we provide topology-
transaction tree (TT-tree) to fast construct the topology TI
for I, formally, a topology-transaction pair (TT-pair) is I ×
t(I), where I ⊆ I, especially, for every element of the
base BI , it’s TT-pair is called as base-transaction pair and
has the form BI (i) × t(BI (i)), for convenience, we write
I = {i1, i2, · · · , ip} as i1i2 · · · ip, t(I) = {t1, t2, · · · , tq} as
t1t2 · · · tq and I×t(I) as i1i2 · · · ip×t1t2 · · · tq. Similar to hash-
tree, FP-tree and IT-tree, we order all base-transaction pairs
by a decreasing order, i.e., for any two base-transaction pairs

10802 VOLUME 7, 2019

B. Li et al.: TT-Miner for Mining Closed Itemset

FIGURE 2. Comparison of search space between IT-tree (a) and TT-tree (b) with a same database in CHARM [25], FCIs are labeled by orange
boxes.

BI (i) × t(BI (i)) and BI (i) × t(BI (j)), BI (i) × t(BI (i)) ≤
BI (j) × t(BI (j))if and only if |BI (j)| ≤ |BI (i)|, branches
of TT-tree are generated by revisiting the ordered base-
transaction pairs, i.e.,

1) The root of TT-tree is {} × T ;
2) Children of the root are base-transaction pairs, from the

left to right, base-transaction pairs are ordered by the
decreasing order;

3) Children of any node I × t(I)(I ∈ I) have the form
(I ∪ BI (i))× (t(I) ∩ t(BI (i))), where according to the
decreasing order, suppose I = I ′∪BI (i′), then BI (i)×
t(BI (i)) is the backward element of BI (i′)× t(BI (i′)),
i ≥ i′ and such that BI (i) * I .

Especially, the most important property of TT-tree is that
the search space in TT-tree is compressed, when exist some
|BI (i)| > 1, i ≤ |BI |. The more items whose cardinal
number of topologicalbasis are bigger than one, the more
compressed of the search space in TT-tree. A father node
I × t(I)(I ∈ I) and a topologicalbasis BI (i) combine a child
node (I ∪ BI (i))× (t(I) ∩ t(BI (i))), if |BI (i)| = N > 1, this
child node is roughly equivalent to the father node combining
with at most N items.

In Fig. 2, we compare TT-tree and IT-tree of CHARM
with the same database in [25], see Table 4. Figure a is the
IT-tree structure of the database, and figure b is the TT-
tree structure of the same database. All FCIs are labeled by
orange boxes. It is obviously that, the IT-tree has 6 levels
and 32 nodes, accordingly, TT-tree has only 4 levels and
13 nodes, and all the nodes of TT-tree are included in IT-tree.
Not only the search space of TT-tree is highly compressed, but
also the iteration times of constructing each node is fewer, i.e.,
the left bottom node in TT-tree is ACDTW × 5, generated by
3 iterations, but the same node in IT-tree needs 5 iterations.
For constructing the TT-tree and IT-tree, the total iterations
are 21 and 80, respectively, except iterations of no nodes
being generated. For FCIs mining in this example, TT-tree
comparing with IT-tree, the nodes and iterations are reduced
by 59% and 73% respectively.

TABLE 4. A transaction database in [25].

B. CONSTRUCTION OF TT-TREE
We now present a basic algorithm Construct-TT -tree to show
the process of construction of TT-tree for the topology TI
on the transaction database D = (T , I). TT-tree structure
combines both the topologicalbasis space and transaction
space, the form is similar to IT-tree in CHARM [25]. But
TT-tree is more condensed and convergence than IT-tree,
for each child node is generated by its father node and a
topologicalbasis rather than a singleton item.

The pseudocode for constructing TT-tree appears in
Algorithm 2. The algorithm starts by calling calc-
topologicalbasis, for scanning the transaction database,
examining the frequent items, generating each
topologicalbasis BI (i), and sorting all of them with descend-
ing order of |BI (i)|. The corresponding transactions of each
topologicalbasis be represented by an array list or a bitmap.
And then add each topologicalbasis and its corresponding
transactions as a child of root, in Line 4. TT-tree-Extended is
responsible for considering each node whether to grow new
nodes, in Line 5. For a existing node I × t(I), constructing by
its father node and topologicalbasis BI (j), which is not the
last topologicalbasis (j < |BI |), may generate a new child
node, in Line 8. If a candidate node meet the conditions that,
its component topologicalbasis BI (k) is not included in its
father node and its support is bigger than minSup, then it
will be constructed, in Line 9-10. Then add the new node
to TT-tree, and call TT-tree-Extend function, in Line 11-12.
After return, a TT-tree has already been generated, then we
can mine the FCIs from it.

VOLUME 7, 2019 10803

B. Li et al.: TT-Miner for Mining Closed Itemset

Algorithm 2 Construct-TT -Tree(D,minSup)
Input: D = (T , I), minSup.
Output: N // all TT-tree nodes

Method:
1) N = ∅, BI = calc-topologicalbasis(D,minSup)
2) add {} × T to N // root node
3) for j := 1 to |BI | //each topologicalbasis
4) add BI (j)× t(BI (j)) to N // as a child of root
5) TT-tree-Extend(BI (j), t(BI (j)), j)
6) end for
7) return N

TT-tree-Extend(I , t(I), j):
8) for each k , with j < k ≤ |BI |
9) if BI (k) * I and σ (t(I) ∩ t(BI (k))) ≥ minSup do
10) I := I ∪ BI (k) and t(I) := t(I) ∩ t(BI (k))
11) add I × t(I) to N // a child node of I × t(I)
12) TT-tree-Extended(I , t(I), k)
13) else return
14) end for

C. OBTAINING FCIs IN TT-TREE
In this section, we present a basic algorithm to obtain FCIs in
TT-tree. For convenience, we call node I × t(I) of TT-tree as
FI (FCI) node if I is FI (FCI), according, FIs TT-tree means
that every node is FI node. According to the downward closed
property, if base-transaction pair BI (i) × t(BI (i)) is not FI
node, i.e., |t(BI (i))|

n < minSup or BI (i) is infrequent, then for
any base-transaction pair BI (i′)× t(BI (i′)), TT-pair (BI (i)∪
BI (i′))×t(BI (i)∪BI (i′)) is not FI node, i.e.,

|t(BI (i)∪BI (i′))|
n ≤

|t(BI (i))|
n < minSup or BI (i)∪BI (i′) is not FI. In other words,

FIs TT-tree is generated by base-transaction pairs which are
FIs nodes, i.e.,

1) Select base-transaction pair BI (i)× t(BI (i)) such that
|t(BI (i))|

n ≥ minSup;
2) Any TT-pair I × t(I) such that |t(I)|n < minSup will not

be a node in TT-tree;
3) Any node I × t(I) is such that |t(I)|n ≥ minSup.

According to Property 6, FCIs nodes are contained in FIs
TT-tree. Formally, we can find all FCIs by searching the
maximum element from the equivalence class [Ij] ∈ TI/ ∼=,
i.e., I ∈ [Ij], if ∀I ′ ∈ [Ij], such that I ′ ⊆ I , then I is a FCI.
Now, we provide a basic Algorithm 3 to obtain FCIs from

TT-tree, which uses hash table for storing FIs and closure
checking like CHARM [25]. This algorithm is responsible
for visiting all nodes of TT-tree, and obtaining all the closed
itemsets. Input variable N is a set containing all TT-pairs.
Output variable C is the set containing all FCIs in N . We
use a hash function h(I) = 6T∈t(I)T , which is the cardinality
of t(I). Firstly, all nodes (TT-pairs) of TT-tree are insert in
HashTable, in Line 2-5. Then all nodes of TT-tree are checked
whether or not they are closed, in Line 6-11.HashTable[h(I)]
contains TT-pairs having the same support. For a TT-pair

Algorithm 3 Obtain-FCIs(N)
Input: N // all TT-tree nodes
Output: C // set of FCIs

Method:
1) C = ∅, HashTable = ∅
2) for each node I × t(I) of TT-tree do
3) h(I) = 6T∈t(I)T //hash function
4) insert I × t(I) in HashTable[h(I)]
5) end for
6) for each node I × t(I) of TT-tree do
7) h(I) = 6T∈t(I)T
8) for all I ′ ∈ HashTable[h(I)] do
9) if I ′ ⊆ I and t(I ′) = t(I)
10) add I to C //I is closed
11) end for
12) return C

FIGURE 3. TT-tree for mining FCIs with a database in CHARM [25].

I×t(I), if there is no superset including I inHashTable[h(I)],
then I is closed.
Example 1: Table 4 is a transaction database [11]. We fix

minSup = 0.5, then a frequent itemset should at least occur-
rence in 3 transactions. Based Eqs.(1)-(3) and Algorithm 1,
we obtain C(A) = ACW , C(C) = C , C(D) = CD,
C(T) = CT , C(W) = CW . For |t(ACW)| = 4, |t(C)| = 6,
|t(CD)| = 4, |t(CT)| = 4, |t(CW)| = 5, all of them are fre-
quent and added in topologicalbasis BI . After sorting them
with the descending order of |C(i)|, we get BI (1) = ACW ,
BI (2) = C , BI (3) = CD, BI (4) = CT , BI (5) = CW . By
usingAlgorithm 2, we can construct TT-tree (shown in Fig.3).
In TT-tree, we can obtain FIs, which are in the following
TT-pairs

N = {ACW × 1345,C × 123456,CD× 2456,

CT × 1356,CW × 12345,ACTW × 135,

CDW × 245,CTW × 135}.

We can obtain all FCIs nodes from Fig.3, by using
Algorithm 3, HashTable[13] = {ACW × 1345},
HashTable[21] = {C × 123456}, HashTable[17] =
{CD × 2456}, HashTable[15] = {CT × 1356,CW ×
12345}, HashTable[9] = {ACTW × 135,CTW × 135},
HashTable[11] = {CDW × 245}. Only HashTable[9]
has two nodes, and CTW ⊆ ACTW , and t(CTW) =
t(ACTW) soCTW is not closed.We obtain all closed itemsets
C = {ACW ,C,CD,CT ,CW ,ACTW ,CDW }.

10804 VOLUME 7, 2019

B. Li et al.: TT-Miner for Mining Closed Itemset

FIGURE 4. IT-tree for mining FCIs in CHARM [25].

In Fig. 3, two nodes ACTW × 135 and CTW × 135 have
the same transactions 135, and CTW ⊆ ACTW , so ACTW
is closed, CTW is not closed. According to Property 6,
we can obtain the same C. Compared with IT-tree enumer-
ating 17 candidate nodes, in Fig. 4, TT-tree enumerates only
8 nodes (except root node), in Fig. 3. It is obviously, that the
search space of TT-tree is compressed. Particular, if for each
i, |BI (i)| = 1, then TT-tree and IT-tree have a same search
space.

D. TT-MINER:A FAST FCIs MINING ALGORITHM
We now present TT-Miner, a very efficient algorithm for
mining all the FCIs. TT-Miner uses a novel search method,
based on properties of topologicalbasis and TT-tree struc-
ture, that constructs less levels and generates fewer candi-
dates and checks the closure quickly. The pseudocode for
TT-Miner appears in Algorithm 4. It starts by calculating the
set of topologicalbasis BI of datasetD. The topologicalbasis
disclosing the co-occurrence relations is a basic element for
constructing TT-tree and not always a singleton item. The
main procedure is performed in TT -miner-Extend , which
returns all FCIs.

Algorithm 4 TT -Miner(D,minSup)
Input: D = (T , I), minSup.
Output: C // all FCIs

Method:
1) C = ∅, BI = calc-topologicalbasis(D,minSup)
2) call TT -miner-Extend(D,⊥, T , C,BI);
3) return C

Inspired by LCM [26], we take the framework of back-
tracking and pattern extending in TT -miner-Extend . The
pseudocode provided in Algorithm 5, is responsible for clo-
sure checking of combination, of the current FCI and its
subsequent topologicalbasis. First add the current FCI P into
C in Line 1, which is generated in last iteration. Then reduce
D by a technique called anytime database reduction in LCM
in Line 2, which will be described in next section. And then,
enumerate all the extend patterns of P , and check the closure
of them in the loop in Line 3-7. key(P) means a ordinal
number of topologicalbasis generatedP , i.e.,P = P ′∪BI (j),
then key(P) is j. Fast-closed-test is used to check the closure

Algorithm 5 TT -Miner-Extend(D,P, t(P), C,BI)
Input: D = (T , I): transaction database, P: current fre-
quent closed itemset, t(P): transactions including P ,
C: all FCIs.

Method:
1) add P into C
2) Reduce D as D′ by Anytime Database Reduction
3) for i:= key(P)+1 to |BI |
4) ifFast-closed-test(P,BI (i)) is true and σ (P∪BI (i)) ≥
minSup then
5) P := P ∪ BI (i), t(P) := t(P) ∩ t(BI (i))
6) call TT -Miner-Extend(D′,P, t(P), C,BI));
7) end for
8) return

Algorithm 6 Fast-Closed-Test(P,BI (i))
Input: D = (T , I): transaction database, P: current fre-
quent closed itemset, t(P): transactions including P ,
C: all FCIs.

Method:
1) tidmin:= the tid of the shortest transaction of t(P∪BI (i))
2) X := i(tidmin)/(P ∪ BI (i))
3) for each x ∈ X
4) if x is included in all transactions of t(P) ∩ t(BI (i))
5) return false;
6) end for
7) return true

ofP∪BI (i), the detail is in Algorithm 6. IfP∪BI (i) is closed
and frequent, then it will be a new FCI, named P also. Then
call TT -Miner-Extend to test and generate subsequent FCIs,
iteratively.

Inspired by fast prefix-preserving test in LCM [26],
we give a method for fast closure checking, P ∪ BI (i) in
Algorithm 6. In order to check the closure of P ∪ BI (i),
we need to know whether P ∪ BI (i) is equal to i(t(P ∪
BI (i))) or not. It is obvious that the calculation of i(t(P ∪
BI (i))) is very time consuming. From Property 2, we know
that P ∪ BI (i) ⊆ C(P ∪ BI (i)). There are two possibile
conditions:

1) if ∃ item j ∈ i(t(P) ∩ (BI (i))) and j /∈ P ∪ BI (i),
then P ∪ BI (i) 6= C(P ∪ BI (i)), so P ∪ BI (i) is not a
FCI

2) if ∀ item j ∈ i(t(P ∪ BI (i))) and j ∈ P ∪ BI (i), then
P ∪ BI (i) = C(P ∪ BI (i)), so P ∪ BI (i) is a FCI

In order to reduce the test amount of items, we find the
shortest transaction of t(P ∪ BI (i)), its tid is tidmin. For all
the transaction are stored in array lists, it is easy to find tidmin.
Then we set X as i(tidmin)/(P ∪ BI (i)). If a member of X is
included in all transactions of t(P)∩t(BI (i)), thenP∪BI (i) is
not a FCI, meeting condition 1. If all themembers ofX are not
included in all transactions of t(P)∩ t(BI (i)), then P ∪BI (i)
is a FCI, meeting condition 2. In practice, |X | � P ∪ BI (i),
so the test amount of X is obviously reduced.

VOLUME 7, 2019 10805

B. Li et al.: TT-Miner for Mining Closed Itemset

E. REDUCING COMPUTATION TIME
In this section, we explain some popular techniques used for
reducing computation time and memory usage.

1) REPRESENTATION OF THE DATABASE
We use a vertical bitmap to represent for the database like
MAFIA [40]. It is efficient for dense databases. In a vertical
bitmap, there is one bit stand for each transaction in the
database. If item i appears in transaction j, then bit j of the
bitmap for item i is set to one; otherwise, the bit is set to
zero. Similarly, if a node in TT-tree is I × t(I) ≡ i1i2 · · · ip ×
t1t2 · · · tq, then itemset t1t2 · · · tq can be represented by a
bitmap X ≡ [t ′1, t

′

2, · · · , t
′
n]
T , if t1 ∈ t(I), then t ′1 = 1, else

t ′1 = 0. For example, in Fig. 3, the top left node ACW ×
135, tidset 135 can be represented by [1, 0, 1, 0, 1, 0]T . Let
onecount(X) be the number of ones in the vertical bitmap for
X , then onecount(X) is exactly the support of X , which is
also the support of the node in TT-tree. For X and Y are two
itemsets, X

⋂
Y is simply computed as the bitwise-AND of

bitmap X and bitmap Y .

2) FREQUENT COUNTING
In FCIs mining, the process of frequent counting is compute-
intensive. In this paper , we take an efficient methods
Occurrence Deliver [26] in this process.
Occurrence Deliver is particularly efficient for sparse

database in reducing the computation of t(P∪BI (i)). It com-
putes the tids of P ∪ BI (i) for i = key(P) + 1 to |BI | at
once by tracing the tids in t(P). It use a bucket for each i
to be added, i ∈ I, i > key(P), and set them empty set at
the beginning. Then, by visiting each transaction t ∈ t(P),
Occurrence Deliver inserts t to the bucked of i for each
i ∈ i(t), i > key(P). After visiting all the transaction in t(P),
and inserting each tid to its corresponding bucket, the bucket
of i is equal to t(P ∪ BI (i)).

3) ANYTIME DATABASE REDUCTION
In order to facilitate the computation of FCIs, the size of the
input database is reduced by removing infrequent items and
the same transactions are merged into one. We use anytime
database reduction method [26] to reduce the database in
TT -Miner-Extend . For input FCI P in each iteration of TT -
Miner-Extend , those unnecessary items and transactions are
deleted:

1) transactions not including P;
2) transactions including no item bigger than key(P),
3) items i, satisfies i ≤ key(P), and
4) items i, satisfies that σ (P ∪ BI (i)) < minSup.

This process is efficient in practice, especially for large
support.

V. EXPERIMENTS ANALYSIS
We chose 6 real databases and 1 synthetic database as
benchmarks, publicly available from FIMI’03 [41], for the
performance tests. The accidents database [42] contains

traffic accidents data of a region of Belgium for period 1991-
2000. The chess and connect databases are derived from their
respective game steps. The mushroom data set contains char-
acteristics of 23 species of mushrooms. The pumsb database
contain census data and pumsb* is the same as pumsbwithout
items with 80 percent or more support. The chess, connect
and mushroom databases were originally taken from UCI
Machine Learning Repository [43]. T40I10D100K is a syn-
thetic dataset created by the IBM Almaden synthetic data
generator. Table 5 shows the characteristics of the databases
used in this paper, which shows the number of items, the aver-
age transaction length, the number of records and the value
range of minSup in each data set .

All our experiments were performed on a ThinkPad lap-
top with 2.3 GHz Intel i5-6200U CPU, 20 GB of memory,
running 64-bit Windows 10. TT-Miner was coded in C, using
Microsoft Visual 2015. All times reported are wall-clock time
and include all preprocessing costs.

TABLE 5. Database characteristics.

A. MINING CLOSED FREQUENT ITEMSETS
We compared the performance of TT-Miner against
FPclosed [11], Apriori [1], Eclat [44] and LCM [26]. The first
IEEE ICDMWorkshop on frequent itemsetmining (FIMI’03)
[45] demonstrated FPclose and LCM had very competitive
and robust performance in mining closed itemsets than other
algorithms. So, they are the fastest benchmark programs. The
programs of them were coded by their authors in C++ and
ANSI C respectively, and obtained from [46]. The Windows
console executable programs of Apriori and Eclat were coded
by Christian Borgelt and obtained form [47]. The program
of Eclat was a hybrid version including certain variants of
LCM, so it was marked as Eclat/LCM. Unfortunately, we did
not compile CHARM successfully in Microsoft Visual 2015,
so we did not compare the performance of it.

All the performance on real database were shown in Fig. 5.
We first compare how the methods perform on accidents
database. We observe that TT-Miner, LCM, Ecalt/LCM and
Apriori have a similar and better performance than fpclose
for high values of support. For very low values of support,
TT-Miner and LCM are 100 times faster than Eclat/LCM.
The running time of FPclose rise very slowly when support is
bigger than 30%, but it can not run on very low support values
as Apriori. Among those methods, TT-Miner is the fastest and
LCM is the second faster, the gap between the top two is very
small.

10806 VOLUME 7, 2019

B. Li et al.: TT-Miner for Mining Closed Itemset

FIGURE 5. Performance of TT-Miner on 6 real databases.

On chess database, it is obvious that TT-Miner performs
well against others. There is a counterintuitive phenomenon,
that the running time of TT-Miner and LCM for the support
value 80% is smaller than it for the support value 90%.
We think the reason is the programs read dataset from the
cache except for the first time reading from disk. Apriori can
not run on low support, i.e., support values are smaller than
40%. TT-Miner is about 10 times faster than FPclose and
Eclat/LCM.

On connect database, Apriori runs fast at very low sup-
port, but runs slower and slower, as the support is reduced.
Comparing with Eclat/LCM, we find that both TT-Miner
and Eclat/LCM have a good performance for higher support
values. However, the performance gap between TT-Miner and
Eclat/LCM widens, as the support is reduced. TT-Miner is
significantly better than others. For the support value is 15%,
LCM has almost the same running time as TT-Miner.

On pumsb database, TT-Miner is only a little faster than
LCM. For very high support values, Eclat/LCM and Apriori
are faster than FPclose, but their performances are going into
reverse for very low support values. TT-Miner is 10 times

faster than FPclose, and more than 50 times faster than
Eclat/LCM.

On pumsb* database, TT-Miner is faster than other except
for the support value is 40%. FPclose is slower than others
for very low support, but is fast for high support. Apriori is
the slowest among all the program, and can not run on low
support, i.e., support values are smaller than 30%.
The performance on synthetic database was shown

in Fig. 6. On T40I10D100K, which is a synthetic database,
except for Apriori, others have a very similar trend: as sup-
ports decrease, the running time increases gradually. Apriori
runs fastly for high support values, but runs slowly for low
support values and can not run for very low support values.
TT-Miner has the best performance for low support values.

Finally, we compare the perform on mushroom database.
Apriori runs several order of magnitudes slower than others
no matter for high or low support values. TT-Miner, FPclose,
Eclat/LCM and LCM perform very well, and have very small
speed gaps.

To sum up, TT-Miner runs faster than other algorithms in
most instances, no matter the support values are high or low.

VOLUME 7, 2019 10807

B. Li et al.: TT-Miner for Mining Closed Itemset

FIGURE 6. Scaleup test.

TABLE 6. Comparison item set space with topologicalbasis space.

B. SCALEUP EXPERIMENTS
Scaleup test in Fig. 6 shows how TT-Miner scales with an
increasing number of transactions. In this research, we repli-
cated the transactions from 2 to 16 times, and kept the
parameters constant of 7 databases, i.e., for chess having
3196 transactions, at a replication factor of 2, it will have
6392 transactions. We find the running time of TT-Miner
increasing by linear, with increasing number of transactions,
at a given minSup.

C. COMPARISON ITEM SPACE AND TOPOLOGICAL
BASIS SPACE
In property 4, |BI | ≤ |I|, which means the topologicalbasis
space is not bigger than the item space. In the experiments
above, we found the cardinal number of topologicalbasis
is smaller than that of item, on pumsb and pumsb*, see
in Table 6, i.e., in pumsb* database, if minSup = 10%,
the volume of item set is 110, but the volume of vecctorbase
is reduced by 18% to 93, the number of iterations is also
reduced by 48.72%. The radio of #item and #topologicalbasis
is between 1.08 and 1.24. In other words, the topologicalbasis
space is at least 8% and at most 24% smaller then the item
space. If we do not remove the redundant topologicalbasis,
and mark the iterations of the TT-Miner program as
#iter_iters. #vector_iters is the iterations of TT-Miner

program, which has removed the redundant topologicalbasis.
Accordingly, radio of #item_iters and #topologicalbasis_iters
is between 1.02 and 1.4872. In other words, the itera-
tions of the program using topologicalbasis is reduced by
2% to 48.72%.

VI. CONCLUSIONS AND FURTHER WORK
Frequent itemsets and closed itemsets are widely used to
generate association rules from transaction databases, and
many methods have been proposed to obtain frequent item-
sets or closed itemsets. In this paper, the topology on itemset
of a transaction database is constructed to represent more
general associative relationship among items of transaction
databases, it has been proved that closed itemsets are included
in the topology on itemset, it is important that the basis for
the topology deduced directly from the transaction database
can be used to generate the topology on itemset, this can effi-
ciently avoid a large number of unnecessary enumerations.
The experimental and comparative results show that FCIs
mining based on topology for itemset is an efficient method.

In the view of granular computing, the knowledge granular
of the topology of item set is coarser than a singleton item.
Theoretically the construct speed of TT-tree should be faster
than other tree structure mining methods, and the searching
space of FCIs is reduced naturally. According to analyze the

10808 VOLUME 7, 2019

B. Li et al.: TT-Miner for Mining Closed Itemset

procedure of constructing of TT-tree, it may satisfy paral-
lelism. In our next work, we will try to modify it to a parallel
version of TT-tree.

Furthermore, TT-tree can be used to fast mine minimal
non-redundant association rules from transaction databases.

REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami, ‘‘Mining association rules

between sets of items in large databases,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, vol. 22, no. 2, 1993, pp. 207–216.

[2] E. Baralis, L. Cagliero, T. Cerquitelli, V. Delia, and P. Garza, ‘‘Expressive
generalized itemsets,’’ Inf. Sci., vol. 278, pp. 327–343, Sep. 2014.

[3] L. Cagliero, T. Cerquitelli, P. Garza, and L. Grimaudo, ‘‘Misleading gener-
alized itemset discovery,’’Expert Syst. Appl., vol. 41, no. 4, pp. 1400–1410,
2014.

[4] T. Calders and B. Goethals, ‘‘Non-derivable itemset mining,’’Data Mining
Knowl. Discovery, vol. 14, no. 1, pp. 171–206, 2007.

[5] T. Calders, N. Dexters, J. J. M. Gillis, and B. Goethals, ‘‘Mining frequent
itemsets in a stream,’’ Inf. Syst., vol. 39, pp. 233–255, Jan. 2014.

[6] J. Han, H. Cheng, D. Xin, and X. Yan, ‘‘Frequent pattern mining: Current
status and future directions,’’DataMiningKnowl. Discovery, vol. 15, no. 1,
pp. 55–86, Aug. 2007.

[7] H. Li and H. Chen, ‘‘Mining non-derivable frequent itemsets over data
stream,’’ Data Knowl. Eng., vol. 68, no. 5, pp. 481–498, 2009.

[8] Ö. M. Soysal, ‘‘Association rule mining with mostly associated sequen-
tial patterns,’’ Expert Syst. Appl., vol. 42, no. 5, pp. 2582–2592,
2015.

[9] A. Cuzzocrea, C. K.-S. Leung, andR. K.MacKinnon, ‘‘Mining constrained
frequent itemsets from distributed uncertain data,’’ Future Gener. Comput.
Syst., vol. 37, pp. 117–126, Jul. 2014.

[10] T. F. Gharib, ‘‘An efficient algorithm for mining frequent maximal and
closed itemsets,’’ Int. J. Hybrid Intell. Syst., vol. 6, no. 3, pp. 147–153,
2009.

[11] G. Grahne and J. Zhu, ‘‘Fast algorithms for frequent itemset mining using
FP-trees,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 10, pp. 1347–1362,
Oct. 2005.

[12] F. Guil and R. Marín, ‘‘A theory of evidence-based method for assessing
frequent patterns,’’ Expert Syst. Appl., vol. 40, no. 8, pp. 3121–3127, 2013.

[13] T. Guns, S. Nijssen, and L. De Raedt, ‘‘Itemset mining: A constraint pro-
gramming perspective,’’ Artif. Intell., vol. 175, nos. 12–13, pp. 1951–1983,
2011.

[14] T. Hashem, C. F. Ahmed, M. Samiullah, S. Akther, B.-S. Jeong, and
S. Jeon, ‘‘An efficient approach for mining cross-level closed itemsets and
minimal association rules using closed itemset lattices,’’Expert Syst. Appl.,
vol. 41, no. 6, pp. 2914–2938, 2014.

[15] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, ‘‘Efficient mining of
association rules using closed itemset lattices,’’ Inf. Syst., vol. 24, no. 1,
pp. 25–46, 1999.

[16] J. Pei, J. Han, and R. Mao, ‘‘CLOSET: An efficient algorithm for mining
frequent closed itemsets,’’ in Proc. ACM SIGMOD Workshop Res. Issues
Data Mining Knowl. Discovery, vol. 4, no. 2, 2000, pp. 21–30.

[17] M. J. Zaki, ‘‘Closed itemset mining and non-redundant association rule
mining,’’ in Encyclopedia of Database Systems, L. Liu and M. T. Ozsu,
Eds. New York, NY, USA: Springer-Verlag, 2017.

[18] J. M. Luna, F. Padillo, M. Pechenizkiy, and S. Ventura, ‘‘Apriori versions
based onmapreduce for mining frequent patterns on big data,’’ IEEE Trans.
Cybern., vol. 48, no. 10, pp. 2851–2865, Oct. 2018.

[19] B. Huynh, B. Vo, and V. Snasel, ‘‘An efficient parallel method for
mining frequent closed sequential patterns,’’ IEEE Access, vol. 5,
pp. 17392–17402, 2017.

[20] M. Ghorbani and M. Abessi, ‘‘A new methodology for mining frequent
itemsets on temporal data,’’ IEEE Trans. Eng. Manag., vol. 64, no. 4,
pp. 566–573, Nov. 2017.

[21] M. J. Zaki, ‘‘Scalable algorithms for association mining,’’ IEEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372–390, May 2000.

[22] C. C. Aggarwal and J. Han, Eds., Frequent Pattern Mining. New York, NY,
USA: Springer, 2012.

[23] J. Han, J. Pei, Y. Yin, and R. Mao, ‘‘Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,’’ Data Mining
Knowl. Discovery, vol. 8, no. 1, pp. 53–87, 2004.

[24] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, ‘‘Discovering fre-
quent closed itemsets for association rules,’’ in Database Theory—
ICDT, C. Beeri and P. Buneman, Eds. Berlin, Germany: Springer, 1999,
pp. 398–416.

[25] M. J. Zaki and C. J. Hsiao, ‘‘Efficient algorithms for mining closed itemsets
and their lattice structure,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 4,
pp. 462–478, Apr. 2005.

[26] T. Uno, T. Asai, Y. Uchida, and H. Arimura, ‘‘LCM: An efficient algorithm
for enumerating frequent closed item sets,’’ in Proc. Workshop Frequent
Itemset Mining Implement. (FIMI), vol. 90, 2003, pp. 1–10.

[27] C. Borgelt, ‘‘Frequent item set mining,’’ Wiley Interdiscipl. Rev., Data
Mining Knowl. Discovery, vol. 2, no. 6, pp. 437–456, 2012.

[28] Z. Pei, D. Ruan, D. Meng, and Z. Liu, ‘‘Formal concept analysis based
on the topology for attributes of a formal context,’’ Inf. Sci., vol. 236,
pp. 66–82, Jul. 2013.

[29] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Founda-
tions. New York, NY, USA: Springer-Verlag, 1999.

[30] Z. Ma, J. Li, and J. Mi, ‘‘Some minimal axiom sets of rough sets,’’ Inf. Sci.,
vol. 312, pp. 40–54, Aug. 2015.

[31] Z. Pawlak and A. Skowron, ‘‘Rough sets and Boolean reasoning,’’ Inf. Sci.,
vol. 177, no. 1, pp. 41–73, 2007.

[32] K. Qin, J. Yang, and Z. Pei, ‘‘Generalized rough sets based on reflexive
and transitive relations,’’ Inf. Sci., vol. 178, no. 21, pp. 4138–4141, 2008.

[33] L. Qin and Z. Shi, ‘‘SFP-Max—A sorted FP-tree based algorithm for
maximal frequent patterns mining,’’ Jisuanji Yanjiu Fazhan (Comput. Res.
Develop.), vol. 42, no. 2, pp. 217–223, 2005.

[34] Y.-R. Syau and E.-B. Lin, ‘‘Neighborhood systems and covering approxi-
mation spaces,’’ Knowl.-Based Syst., vol. 66, pp. 61–67, Aug. 2014.

[35] H.-P. Zhang, Y. Ouyang, and Z. Wang, ‘‘Note on ‘generalized rough sets
based on reflexive and transitive relations,’’’ Inf. Sci., vol. 179, no. 4,
pp. 471–473, 2009.

[36] Z. Zhao, ‘‘On some types of covering rough sets from topological points
of view,’’ Int. J. Approx. Reasoning, vol. 68, pp. 1–14, Jan. 2016.

[37] W. Zhu and S. Wang, ‘‘Rough matroids based on relations,’’ Inf. Sci.,
vol. 232, pp. 241–252, May 2013.

[38] W. Zhu and F.-Y. Wang, ‘‘The fourth type of covering-based rough sets,’’
Inf. Sci., vol. 201, pp. 80–92, Oct. 2012.

[39] W. Zhu, ‘‘Relationship between generalized rough sets based on binary
relation and covering,’’ Inf. Sci., vol. 179, no. 3, pp. 210–225, 2009.

[40] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu, ‘‘MAFIA:
A maximal frequent itemset algorithm,’’ IEEE Trans. Knowl. Data Eng.,
vol. 17, no. 11, pp. 1490–1504, Nov. 2005.

[41] (Jun. 2017). Frequent Itemset Mining Dataset Repository. [Online]. Avail-
able: http://fimi.ua.ac.be/

[42] K. Geurts, G.Wets, T. Brijs, and K. Vanhoof, ‘‘Proling of high-frequency
accident locations by use of association rules,’’ Transp. Res. Rec., J.
Transp. Res. Board, vol. 1840, no. 1840, pp. 123-130, 2003.

[43] UCI. (Jun. 2017). Machine Learning Repository. [Online]. Available:
http://archive.ics.uci.edu/ml/index.php

[44] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ‘‘New algorithms for
fast discovery of association rules,’’ in Proc. Int. Conf. Knowl. Discovery
Data Mining, 1997, pp. 283–286.

[45] B. Goethals and M. J. Zaki, ‘‘FIMI’03: Workshop on frequent itemset
mining implementations,’’ in Proc. 3rd IEEE Int. Conf. Data Mining
Workshop Frequent Itemset Mining Implement., Nov. 2003, pp. 1–13.

[46] G. Bart. (Jun. 2017).Frequent ItemsetMining Implementations Repository.
[Online]. Available: http://fimi.ua.ac.be/src/

[47] C. Borgelt. (Jun. 2017). Christian Borgelt’s Web Pages. [Online]. Avail-
able: http://www.borgelt.net/software.html

BO LI received the B.S. degree in computer sci-
ence from the Shaanxi University of Technology,
in 2006, and the M.S. degree in computer sci-
ence from Xihua University, in 2009. He is cur-
rently pursuing the Ph.D. degree with the School
of Information Science and Technology, South-
west Jiaotong University, Chengdu, China. His
research interests include datamining andmachine
learning.

VOLUME 7, 2019 10809

B. Li et al.: TT-Miner for Mining Closed Itemset

ZHENG PEI received the M.S. and Ph.D. degrees
from Southwest Jiaotong University, Chengdu,
China, in 1999 and 2002, respectively. He is
currently a Professor with the School of Com-
puter and Software Engineering, Xihua University,
Chengdu. He has published nearly 70 research
papers in academic journals or conferences. His
research interests include rough set theory, fuzzy
set theory, logical reasoning, and linguistic infor-
mation processing.

KEYUN QIN received the M.Sc. and Ph.D.
degrees in applied mathematics from Southwest
Jiaotong University, China, in 1994 and 1997,
respectively. He is currently a Full Professor with
the College of Mathematics, Southwest Jiaotong
University. He has published nearly 80 research
papers in academic journals or conferences. His
current research interests include rough set theory,
soft set theory, fuzzy logic-based systems, and
formal concept analysis.

MINGMING KONG received the M.S. degree
in applied mathematics from Xihua University,
Chengdu, Sichuan, China, in 2010. He is currently
a Lecturer with the School of Computer and Soft-
ware Engineering, Xihua University. His current
research interests include rough set theory, fuzzy
set theory, linguistic information processing, and
spectrum management.

10810 VOLUME 7, 2019

	INTRODUCTION
	CONTRIBUTIONS

	PRELIMINARIES
	FREQUENT ITEMSETS MINING

	TOPOLOGY-TRANSACTION SEARCH TREE
	THE REFLEXIVE AND TRANSITIVE RELATION ON THE SET OF ITEMS
	THE TOPOLOGY FOR THE SET OF ITEMS

	TT-MINER ALGORITHM DESIGN AND IMPLEMENTATION
	TT-TREE OF THE TOPOLOGY TI FOR I
	CONSTRUCTION OF TT-TREE
	OBTAINING FCIs IN TT-TREE
	TT-MINER:A FAST FCIs MINING ALGORITHM
	REDUCING COMPUTATION TIME
	REPRESENTATION OF THE DATABASE
	FREQUENT COUNTING
	ANYTIME DATABASE REDUCTION

	EXPERIMENTS ANALYSIS
	MINING CLOSED FREQUENT ITEMSETS
	SCALEUP EXPERIMENTS
	COMPARISON ITEM SPACE AND TOPOLOGICAL BASIS SPACE

	CONCLUSIONS AND FURTHER WORK
	REFERENCES
	Biographies
	BO LI
	ZHENG PEI
	KEYUN QIN
	MINGMING KONG

