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ABSTRACT This paper proposes a novel information-centric prediction-based integration model for WSNs
and the sensor cloud, which exploits the trade-off between the data accuracy requirement of applica-
tions, sensing data prediction quality, and the energy efficiency of sensors, to reduce the workloads and
energy consumptions of resource-constrained sensors. The model decouples information producers (IPDs)
(i.e., physical sensors) from information providers (IPVs), which are implemented as IPDs’ virtual sensors
in the sensor cloud, to enable IPVs to provide sensing services when IPDs sleep. In the model, we design
an efficient interactive sensing data prediction scheme for IPDs and IPVs to predict and control the
accuracy of the sensing data prediction of IPVs using internal temporal information correlation, community
detection, and external information correlation among sensors. According to the data accuracy requirement
of applications, the model controls: 1) the number of IPDs required to be active and 2) when an active IPD
transmits sensing data to the sensor cloud, to maintain the quality of sensing data meeting the requirement.
Through extensive experiments with data collected from the real-world IntelLab sensor deployment, we show
that the model achieves significant improvements in terms of data transmission suppression ratio, energy
efficiency, and response latency compared with the existing schemes.

INDEX TERMS Information centric wireless sensor networking, energy efficiency, sensor cloud, IoT cloud,
interactive sensor data prediction, machine learning, sensor quality of information, SDN/NFV.

I. INTRODUCTION
Periodic sensing data collection is one of the popular
applications in Wireless Sensor Networks (WSNs) as well
as the Internet of Things (IoT). In many practical IoT
scenarios (i.e., pervasive computing applications, building
management,. . .), applications or users are interested in peri-
odically receiving sensing information with a given accuracy
level. Therefore, the sensing data collection service is allowed
within a given level of error tolerance [2]. For that reason,
the data prediction and machine learning can be applied
in the sensing data collection to improve the energy effici-
ency [2]–[4]. In current machine learning and sensing data
prediction schemes [2]–[4] for WSNs, data packet transmis-
sion can be suppressed as long as the locally sensed data are
compatible with the prediction model.

However, the current machine learning and sensing data
prediction solutions are normally implemented inside WSNs
(i.e., at a cluster head or normal sensor nodes), thus the

solutions have a limited prediction capability as well as lim-
ited improvement for energy efficiency. The reason is that
WSN nodes have a limited computing and storage capability
(i.e., a few samples may be stored and processed for train-
ing predictors), as well as the constrained energy budget.
For resource constrained sensors, only simple and small-
scaled prediction scheme can be implemented. Additionally,
the above prediction schemes only consider the local cor-
relation [2], [4], [5] in sensing data (i.e., sensing data of
sensors within a cluster) [2], [4]. As a result, a sensor has a
lower chance to have good data sources to train the predictor.
Globally correlation discovery is inefficient or even infea-
sible for resource-constrained sensors. Due to the resource-
constrained nodes, many existing studies assume a priori
correlation of sensing data among sensors (i.e., nodes within
a cluster are correlated) [6], [7]. However, the correlation
among sensors is various and may change over time. In many
cases, two nearby nodes may have poor correlation while
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two sensors that are not geographically collocated may show
a strong correlation. Moreover, although existing solutions
enable sensors to suppress a number of packet transmissions,
sensor nodes are still required wake up frequently for check-
ing the prediction quality and making a decision to transmit
their packets or not [2]. Therefore, the energy efficiency
improvement is still limited. In addition, the existing solu-
tions are not designed to support the sensor-cloud [8]–[11]
which provides the sensing services to multiple applications
having different requirements at the same time. Detailed lit-
erature reviews of this topic can be found in [2]–[4] and [12].

Regarding the recent evolution from the traditional WSNs
to the sensor cloud architecture for the sensing service pro-
vision [8]–[11], this paper introduces a new perspective of
information-centric approach for WSNs and cloud integra-
tion. The proposed integration model focuses on sensing
information itself for sensing services, regardless how infor-
mation objects are produced (i.e., physical sensors’ sampling
or prediction) and where they are produced (at physical
sensors or in the cloud), as long as its quality satisfies the
requirements. In particular, we propose an efficient infor-
mation producer (IPD) (i.e., physical sensor) and infor-
mation provider (IPV) [13]–[15] decoupling model for a
semantic sensor-cloud integration. The concepts of IPD and
IPV are borrowed from the information centric networking
(ICN) [13], [14], [16], [17] although the perspectives may
not be the same. While IPDs obtain their sensing data from
the physical world, their IPVs that are implemented as the
IPDs’ virtual sensors on the sensor-cloud, are responsible for
1) providing the IPDs’ sensing services to applications or end
users, and 2) optimizing the workload for the physical WSN.
The IPVs then provide the sensing services with sensing
information that may or may not be generated by the IPDs
as long as the data accuracy satisfies the requirement. By
decoupling, IPVs store sensing data and make them available
for applications as well as end users while most of IPDs can
be put into the sleep state for energy saving.

The integration model is proposed to exploit the trade-off
between energy efficiency of sensor nodes and the accuracy
of their sensing data (i.e., obtained through machine learn-
ing or sensing data prediction techniques), with a respect to
data accuracy requirements of applications. The proposed
model takes data accuracy requirements of applications as
the input parameters for building the prediction model and
for optimizing the number of physical sensors required to
be active to meet the requirements. Based on requirements
of applications, IPVs are globally grouped into information
correlated communities (ICC) (i.e., the same ICC is applied
for corresponding IPDs) using the community detection
theory and Least Absolute Shrinkage and Selection Opera-
tor [18], [19], without any prior assumption about the correla-
tion. A prediction scheme based on the external information
correlation is designed on top of the ICCs using the cross-
correlation regression. We then establish a hybrid prediction
model as a combination of both the external information
correlation and the internal information correlation

(sensing data correlation of a sensor in the time dimension)
to enable IPVs to predict their IPDs’ sensing data accurately
as well as controllably without demanding the IPDs to wake
up frequently. The proposed integration model demands only
one IPD within an ICC to be active at a time for maintaining
the prediction quality so that the model can schedule most of
IPDs to sleep deeply. The active IPD plays the role as a pre-
diction quality controller of its ICC and provides data sources
for its ICC. In the proposed model, most of the complicated
operations and computing tasks are offloaded for processing
in the sensor cloud, so the model reduces the workload for
constrained WSNs. Compared to the preliminary version [1],
this paper provides more insight into the detailed design of
the model such as adding the detailed application model,
detailed operations for the ICC discovery and external infor-
mation correlation-based prediction scheme. We design new
mechanisms for the model including the adaptive predictors,
the periodic validation, as well as mechanisms for scheduling
and training phases.We extensively conduct new experiments
and present significantly more results under various network
conditions in comparison with the state-of-the-art schemes
such as new results for the service availability, the percentage
of required active sensors, the control overhead and the
network lifetime.

In summary, this paper makes the following contributions.
• We propose a novel information-centric integration
model for WSNs and the sensor cloud, which exploits
the trade-off between the data accuracy requirement of
applications and energy efficiency to reduce workloads
and energy consumptions for resource-constrained sen-
sors. The model decouples IPVs from IPDs (physical
sensors), and enables IPVs (implemented as virtual sen-
sors in the sensor cloud) to provide sensing services even
when IPDs sleep, thus allowing most of the physical
sensors sleep deeply.

• We design an efficient interactive prediction scheme for
IPDs and IPVs to predict and control the sensing data
prediction. In particular, the scheme is designed using an
internal temporal information correlation, community
detection, and external information correlation among
sensors. According to the accuracy requirement of appli-
cations, the scheme groups IPVs and IPDs into highly
information correlated communities. Only one IPD per
an ICC is required to be active to update sensing data and
control the accuracy of data predicted by the IPVs, while
other IPDs are scheduled to sleep deeply for energy
saving.

• The model can support almost any level of the data
accuracy requirement of applications by controlling
1) the number of IPDs required to be active and 2) when
an active IPD needs to transmit their sensing data to the
sensor cloud based on the data accuracy requirement.
For example, according to a higher accuracy require-
ment, small size ICCs may be discovered, so more IPDs
are required to be active and they also need to transmit
their sensing data to the sensor cloud more frequently.
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Through extensive experiments and analysis with data
collected from the real-world IntelLab sensor deploy-
ment [20], we show that the model achieves significant
improvements in terms of data transmission suppression
ratio, energy efficiency, and response latency compared
to the existing sensor cloud model [8] and the state-of-
the-art prediction schemes for WSNs [2], [4]. In addi-
tion, the model supports multiple applications at the
same time and allows most of IPDs to sleep deeply with
a long interval, not just suppressing their data transmis-
sions like other schemes.

II. RELATED WORK
Recently, studies have shown drawbacks of traditional WSN
models [8]–[11], [21], [22] like sensor management and
sensing service models. Sensor-cloud [8]–[11], [21] is then
introduced as a promising model. The sensor-cloud model
exploits the high capacity storage, powerful processing and
service distribution of cloud computing for sensing infor-
mation. The cloud and WSNs integration enable providers
to provide sensing-as-a-service in which sensing informa-
tion collected from a WSN is distributed to multiple appli-
cations or multiple users at the same time, instead of the
conventional sensing service model for a single dedicated
user and application. In the sensor cloud model, the sensor
cloud acts as a middleware between the cyber world and
physical WSNs.

Some works have been carried out for sensor cloud designs
using different ways for different applications. In the previ-
ous work, we propose and implement a sensor-cloud model
for smart cities [9]. In another work, we design a location-
centric sensor-cloud architecture for mobile cloud computing
applications [21]. In [23] and [24], we solve the problem
of end-to-end packet delivery latency control from physical
sensors to the cloud. In a recent work [24], [25], we apply
the sensor-cloud model to implement distributed interactive
digital signage systems in which physical sensors are vir-
tualized as virtual sensors implemented on the sensor-cloud
using network function virtualization (NFV) [26], [27]. NFV
is a new technology which enables providers and operators
to implement network functions (NFs) as software, known as
virtual network functions (VNFs), on standard servers using
virtual machines (VMs), instead of using dedicated hardware.
Our detailed implementation of the sensor-cloud and virtual
sensors using NFV can be found in [25].

Fortino et al. [28], [29] redesign body sensor net-
work (BSN) using the sensor cloud for body monitoring.
Ghanavati et al. [30] and Hassanalieragh et al. [31] discuss
challenges and applicability chances of the sensor cloud for
e-health services. Misra et al. [32] propose to use virtual
sensors for providing utility services for battlefield scenarios
in the military. Neto et al. [33] implement an intelligent
element integrated with industrial sensor cloud systems, and
used in factory shop-floor to create digital machines based on
sensing services. Lyu et al. [34] discuss scheduling issues for
the sensor cloud used in smart living.

Most of the above works focus on solving specific prob-
lems in the applicability of the sensor-cloud while improving
the cloud and WSNs is still an open issue. For resource-
constrained physical sensor nodes, energy efficiency is one of
the critical requirement. We find that in manyWSN as well as
sensor-cloud applications such as pervasive computing appli-
cations, building management,. . . applications or end-users
are interested in periodically receiving sensing information
with a given level of the data accuracy, thus sensing data
collection is normally permitted to have an error tolerance
bound [2]. For that reason, data prediction can be applied in
the sensor-cloud model to reduce communication cost from
sensors the sensor cloud [2]–[4].

In the literature, sensing data prediction andmachine learn-
ing schemes for WSNs have been investigated [35]–[41].
In [35] and [36], sensors transmit their sensing data to their
cluster heads which can generate new prediction models for
each sensor. Cluster heads are also required to periodically
update and transmit new prediction parameters to sensors.
Jain et al. [37] uses spatial correlation to accesses the abil-
ity of cluster heads of computing prediction models for a
sensor and select the best one for sensing measurement.
Similar to [37], Min and Chung [38] incorporates spatial
and temporal relations for prediction. In [39], the prediction
is performed at sensors using GP regression. Each sensor
node predicts the information that it will sample and adapt its
scheduling. The purpose is to maximize information which
it collects during a time interval. Raza et al. [40] use a
naive mechanism for prediction, which is a type of linear
approximation to compute the slope of sensing information’s
trend. Borgne et al. [41] show a study relying on pre-defined
prediction model which results in poor prediction accuracy.
In [2], OSSLMS is proposed as a dedicated hybrid model
for data prediction, recovery, and compression to improve
the efficiency of processing data at cluster heads. In [4],
a hierarchical least mean square (HLMS) mechanism is used
to speed up convergence rate and lower the mean squared
errors in predicting data for WSNs. Extensive surveys of this
topic are given in [2]–[4] and [12].

However, the existing sensing data prediction schemes are
usually implemented insideWSNs (i.e., at cluster head or sen-
sors), so they have a limited prediction capability and effi-
ciency because sensor nodes are resource-constrained devices
with low computing and storage resource (i.e., few sensing
records can be stored and processed for the predictors’ train-
ing) as well as limited energy capability. In addition, those
prediction schemes only take into account the local correla-
tion of sensing data (i.e., nodes within a cluster) [2], [4], [5],
a node has a lower chance to have good data sources to train
the predictor. For the sensor cloud, this paper is the first study
which investigates an efficient model for WSNs and cloud
integration by focusing on the sensing information itself,
instead of physical nodes and exploiting external correlations
among virtual sensors to increase theWSNs network lifetime.

The concepts of IPD and IPV are borrowed from the
information centric networking [13], [14], [16], [17] although
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the perspectives are not the same. In this paper, we model
sensors using an information centric approach [15] (ICWSN)
which is studied in our previous work [13], [16], and [17].
In the ICWSN, entities (i.e., sensors or information objects)
are named, instead of using IP address. As described in our
previous works [13], [14], we use the name structure as
follows. Each entity is named with a category prefix (CP)
(i.e., ‘‘temp’’ for temperature sensors, ‘‘hum’’ for humidity
sensors) and an unique ID, combining with an addressable
and identifiable URI (Uniform Resource Identifiers) (i.e., bld
A/fl1/roomx/ for building A/ floor 1/ room x/) to form a
hierarchical name. In this way, the naming scheme is compat-
ible with recent resource naming standardization released by
ETSIM2M [42]. The benefit of the ICN paradigm is that data
objects can be retrieved from any middleware and sensors to
be easily discovered as well as grouped based on naming.
We exploit this characteristic of ICN in implementation to
facilitate the ICC discovery although the information centric
networking [13], [15] is not required for the proposed model
to work. The model can be implemented on any kind of
networks.

III. THE ENERGY EFFICIENT INTEGRATION
MODEL FOR SENSOR-CLOUD
In this section, we describe the design of the proposed energy-
efficient sensor-cloud integration model and explain how we
exploit IPVs (i.e., in the sensor-cloud) to improve the energy
saving for IPDs (i.e., in physical WSNs) with a respect to
the requirements of applications. Table 1 presents the list of
acronyms used in this paper.

TABLE 1. List of acronyms.

A. APPLICATION MODEL
The proposed model is designed with a focus on periodic
sensing services of resource-constrained sensor nodes [42]

in the sensor-cloud architecture [8], [11] where a WSN is
normally deployed to provide sensing services for multi-
ple applications at the same time. Our model enables mul-
tiple applications to request for periodic sensing services
with their requirement (i.e., the sensing data accuracy level,
in other words, the quality of information (QoI)). Based
on the model, the sensor-cloud and the WSN interact in
an efficient way for providing sensing data satisfying the
requirements of the applications. We reuse the application
model implemented in our previous works [8], [23], [24].
In the previous works, a downstream aggregation frame-
work (i.e., application requests from the sensor-cloud to
WSNs) for application requirements (i.e., sensing interval,
latency requirement, or data accuracy requirement,. . .) has
been developed for the sensor cloud. Assume we have N
applications which request for sensing services provided
by a WSN. The applications may have different require-
ments of the Tolerance of Data Accuracy (TDA) level. For
example, some applications request for a TDA level of 5%
(95% accuracy) while other applications may accept a TDA
level of 10%. Note that the price of sensing services is usually
proportional to the data quality requirement of applications
based on a service level agreement (SLA) [43], [44]. For
example, the higher the data accuracy level is requested,
the higher the price is charged. The framework performs
aggregation for all application requests to obtain the optimal
consolidated TDA value TDAappsc (i.e., the minimum value
of TDAs among TDA requirements of applications) which
satisfies all application requirements. The purpose is to min-
imize the number of application requests which are sent to
physical WSNs. Once the model finds a new consolidated
requirement, related virtual sensors and physical sensors
are adapted accordingly to meet the new requirement. The
detailed operations of the application model and aggregation
scheme can be found in [26] and [27], so we don’t repeat in
this paper.

In this work, we design an upstream enhancement frame-
work for the sensing data collection from WSNs to the
sensor-cloud.

B. THE DECOUPLING MODEL FOR IPD AND IPV
In the current WSNs [8], [13], [16], [17], requests of infor-
mation consumers (i.e., applications and users) are normally
forwarded to sensor nodes (i.e., IPDs), so a sensor node also
plays a role of an IPV for processing requests as well as
responses. This is obviously inefficient in term of the network
lifetime because sensors are resource-constrained devices.
Moreover, since resource constrained IPDs usually run in
low power and lossy environments (i.e., sleep/awake mode),
the availability of their sensing services is not always high.
Requests and responses in such a constrained environment
may experience high latency when a high traffic volume is
processed inside WSNs.

We propose a decoupling model for IPDs and IPVs
for reducing the workload for resource-constrained sen-
sors and for enhancing the availability of sensing services.
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FIGURE 1. NFV-based information provider and information producer decoupling architecture for information centric sensor cloud.

In the proposed model, physical resource-constrained sensors
operate as the IPDs while virtual sensors implemented in the
sensor cloud play the role of IPVs to distribute the sensing
data to other applications and users. As IPVs are implemented
in rich-resource cloud environments, they are exploited to
improve the energy efficiency of IPDs.

Although virtual sensors are alsomentioned in the previous
work [8], how to implement virtual sensors efficiently in
the sensor cloud environment is still an open issue. In our
point of view, if the sensor cloud is just simply a sensing
data broker or middleware between applications and phys-
ical sensors, virtual sensors can be simply implemented as
database objects. However, in our sensor cloud design [8], [9],
IPVs are also explored to optimize performance andminimize
resource consumption of physical sensors. Therefore, IPVs
should have proper processing capabilities.

We implement IPVs as virtual network functions
(VNFs) [26] in the cloud using Openstack [45]. As the
NFV technology provides VNFs and the migration of net-
work functions (NFs) from stand-alone hardware based on
dedicated hardware to software appliances running on a
cloud infrastructure, NFV can be used to deploy ICN solu-
tions [46], [47] and virtual sensors easily. In the proposed
model, IPVs inherit the properties from the IPDs and are
considered as sensing data brokers, data caching points, and
optimizers for physical sensors. IPVs can be implemented in
the core clouds or edge clouds.

Depending on WSN scales, we can utilize one of the
following two approaches to virtualize a WSN using NFV.
In the first approach, each physical sensor (IPD) can be
virtualized using one VNF. As a result, each IPV runs as
a virtual machine deployed using OpenStack. In the second
approach, the wholeWSN can be virtualized within one VNF
where the sink node is the head and each virtual sensor
(IPV) is a VNF component (VNFC). Both approaches are
equivalent. However, the latter is more suitable for small
WSNs and highly constrained sensor nodes. This approach

can be explored for virtualizing a greater scope of ICN objects
in the Internet of Things (IoT). For example, the whole human
body network can be virtualized for a semantic object named
as ‘‘virtual me’’ to collect all information about a person.
Similar concepts can be introduced such as a virtual home,
virtual room, virtual factory, etc.

Figure 1 describes the NFV-based decoupling model
for IPVs and IPDs referred to the ETSI NFV architec-
ture [26], [27]. The detailed description of the general NFV
architecture can be found in [26] and [27] and the detailed
sensor-cloud implementation can be found in our previous
works [25], [48], [49]. We briefly the architecture as follows.
In the sensor cloud, the Virtualized Infrastructure Manager
(VIM) manages computing, storage, network, and software
resources (the implementation in OpenStack). VNF man-
ager manages the VNF lifecycle management (i.e., instan-
tiation, update, scaling, query, monitoring, fault diagnosis,
healing, and recovery, etc.). NFV orchestrator automates the
deployment and operations, as well as manages VNFs and
VNFI. Element Management System (EMS) performs the
typical management functionality for one or several VNFs.
OSS/BSS is the operations support systems and business
support system. Os-Ma, VeEn-Vnfm, VeNF-Vmfm, Nf-Vi,
Or-Vnfm, VI-Vnfm are standardized interfaces defined in
the NFV architecture. In the architecture, physical sensors
in the sensor network are information producers. A secured
tunnel is used for the communication between the WSNs and
the sensor cloud. When the WSN and the sensor cloud are
connected using an IP network, ICN packets at the sink are
encapsulated with an IP packet header and then decapsulated
at the sensor cloud. Multiple applications play the role of
information consumers who may request for sensing services
through the sensor cloud.

In the next part, we present how the proposed model
exploits IPVs to enhance the energy efficiency of IPDs and
improve the availability of sensing services based on our
design of the interactive prediction mechanisms.
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C. INFORMATION CORRELATION BASED SENSING
DATA PREDICTION MECHANISMS FOR IPVS
Historical sensing data of a sensor may be correlated with
the sensor’s sensing information shortly. This is called the
temporal correlation or internal information correlation (IIC).
A number of prediction mechanisms for sensing data
[2], [3], [50] have been studied in the literature as presented
in section II. However, those mechanisms are normally used
insideWSNs (at the sink or cluster head nodes) based on only
the local correlation and IIC for the prediction. As a result,
their improvement in the term of energy efficiency is limited
as discussed in section I and section II.

We propose to extend the IIC based time series prediction
(i.e., auto-correlation predictor) to the external information
correlation (EIC) based time series prediction (i.e., using
a cross-correlation predictor). We then implement a hybrid
prediction model for IPVs in the sensor-cloud. The objective
is to exploit IPVs to enhance the energy efficiency of IPDs
by scheduling most of IPDs to go to sleep while their sensing
services are still available and provided by the IPVs regarding
to the applications’ requirements. In our EIC based prediction
scheme, we implement a cross-correlation predictor in each
IPV. The cross-correlation predictor is designed to exploit the
correlation in sensing data between an IPV and other IPVs.
For that purpose, a mechanism is designed to enable each
IPV to discover its highly correlated community so that the
IPV can still have data sources to predict its IPD’s sensing
data and control its prediction accurately when its IPD is not
unavailable (i.e., due to sleep or failure). In such as case,
the IPV predicts its IPD’s data based on 1) its historical data
and 2) data of another highly correlated IPV whose IPD is
active. All complicated and resource-consuming operations
are processed by IPVs in the sensor-cloud to reduce the
workload for physical sensors.

We classify two types of IPVs as follows. An IPV of an
active IPD is denoted as aIPV. An IPV of an inactive IPD
is denoted as iIPV. A different prediction mechanism is used
for each type of IPV. The IIC based prediction is applied for
aIPVs. A hybrid prediction model is used for iIPVs. In our
model, active IPDs operate at a normal duty cycle mode with
a wakeup interval Tw like in other schemes [2], [4], [22] while
inactive IPDs sleeps deeply with a wakeup interval T deepw that
can be much longer than Tw.

1) INTERNAL INFORMATION CORRELATION
BASED PREDICTOR
The existing IIC based mechanisms for the predictor cannot
be used directly for the application model as described above.
The argument is that in our proposed model, applications
and users are allowed to send requests with their selected
requirement for the level of data accuracy. Therefore, the pro-
posed model requires a controllable prediction accuracy. For
that reason, although we implement the basic IIC-based time
series prediction scheme [2], [3] for aIPVs, we add an adap-
tive transmission scheme for active IPDs and make the IPDs
play the role of the prediction accuracy controller for IPVs.

In particular, for the IPV with its active IPD, both the IPV
and its IPD run the IIC based autocorrelation predictor.
Auto-Correlation Predictor: For the auto-correlation pre-

dictor, an autocorrelation-based transversal filter is created as
follows.

ω(t) =
k∑
i=1

ω(t − i)δ(i) (1)

where ω(t) is the predicted time series result at the time
instance t; ω(t − i) with i ∈ [1, k] represents the previous
value of time series; δ(i) with i ∈ [1, k] indicates k filter
coefficients. The filter coefficients are determined based on
the following linear equation which uses a set of Tk training
data [ω(1), ω(2), . . . , ω(Tk )] stored in a (Tk−k)× k matrix�
available from the time series.

�δ = ω

� =


ω(k) ω(k − 1) . . . ω(1)

ω(k + 1) ω(k) . . . ω(2)
...

...
. . .

...

ω(Tk − 1) ω(Tk − 2) . . . ω(Tk − k)


ω = [ω(k + 1), ω(k + 2), . . . , ω(Tk )]T

δ = [δ(1), δ(2), . . . , δ(k)]T (2)

The above linear equation is overdetermined because the
number of equations Tk − k is greater than the number of
variables k . By using the least-square method [51], the filter
coefficients are determined as follows.

δ = (�T�)−1�Tω (3)

The filter coefficients are then used for predicting sensor
data.

The auto-correlation predictor of an IPV is created in the
sensor cloud at the end of the training phase as described in
section III.D.4. After that, selected active IPVs transmit their
filter coefficients using a requestmessage to their correspond-
ing active IPDs. The same predictor is then created at the
active IPDs based on the received information. In this way,
complicated computation is offloaded to the sensor cloud
while the same predictor is used for both of the active IPV and
its corresponding active IPD. The auto-correlation predictor
of an active IPD and an active IPV can be adapted over time
using a simple least-mean square filter technique if the pre-
diction error does not meet the requirement of applications,
as described in section III. F.

An active IPD controls the prediction accuracy of its cor-
responding IPV as follows. Upon each sensing measurement,
the active IPD makes a comparison between its measured
value and its predicted value. If the gap between the two
values satisfies TDAappsc (i.e, the QoI requirement) of appli-
cations, the IPD suppresses its sensing data transmission
for saving energy. If the gap between the two values does
not satisfy the requirement, the IPD forwards and update its
sensing measurement to its IPV. Using this simple control
method, we enable IPVs to know whether their prediction is
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accurate enough or not. The control method also helps the
IPDs reduce the number of packet transmission, thus saving
more energy.

2) EXTERNAL INFORMATION CORRELATION
BASED PREDICTION
In this section, we describe the establishment of a cross-
correlation predictor which is created based on the EIC.
For that, we first present how each IPV discovers its highly
sensing information correlated community (ICC).

a: ICC DISCOVERY
We first define the concept of an ICC as follows. The ICC
of an IPV node k (i.e., ICCk ) is defined as a set of other
IPVs h that have highly correlated sensing data compared
to k . Therefore, the sensing data of the IPVs in ICCk can
be exploited for predicting the sensing data of node k . The
corresponding IPDs of the IPVs in ICCk also form an ICC.
This design is realized based on the fact that in practice,
sensing data of sensors are normally correlated. However,
how much the correlation between data vectors of IPVs is
required to form an ICC depends on TDAappsc (i.e., the QoI
requirement) of applications.

In the current design, the ICC discovery of an IPV node k is
limited within its sensor type community (STC) for reducing
the overhead and delay. An STC is defined as a group of
sensors with the same type (i.e., temperature sensor) or can
be extended as a group of sensors with sensor types which
normally show a high correlation together (i.e., humidity
sensing data and temperature sensing data normally show
a high correlation). The sensor types are predefined. For
simplicity, in this paper, we implement the ICC discovery
using STC of the same sensor type only. The STC discovery
is facilitated using the ICN naming scheme presented in
our previous work [13] where sensors of the same sensor
type (i.e., temperature) are assigned the same category prefix
(i.e., ‘‘temp:*’’). They are then grouped into the same STC,
as illustrated in figure 2.

FIGURE 2. Information centric sensor communities.

Our ICC discovery is based on the network community dis-
covery theory [19]. According to [19], we define constraints
so that the prediction error for a data point of k (i.e., dk ) using
the data from ICCk is minimized.

Given a set of n IPV nodes N = 1, 2, . . . , n, an iIPV
node k and its data point dk to be predicted, we find
a community ICCk and a regression function ω so that
the expected error, expressed through the loss function
8(d, ω) = Loss(dk , ω(dSTCk )), is minimized.
We assume that ω is linear and 8 is mean square error

(MSE). For accurate prediction, we find a set of nodes ICCk ∈
N\k so that there is a decision ζ minimizing

E[8(D, ζ )] = E[(Dk − ζ TDICCk )
2] (4)

In the equation, DX is a random vector consisted of
{Dk}k∈X . Our ICC discovery is processed based on a his-
torical sensor data set with m samples D = [d1d2 . . . dm].
A heuristic solution can be implemented to find a decision ζk
using the data set so that it can achieve the number of zero
entries of ζ as great as possible. In other words, we should
determine a sparse decision ζk to minimize the MSE and
the L1 norm, which is a typical Least Absolute Shrinkage
and Selection Operator (LASSO) problem [18]. Therefore,
the problem can be solved easily by introducing a LASSO
parameter ρ as follows.

minimize{ρ ‖ ζk ‖1 +1/2 ‖ d[−k]ζk − dk ‖22} (5)

As a result, the ICCk is determined as a group of IPVs with
non-zero entries of ζk . The parameter ρ is used to controls
the expected prediction error as well as the sparsity of ζ that
affects the size of ICCk .

A cross-correlation predictor is then established on the top
of the discovered ICC. The predictor is implemented at IPVs
to predict sensing data of iIPVs when their IPDs are not
active.

b: CROSS-CORRELATION PREDICTOR
For the establishment of the cross-correlation predic-
tor, we use a linear regression model with coefficients
[γ (0), γ (1)] [52] as follows.

ω(t) = γ (0)+ ψ(t)γ (1) (6)

where ω(t) is the predicted time series result at time instance
t; ψ(t) is time series value of the active correlated node at
time t . Similar to the auto-correlation, the coefficients here
can be obtained through the following linear equation based
on a set of the time series data9 of the active correlated node.

9γ = ω (7)

With

9 =


1 ψ(k + 1)
1 ψ(k + 2)
...

...

1 ψ(Tk )


γ = [γ (0), γ (1)]T
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3) A HYBRID PREDICTION MODEL FOR IIPV
We now obtain the hybrid prediction model for iIPVs. The
hybrid prediction model determines the final predicted value
for an iIPV by calculating the weighted average of the auto-
correlation predicted value and the cross-correlation pre-
dicted value above with two weighted parameters η and θ as
follows.

ω(t) =
(θω(t)auto + ηω(t)cross

θ + η
(8)

where η and θ are set equal to the accuracy level of the cross-
correlation and the autocorrelation, respectively.

4) TRAINING PHASE
To train the predictors and discover the ICC, we execute a
training phase with the length Ttraining during the network
deployment or updated periods. During the training, all IPDs
are set to be active and run a normal duty-cycled mode.
To obtain data for training and ICC discovery, IPDs report
their sensing information periodically to the sensor-cloud
with a sensing interval Is.
The size of an ICC is inversely proportional to the correla-

tion requirement inferred by TDAappsc of applications, which
is the input parameter of the LASSO solution above. The
lower the TDAappsc requirement of applications the greater the
size of an ICC can be discovered. To obtain highly accurate
predicted values, the absolute requirement for the correlation
coefficient of two nodes belonging to an ICC should be set
close to 1. The value range of the correlation coefficient cc is
[−1, +1]. The cc value of two nodes is 1 implying that the
time series of sensing data of the two nodes show an identical
trend. The cc value of two nodes is −1 implying that the
time series of sensing data of the two nodes show an opposite
pattern. If the cc value of two nodes is 0, sensing data of the
two nodes show no correlation. At the end of this training
phase, ICCs are discovered and the predictors are created.

The scheduling mechanism presented below shows that
the proposed model needs only one corresponding IPD node
per an ICC to be active at a time. The lower the correlation
requirement results in the greater the number of nodes in an
ICC. As a result, more nodes can sleep. However, this also
leads to lower prediction accuracy. This trade-off between the
energy efficiency and prediction accuracy is analyzed in the
evaluation section.

D. SCHEDULING MECHANISM FOR IPDS
The proposed model requires to have only one aIPV per an
ICC requires at a time (i.e., corresponding to one IPD to
be active at a time) to maintain a proper accuracy level for
sensing data prediction for all nodes meeting requirements of
applications.

The aIPV and its active IPD are responsible 1) as a con-
tinuous data source which provides updated sensing records
for the predictors and 2) as a prediction accuracy controller
which updates the prediction model whenever the prediction
error does not satisfy the given requirement. Other IPDs in the

same ICC can sleep to save energy while their sensing data
can be properly predicted by their corresponding IPVs.

In the proposed model, the scheduling works as follows.
If an IPD is scheduled as an active node, its upper stream
nodes (i.e., the parent nodes on its path toward the sink to
the sensor-cloud) are set to be active too so that its sensing
data can be forwarded to the sensor-cloud. In other words,
themodel maintains a connected graph for active IPDs toward
the sink node.

Energy balancing is also considered in the proposed model
to improve the network lifetime of sensors. For that purpose,
the time frame is divided into rounds with a length RL. Note
that the length RL is normally set long enough (i.e., 1 hour)
and RL � Is, the sensing interval of a sensor. In each
round, the scheduling mechanism selects an IPD as the active
IPD which has the highest residual energy for each ICC.
Other nodes in the same ICC can sleep for saving energy.
The scheduling is executed from the sink and repeatedly
processed until the schedule of all sensors is set. In this
way, the energy balancing among sensors is provisioned to
improve the lifetime of the physical WSNs.

E. ADAPTIVE PREDICTORS AND PERIODIC VALIDATION
1) ADAPTIVE PREDICTORS
During the operating periods, the prediction model of an
IPV is adapted on-demand to meet the requirement of the
applications. In particular, when an active IPD detects its
prediction error exceeding the given requirement (by compar-
ing its predicted values and its measured values), the active
IPD adapts its filter coefficients using the least-mean square
filter technique to adjust its auto-correlation predictor. Firstly,
the prediction error is calculated as follows.

ε(t) = ω(t)actual − ω(t)predicted (9)

The prediction error is then used to adapt the filter
coefficients as follows.

δ = δ + λωε(t) (10)

where ω = [ω(t − 1), ω(t − 2), . . . , ω(t − k)]T is the input
vector of the filter, and λ is learning rate of the updating
algorithm which is set following [53].

After adapting the auto-correlation predictor, the active
IPD transmits the measured sensing data to its IPV. Upon
receiving the measured sensing data, the IPV also updates
its predictor in the same way. Therefore, an IPD and its
corresponding IPV always use the same predictor. //

2) PERIODIC VALIDATION
As the information correlation among nodes is unknown
prior and may change over time, revalidation is required.
The proposed system performs validation periodically at the
beginning of each round, to ensure that the predicted sens-
ing data meet the requirement of applications. Note that the
length of a round equals to N sensing intervals. In the vali-
dation period with length Tupdating, all IPDs resume to their
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normal duty cycle mode and transmit their measured sensing
data with a sensing interval Is to the sensor cloud. IPVs
obtain new measured sensing data to validate their prediction
model. Correlation among nodes may be updated if changes
are detected. After the validation completion, the scheduling
mechanism is performed again to assign new active IPDs and
inactive IPDs, for energy saving and energy balancing. In our
reserved design, the validation can also be triggered once P
consecutive predicted values don’t meet the requirement of
applications or a new consolidated TDA is found upon a new
application request.

IV. PERFORMANCE EVALUATION
In this section, we present the performance evaluation of
the proposed model with experimental and analysis results
in comparison with state-of-the-art sensing data prediction
schemes [2], [4] for WSNs and the existing on-demand
sensor cloud design, O-SC [8] We conduct extensive sim-
ulations with sensor data collected from the real-world
IntelLab sensor deployment [20] consisting of one sink
node, 108 sensors totally with 54 temperature and 54 humid-
ity Tmote-skype sensors. As implemented in our prior
study [54], HTTP-CoAP converter [54] are reused in this
paper for converting HTTP application requests to CoAP
requests for sensor nodes. We assume that each applica-
tion or user demands one of the sensing data types above.
In the sensor-cloud, we encode application requests using
XML templates and decode with SensorML interpreter for
sensors [23], [24].

TABLE 2. Parameters.

For the WSNs, we use CTP and LPL [55], [56] as the
sensing data collection protocol and the duty-cycled MAC
mechanism. For the radio noise model, we use the closest-
fit-pattern matching (CPM) [55]. We implement counters to
track changes and record the time in each radio state of
sensors to measure the duty cycle of a node. We set the CCA
check parameter up to 400 times, as same as the default
value used in the TinyOS LPL. The detailed configurations
for simulations are presented in Table 2. Other parameters
are kept the same as the default configurations of TOSSIM
CC2420 radio model [55], [56]. The naming scheme [13] is
used for sensors to facilitate the ICC grouping. In theory, for
energy saving, the T deepw can be set equal to RL because deep
sleeping sensors don’t perform any sensing samples during
a round. However, to support new application requests and
validation triggering quickly during runtime, we set T deepw to
31 s only, equal to the sensing interval of sensors. The detailed
implementation of a sensor-cloud prototype with Network

Function Virtualization (NFV) [26] in OpenStack Newton
version [45] is presented in our previous work [25], [49].

A. THE SENSOR CLOUD MODELS’ COMPARISON
In this subsection, we compare the packet transmission over-
head of the proposed model with the existing on-demand
sensor-cloud design, O-SC [8]. For the experiments, we gen-
erate 6 sensing service requests from 6 different applications.
Each request (i.e., from 1st to 6th) in the ascending order is
sent to the sensor-cloud at a random time.We assume the TDA
requirements of applications’ requests are 20%, 15%, 10%,
5%, 2%, and 1%, respectively. We then obtain the number
of packet transmissions in each model when the application
requests are sent. In both of the model, the aggregation
scheme [8] for application requests is performed. We present
the obtained results in figure 3.

FIGURE 3. Percentage of packet transmission comparison.

The figure shows that the proposed model achieves a sig-
nificant reduction in the number of packet transmissions of
physical sensors, in comparison with O-SC. In particular,
when only the first application with the TDA requirement
of 20% requests for sensing services, the proposed model
requires only three percents of packet transmissions in com-
parison with O-SC, for satisfying the same data accuracy
requirement. The reasons are as follows. Firstly, with such a
high TDA level, many sensors with an appropriate correlation
can be grouped into an ICC. Therefore, more sensors within
an ICC are scheduled to sleep, which do not transmit any
packets. Secondly, active IPDs also transmit few packets as
their prediction error is easily lower than the TDA require-
ment of 20%. In the case of O-SC, all sensors are set to be
active and operate with the duty-cycled mode, and all sensors
with packet transmissions transmit their sensing data to the
sensor-cloud.

When requests with the lower TDA requirements
(i.e., higher data accuracy levels) are sent, the proposedmodel
requires a higher percentage of data packet transmissions
from IPDs, to meet the requirement. For example, the pro-
posed model requires as high as 60% of data packet transmis-
sions to satisfy the TDA requirement of 1%, in comparison
with O-SC. In such a case, only nodes with very highly
correlated sensing data can be classified into an ICC and the
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FIGURE 4. Predicted values and real data comparison.

packet transmission reduction mostly relies on the internal
correlation.

The results indicate a clear trade-off between 1) the sensing
data accuracy requirement of applications and 2) the energy
efficiency enhanced for sensors. The proposedmodel exploits
the above trade-off efficiently to improve the energy effi-
ciency of sensors in WSNs when possible, regarding the TDA
requirements of applications. Figure 4 presents a closer look
into the correlation between the average measured sensing
data and the average predicted sensing data of temperature
sensors in the case of TDAappsc = 5%. The figure shows that
the predicted values always fluctuate around the measured
values within a small gap tomeet the requirement. In this way,
the proposed model efficiently maintains the data accuracy
satisfying the application requirements.

FIGURE 5. Packet transmission suppression ratio comparison in a
network consisting of one sink and 108 sensors.

B. PACKET TRANSMISSION SUPPRESSION
RATIO COMPARISON
Figure 5 shows a comparison in term of the average packet
transmission suppression ratio of the proposed model with
OSSLMS and HLMS under different TDA requirements.
The figure shows that the suppression ratio for data packet
transmissions of the proposed model is significantly higher
than OSSLMS [2] and HLMS [4].

The results can be explained as follows. Firstly, in the
proposed model, we implement the prediction scheme at
IPVs in the sensor-cloud with rich resources. As a result,
the predictors at IPVs can be trained using a larger dataset
and more complex mechanisms can be implemented for the
higher efficiency, compared to OSSLMS and HLMS as pre-
sented in section II. In the cases of the two local prediction
schemes, OSSLMS and HLMS can store only a few sensing
data records for training the predictors and simple opera-
tions can be applied due to the resource-constrained issues
of physical sensors, thus limiting the prediction capability.
For that reason, the higher the data accuracy requirement
the greater the improvement ratio the proposed model can
achieve compared to OSSLMS and HLMS. For example,
the gap between the suppression ratio of the proposed model
with that of OSSLMS and HLMS at the TDA requirement of
2% is greater than the gap at the TDA requirement of 5%,
10%, 15%, and 20%.

Secondly, the proposed model exploits the external cor-
relation among nodes in the network for prediction. This
enables a significant number of sensors to go to sleep, thus
not incurring any transmission, while only one active node
within an ICC is responsible to control the prediction quality.
In OSSLMS andHLMS, only the correlation of nodes in local
(i.e., within a cluster) is taken into account. In addition, each
IPD is required to control the prediction quality itself, so all
nodes are required to be active or in the duty-cycled mode.
This doesmean that all nodesmay potentially generate packet
transmissions.

C. THE SUPPRESSION RATIO COMPARISON
IN LARGER SCALE NETWORKS
We now conduct simulations to evaluate the packet trans-
mission suppression ratio of the three schemes in a larger
scale and higher redundant WSN network. To have a larger
scale network, we duplicate the current network of 108 sen-
sors to have a network consisting of two sub-networks with
216 sensors totally. Each sub-network has the same number
of 108 sensors and a sink node. The same data set is used.
The purpose is to create a larger scale network and to create a
higher redundancy of sensors across the two sub-networks.
We carry out the same experiments and measurements as
presented in the previous subsection. Figure 6 shows the
packet transmission suppression ratio of the proposed system,
OSSLMS, and HLMS. By comparing figure 5 and figure 6,
we find that while the suppression ratio of OSSLMS and
HLMS does not change, the proposed system achieves a
significant higher suppression ratio in the new network. For
example, the proposed system helps reduce 88 % of the
number of data transmission, compared to only 75 % of
that in the case of IV. B. The proposed system achieves this
improvement because it considers the external correlation of
all nodes in the network. As a result, the higher redundancy
level of new sensor deployments across the networks is also
exploited. This is one of the key advantages of the proposed
system.
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FIGURE 6. Packet transmission suppression ratio comparison in a
network consisting of two sinks and 216 sensors.

FIGURE 7. Control overhead ratio comparison between the proposed
scheme with OSSLMS and with HLMS.

D. CONTROL OVERHEAD COMPARISON
Figure 7 shows the control overhead comparison between the
proposed model with OSSLMS and with HLMS. The pro-
posed model experiences a higher control overhead, between
7% and 11% higher compared to HMLS and OSSLMS,
respectively. This is a trade-off of the proposed model to
achieve a higher transmission compression ratio, as presented
in figure 5 and figure 5, and a low percentage of required
active sensors as shown in figure 8 and figure 9.

E. PERCENTAGE OF REQUIRED ACTIVE SENSORS
Figure 8 illustrates the percentage of required active sen-
sors of the proposed scheme in comparison with HLMS
and OSSLMS under various TDA requirements. In HLMS
and OSSLMS, all of the resource-constrained sensors are
required to be active in every wakeup interval. Although the
two schemes allow data transmission suppressions, the sen-
sors still have to wake up frequently every cycle to lis-
ten for transmissions and to perform sensing. The proposed
model allows a high percentage of physical sensors to sleep
deeply for energy saving. The percentage of required active
sensors is inversely proportional to the TDA requirement.

FIGURE 8. A comparison of the percentage of required active sensors in a
network consisting of one sink and 108 sensors.

In particular, the lower the TDA requirement, the higher the
number of physical sensors is required to be active for pre-
diction control and for transmitting measured sensing data.

FIGURE 9. A comparison of the percentage of required active sensors in a
network consisting of two sinks and 216 sensors.

Figure 9 presents similar results obtained with the network
consisting of two sub-networks with 216 sensors described
in IV. C. With a duplicated network to create a larger scale
network and a higher redundancy of sensors across the two
sub-networks, the obtained results of the proposed system are
reduced significantly compared to those presented in figure 8.
In particular, the percentage of required active sensors is
reduced nearly a half. This means that more physical sensors
are allowed to sleep deeply. The proposed model exploits the
sensor redundancy well to allow most of the physical sensors
to sleep deeply while HLMS and OSSLMS are not beneficial
from the higher sensor redundancy across the network.

F. WSN LIFETIME COMPARISON
Figure 10 shows a comparison among the three schemes
in term of the average duty cycle of IPDs. The figure
indicates the overall energy efficient benefit achieved by
the proposed model, compared to HLMS and OSSLMS.
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FIGURE 10. Average duty cycle under various wakeup interval values.

In particular, the proposed model witnesses significant lower
average duty cycle results of IPDs in all wakeup interval
settings. The results imply that the proposed model can
achieve a longer network lifetime compared to HLMS and
OSSLMS. The results can be explained as follows. Firstly,
the proposed model requires fewer packet transmissions to
meet the same TDA requirement. Secondly, the proposed
model allows most of physical sensors sleeping deeply in
a long period while HLMS and OSSLMS require all IPDs
to wakeup periodically every duty cycle for checking their
prediction accuracy or transmitting data packets. The above
behaviors explain the performance characteristic of OSSLMS
and HLMS that their duty cycle results are inversely propor-
tional with the value of the wakeup interval. The results of the
proposed model are less impacted by the value of the wakeup
interval since the proposedmodel requires only one sensor for
each ICC to be active and operate at the duty-cycled mode.

TABLE 3. Numerical result with highly interference scenario.

G. SERVICE AVAILABILITY IN HIGH
INTERFERENCE SCENARIO
We create multiple application requests for sensing services
under a high interference scenario as described in [56].
Obtained average latency and request successful rate results
are presented in table 3 which indicates the advantages of the
proposed system in term of increasing the service availability.
As the data are available in the sensor cloud and most of
application requests can be satisfied by predicted values of
IPVs in the sensor cloud, the proposed system helps improve
the response latency and request successful rate significantly
compared to OSSLMS and HLMS even in high interference
scenario.

V. CONCLUSIONS
This paper presents an energy efficient integration model
for WSNs and the sensor cloud, in which IPVs and IPDs

are decoupled to enable IPVs to provide sensing services
regardless of how information objects are produced. The
purpose is to enable IPVs to be able to predict sensing data
of IPDs accurately and use those data for providing sens-
ing services even when IPDs sleep. We design an efficient
interactive prediction scheme for IPVs and IPDs so that IPVs
predict sensing data under control by active IPDs based on the
requirement of applications. Obtained results show that the
proposed model achieves significant improvements in terms
of data transmission suppression ratio, energy efficiency, and
response latency, compared to the existing schemes. In addi-
tion, the model is designed for the sensor cloud to support
multiple applications simultaneously. Most of IPDs in the
proposed model are allowed to sleep deeply, instead of just
suppressing data transmissions like the existing schemes.
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