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ABSTRACT Under extreme low-lighting conditions, images have low contrast, low brightness, and high
noise. In this paper, we propose a principal component analysis framework to enhance low-light-level
images with decomposed luminance–chrominance components. Amulti-scale retinex-based adaptive filter is
developed for the luminance component to enhance contrast and brightness significantly. Noise is attenuated
by a proposed collaborative filtering employed to both the luminance and chrominance components that
reveal every finest detail by preserving the unique features in the image. To evaluate the effectiveness of
the proposed algorithm, a simulation model is proposed to generate nighttime images for various levels of
contrast and noise. The proposed algorithm can process a wide range of images without introducing ghosting
and halo artifacts. The quantitative performance of the algorithm is measured in terms of both full-reference
and blind performance metrics. It shows that the proposed method delivers state-of-the-art performance both
in terms of objective criteria and visual quality compared to the existing methods.

INDEX TERMS Contrast enhancement, denoising, principal component analysis.

I. INTRODUCTION
Recently the enhancement of low-light image has attracted
broad interests tremendously, because of increasing demand
of night-time imaging to visualize extensive activities of
interest taking place in the dark, that is required by numer-
ous applications including video surveillance, computational
photography, and medical imaging. Over the last several
decades, there have been substantial improvements inmodern
digital cameras including resolution and sensitivity to obtain
images with optimum contrast. Despite these improvements,
quality of images in low-light conditions is still limited.
Low-light images have low illumination, low contrast and
high noise. Low-light images have low signal-to-noise ratio
which means high noise. Enhancing the contrast of night
images is very vital to monitor the objects or activities of the
scene clearly.

Several contrast enhancement techniques have been intro-
duced to obtain clear night images with least noise. However,
it remains a challenging task to enhance the contrast while
keeping the noise minimal. Noise increases when the illumi-
nation is increased, but on the other hand, reducing the noise
results in low brightness and contrast [1]. Many researchers
have attempted to obtain clear night images by increasing

the contrast. However, night images have both low contrast
and high Poisson noise [2]. Some researchers focused on
denoising the additive white Gaussian noise, whereas night
images contain Poisson noise. Treating the Poisson noise
while increasing the contrast remains a challenge.

Enhancing the contrast alone increases the brightness and
luminance of the image, thereby making the image visible
to the human eye. Syed and Justin [3] modified traditional
histogram equalization to maintain the color information.
Each color channel is enhanced separately by multiplying
the ratio of the enhanced luminance to original luminance.
However, the enhancement is restricted due to the loss of
information in the frames. Yamasaki et al. [4] decomposed
the image into illuminance and reflectance components to
reproduce a natural image. The illuminance component was
treated by a denighting algorithm. But this technique intro-
duced ghosting artifacts. Li et al. [5] used algorithms like
tone mapping, histogram equalization, histogram stretching,
and gamma correction to recover visual information in low
light images and videos. Although this approach produced
visually pleasing enhancement results, it still needs informa-
tion from successive frames in order to apply for a single
image. Xiang et al. [6] implemented a de-haze algorithm to
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the inverted input image in order to amplify the intensity.
It introduced halo artifacts along with enhanced contrast.
Rivera et al. [7] used an adaptive transformation function
specialized for low-light images. This method enhanced the
contrast of dark images, but could not recover information
from shadowed or dark areas that had near-black inten-
sities. A retinex model is used to process color images.
This method enhanced high-frequency information such as
edges and corners. However, they could not effectively avoid
uneven contrast [8]. Meylan and Susstrunk [9] proposed
a center–surround retinex based adaptive filter for high
dynamic range (HDR) rendering. However, difficulties arose
when the recorded images suffered from the loss in clarity
of details and color as the distance from lighting source
increased. All these methods successfully enhanced the con-
trast but amplified the noise. Noise amplification results in
significant degradation of image quality. Therefore, simulta-
neous contrast enhancement and denoising of images remain
a major challenge.

Denoising technique processes noisy images to remove the
unwanted noise and restores the original image for obtain-
ing useful information. Several algorithms have been pro-
posed to reduce noise in spatial and spatiotemporal domains.
Bennett and McMillan [10] presented an adaptive spatiotem-
poral accumulation filter for reducing noise in low dynamic
range videos in addition to tone mapping. Kim et al. [11]
used the spatiotemporal filter to suppress noise in the
low-light-level video. However, strong denoising causes
over-smoothing and blurring effect. Paris et al. [12] used a
bilateral filter to smooth noisy images while preserving the
edges. Nonetheless, direct implementation of bilateral filter
does not achieve real-time performance on high definition
content. It also leads to over-smoothing and edge sharpening.
Dong et al. [13] captured multiple images and calculated the
mean to remove noise. Each pixel was obtained as a weighted
average of pixels centered at regions that are similar to the
region centered at the estimated pixel. However, this method
is impractical for a single image. Dong et al. [14] proposed a
typical joint distribution wavelet method for removing noise
from digital images. Although the wavelet-based method is
popular and dominant in denoising, it introduces ringing
artifacts, additional edges or structures in the denoised image.
Talebi andMilanfar [15] pre-filtered the noisy image by using
the bilateral filter. Eigenvectors were approximated by using
Nystrom and Sinkhorn approximation. Truncated and itera-
tive filters were used to get the denoised image. This process
could be prolonged and complicated if the eigenvalues were
to be estimated for the full image. BM3D [16] processes a
noisy image in a blockwise manner forming a 3D array and
filtered by 3D transform-domain shrinkage. References [9]
and [16] proved to be a very promising method for contrast
enhancement and denoising.

For night image enhancement, both contrast and noise
have to be processed simultaneously. Enhancing the contrast
alone increases the visibility of the images but amplifies the
noise which can conceal important information. On the other

hand, denoising alone removes the noise and restores the
original image by preserving useful information, but results
in low visibility. Recently a decomposition approach which
extracts independent components of low-light images for
separate processing of contrast and noise have arisen. Bright
channel [17], bilateral filtering [18], wavelet transform [19],
total variation [20] and sparse representation [21] have been
applied to extract two or several components, which can
be base-detail components, low-high frequency components,
and space-time components. Contrast and noise can be dealt
with separately in different components. However, compo-
nents in those decomposition methods are not orthogonal.
Therefore, the processing of contrast and noise in the compo-
nents are correlated with side effects. Fu et al. [22] proposed a
fusion-based (FB)method to adjust the illumination by fusing
multiple derivations of the initially estimated illumination
map. Its performance is promising but loses the realism of
regions with rich textures due to the blindness of illumination
structure.

Besides contrast enhancement and denoising, the eval-
uation of these algorithms is also important. The pro-
posed algorithm has to be evaluated and compared with
the state-of-the-art. Currently algorithms are evaluated from
two aspects: qualitative and quantitative [23]. Image quality
assessment (IQA) is significant in image processing due to
its assistance in the development of enhancement [24] and
denoising. Existing IQA techniques are devout to compres-
sion, transmission error, noise and blurring artifacts [25].
Based on the accessibility of reference source images to
be compared with during the experiments, IQA approaches
can be classified into three categories: full- reference (FR),
reduced reference (RR), and no-reference (NR)/ blind met-
rics. FR algorithms are provided with the original undistorted
visual stimulus along with distorted stimulus whose quality
is to be assessed e.g., peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) [26]. RR methods work
under the situation that the image can be partly available
to assist in IQA tasks [27]. Finally, in blind metric method
the original image is unavailable or the algorithm is pro-
vided only with distorted stimulus. e.g., blind pseudo ref-
erence image [28], NR image quality metric for contrast
distortion (NIQMC) [29], and blind image quality measure
of enhanced images (BIQME) [30], blind multiple pseudo
reference image [31].

In our previous work [32], we introduced an image
enhancement algorithm that enhances the contrast and a
bilateral filter is used in the RGB channel for denoising,
which results in over smoothing of images. But, in this
paper, we propose a retinex based adaptive filter for Con-
trast Enhancement and Denoising (CED) algorithm by Prin-
cipal Component Analysis (PCA) transform. Collaborative
filtering is used to reduce the Poisson noise effectively and
enhance the brightness and contrast of an image.

PCA is a method of discovering the dependencies in data
and used for data dimension reduction, compression, and
correlation. It transforms many possibly correlated variables
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FIGURE 1. Flow of CED algorithm.

into a smaller number of new independent variables known as
principal components [33]. It is used in image processing for
image color reduction and determination of selected object
orientation. In our work, the image is first transformed into
luminance-chrominance components by using PCA. Global
and local tone mapping algorithms are developed to eliminate
halo and ghosting artifacts that were encountered in previ-
ously developed methods. Retinex based adaptive filter and
collaborative filters are devised for contrast enhancement and
denoising respectively.

A simulation model is also proposed to evaluate the effec-
tiveness of the proposed CED algorithm for various levels
of noise and contrast using generated images. Real images
cannot be used to validate the effectiveness of the proposed
algorithm for various levels of noise and contrast because
in real night images the level of noise and contrast cannot
be measured. Experimental results of this simulation model
demonstrate that the proposed CED algorithm produces opti-
mum contrast enhancement without artifacts and eliminates
Poisson noise in night images.

The paper is organized as follows: The developed CED
algorithm is described in section II and the proposed simula-
tion model in section III. Experimental results and compari-
son with some existing algorithms are presented in section IV
and relevant conclusions in section V.

II. CED ALGORITHM
Enhancing the contrast while keeping the noise minimal
remains a challenge because noise increases when the illu-
mination is increased. On the other hand, reducing the noise
results in low brightness and low-contrast. Denoising fol-
lowed by contrast enhancement introduces ringing artifacts.
So, in our work the image is first enhanced by contrast
followed by denoising to obtain better results. The lumi-
nance and chrominance components are processed in par-
allel. Because in color images, detail perception of each
pixel is obtained from the luminance component since human

vision system is not well suited to detect structures defined
by varying chrominance values. Applying an enhancement
technique to individual RGB channels boosts noise, since
enhanced noisy chrominance edges generates more noise in
the luminance. The contrast enhanced noisy image is first
grouped by block matching to find the blocks that are similar
to reference one and stack them together to form a 3D array.
Collaborative filtering by hard thresholding is performed at
the initial step because the noise in the initial step is assumed
to be significantly attenuated. In the second step, Wiener
filtering is applied to obtain the final denoised image.

A global framework of the proposed CED algorithm is
shown in Fig. 1. It includes both contrast enhancement and
denoising stages. The input RGB image I is decomposed
into luminance and chrominance components through PCA.
An adaptive filter is applied to the luminance component to
obtain enhanced luminance L ′. Saturation enhanced chromi-
nance and L ′ are combined to obtain the contrast-enhanced
image ICE in PCA domain for denoising. ICE is denoised
through block grouping in PCA domain through effective
filtering by hard thresholding to obtain the basic estimate
b̂basic. The b̂basic is then grouped and filtered by Wiener filter
to acquire ICED. Inverse PCA transform is applied to ICED to
obtain the output image.

A. CONTRAST ENHANCEMENT
The input RGB image I is decomposed into luminance and
chrominance components and processed in parallel. PCA
luminance component is obtained from the first principal
component of I . Tone mapping algorithm is implemented
to the PCA luminance to obtain globally corrected lumi-
nance. Multi-scale retinex based adaptive filter is applied
in log domain to the globally corrected luminance. L ′ is
acquired after histogram modification is pertained to scale
the luminance of the image to circumvent over enhance-
ment. Simultaneously, in the chrominance channels a tone
mapping algorithm is implemented to the input image I for
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global compression, and the logarithm is applied to this glob-
ally corrected image. The globally corrected image is then
transformed to obtain luminance – chrominance components
through PCA transform. Weighting factor α is introduced
in chrominance components to compensate for the loss of
saturation. Enhanced chrominance and L ′ are combined to
obtain ICE .
PCA luminance-chrominance channels are obtained by

converting the I using PCA transform. PCA of I can be
described as a transform of a given set of n pixels with
the same length M formed in n-dimensional vector X =
[x1, x2, . . . xn], xi = (ri, gi, bi)T, into a set of vectors Y =
[y1, y2, . . . yn], yi = (L,C1i,C2i)T, according to the equation,

Yi = A (xi − m̄) (1)

where m̄ is a mean vector andA is a transformmatrix obtained
by6x . Each row of the vector xi consists ofM values belong-
ing to one input. The mean vector m̄ of all pixels is given as
follows,

m̄ = E{x} =
1
M

M∑
i=1

xi (2)

The luminance component of I from PCA are L =

[l1, l2, . . . ln], and chrominance components of I from PCA
are C1 = [c11, c12, . . .c1n] and C2 = [c21, c22, . . . c2n].
Covariance matrix 6x is defined as follows:

6x = E
{
(x − m̄) (x − m̄)T

}
=

1
M

M∑
i=1

xixTi − m̄m̄
T (3)

The size of 6x is 3 × 3 and the diagonal elements 6x(j, j),
1 ≤ j ≤ 3 are the variances of red, green and blue chan-
nels individually. The non-diagonal elements 6x(j, k) are the
covariances between two channels.

To perform PCA, it is necessary to find the eigenval-
ues λ and eigenvectors e of 6x . The three eigenvectors ej,
1 ≤ j ≤ 3, are arranged in decreasing order following the
eigenvalues λj. The transform matrix A = [λ1, λ2, λ3]T is
obtained by combining the sorted eigenvalues and its value
is replaced in (1). The luminance chrominance components
are decomposed from (1) and are given by the following
equation,

L = λT1 (xi − m̄)

C1i = λ
T
2 (xi − m̄)

C2i = λ
T
3 (xi − m̄) (4)

The matrix theory implies that the image obtained by recon-
struction with matrix λT1 (largest eigenvalue) contains the
majority of information which has the maximum contrast.
The luminance L is given by the first principal component
of I, which lies in the range [0, 1].

The PCA luminance and chrominance channels are
enhanced separately but simultaneously. The global tone

mapping function is approximated by the power function [9],

< = (L)1/γ (5)
1
γ
=

(
1,

1
6
L̄ +

2
3

)
(6)

where the value of 1
γ

is a linear function of the average
luminance and lies in the range [ε, 1]. The coefficient of the
linear function is defined experimentally as follows: for the
image with high or average brightness, 1

γ
= 1 is assigned.

If the average luminance decreases, the exponent value also
decreases, resulting in an increase in the sensitivity for dark
areas. The average luminance value L̄ is computed by taking
the average of log encoded pixels.

L̄ =

∑
(x,y)∈L log (L (x, y))

M
(7)

whereM is the number of pixels and (x, y) is the pixel coordi-
nates in L. Tone mapping algorithm applied to the luminance
component improves the brightness and contrast.

After global tone mapping, local processing is performed
by an adaptive multi-scale retinex (MSR) to compute a new
value for each pixel by taking the difference between the
log-encoded treated pixel and log encoded value of the mask.
The MSR combines several single-scale retinex outputs to
produce a single output image, which has good dynamic
range compression, color constancy and tonal rendition [34].
The MSR is applied to the luminance channel to increase
the contrast and brightness of the image. Therefore, the new
luminance <̄(x, y) after applying MSR is described by the
equation,

<̄(x, y) =
∑
i

Wk
[
log (<(x, y))− β(x, y) log(mask(x, y))

]
(8)

β (x, y) = 1−
1

1+ e−7(<(x,y)−0.5)
(9)

To achieve adaptive local normalization, a weighting factor
β(x, y) is introduced. The weighting factor β maps the white
pixels to white and the black pixels to black. Mask denotes
weighted average of the treated pixel’s surrounding area. The
mask weights of high and low-intensity pixels are close to
0 and 1 respectively. The mask is computed specifically for
each pixel using the equation,

mask (x, y) =

360∑
θ=0

rmax∑
r=0
< (x + r cos θ, y+ r sin θ)er

2/σ 2θ,r

360∑
θ=0

rmax∑
r=0

er
2/σ 2θ,r

(10)

where θ is the angle of the radial direction and r is the distance
to the central pixel and σθ,r is given as follows:

σ 2
θ,r =

{
σθ , no high - contrast edge - crossed
σ1, high - contrast edge - crossed

(11)
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The value of the mask at coordinates (x, y) is given by the
weighted average of the surrounding pixels of the Gaussian
function. An adaptive filter is used to minimize the tradeoff
between the increase in local contrast and good rendition of
the image. It prevents from halo artifacts and adapts to high
contrast edges in the image. The spatial constant changes in
accordance with high contrast image edges. Central pixel is
chosen as the first pixel and masking is done by selecting one
pixel after another in a radial manner. If an edge is crossed,
σθ,r is given smaller value σ1 otherwise, σ0 is assigned. σθ,r is
reset to its initial value σ0 for each new radial direction.

To scale the luminance of the image, histogram modifica-
tion [35] is implemented to reduce the over contrasted areas in
the enhanced image. After histogrammodification, histogram
equalization [36] is accomplished to adjust the contrast of
the image to avoid over enhancement problem. PCA chromi-
nance is obtained after applying a tone-mapping algorithm
from (6) to I and logarithm to the tone mapped image in
the chrominance channels. The chrominance channels are
weighted by a factor α to compensate for the loss of color
saturation induced by enhanced luminance. Finally, the ICE

for denoising is obtained by combining saturation enhanced
chrominance channels and L ′ (obtained after histogram mod-
ification and equalization).

ICE = L ′ × αC1 × αC2 (12)

B. DENOISING
Noise in low light images is usually caused by thermal
noise in the camera’s electronic circuitry. At low light levels,
the gain of the image sensor in a camera is increased to
boost the signal to an acceptable level. As a result, the noise
is augmented. This noise is referred to as Poisson noise.
Eliminating the Poisson noise in low light images is very
essential to obtain useful information. In this work, the image
is denoised in PCA transform domain through effective filter-
ing in 3D transform domain (hard-thresholding and wiener
filtering) by sliding window transform processing and block
matching, which are stacked together to form a 3D array.
The final estimate is obtained by the weighted average of
all the overlapping block estimates. Denoising is a two-step
algorithmwhere a basic estimate is produced by grouping and
hard-thresholding. In the second step, basic estimate is used
for grouping and Wiener filter is applied to obtain the final
estimate. The final estimate is the denoised image which is
then converted back to RGB color space by applying inverse
PCA transform. The noisy image is modeled as

ICE (x) = J (x)+ N (x) (13)

where ICE , J and N are the contrast-enhanced noisy image,
the noise-free image, Poisson noise and x is the 3D spatial
coordinate that belongs to the image domain X ⊂ Z3.
Grouping is realized by similarity and block matching

within the noisy image. The purpose of grouping is to collect
similar d-dimensional fragments of a given signal into a d+1
dimensional data structure. A 3D array is formed by stacking

FIGURE 2. Classification of contrast levels. (a) LLL, (b) VLLL, (c) HDR.

grouped blocks located in the region ICE . The inverse of the
distance measure gives the similarity value between signal
fragments. Smaller the distance, higher the similarity value.
Grouping by matching is realized through finding similarity
between reference and candidate signal fragments located
at different spatial locations. The fragments are considered
mutually similar and subsequently grouped if the distance
from the reference one is smaller than the given threshold.
With ICEx , we denote a block of size N1 × N1 in ICE where
ICEx is located at x in ICE . For noisy image ICE , the block
distance is calculated from the noisy blocks ICExR and ICEx as

Dnoisy
(
ICExR , I

CE
x

)
=

∥∥ICExR − ICEx ∥∥2
2(

Bht1
)2 (14)

where ‖.‖2 denotes l2 norm, ICExR is the currently processed
block (located at the current coordinate xR ∈ X ) and denom-
inate it reference block and Bht1 is the block size. Block
matching (BM) using ICEx as a reference block, the result is the
set Hx which contains the coordinates of the matched blocks.

Hx = BM
(
ICEx

)
(15)
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FIGURE 3. Enhancement results of the proposed algorithm. (a) - (d) Real night images of different scenes, (e) - (h) corresponding results.

FIGURE 4. Comparative analysis of different algorithms with real night
image. (a) Night image, (b) contrast pair, (c) P-retinex, (d) FB, and (e) CED.

Noise attenuation is performed efficiently by collaborative
filtering using 3D transform and shrinkage of transform
spectrum.

To obtain the basic estimate, the noise is attenu-
ated by applying hard thresholding shrinkage operator
to the transform coefficients

(
HT

(
T3D

(
ICEHx

)
, λ3Dσ

))
.

FIGURE 5. Comparing the average results of various real night images for
different evaluation metrics. (a) Blind metric, (b) full-reference metric.

The coefficients are obtained by applying a 3D transform to
each group to obtain the sparse representation of the signal,

ŶHx = T−13D

(
HT

(
T3D

(
ICEHx

)
, λ3Dσ

))
(16)

where ŶHx is a group of block-wise estimates Ŷ xx ′ ,∀x
′
∈

Hx .ICEHx denotes a group (i.e. a 3D array) formed by stacking

together the blocks ICEx ∈ Hx ,
(
T3D

(
ICEHx

))
is the spectrum

of ICEHx using 3D linear transform T3D which should have a
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DC basis element (e.g. 3D-DCT, 3D-DFT, etc.) and λ3Dσ is
a fixed threshold parameter. The basic estimates b̂basic are
obtained by the inverse 3D transform of the filtered coef-
ficients. The basic estimate is computed by aggregation of
block-wise estimates Ŷ xx ′ ,∀x

′
∈ XR and ∀x ′ ∈ Hx using

weighted averaging with weight,

WH = Ŷ xx ′ =
1

σ 2Nh(x)
W2D (17)

b̂basicx (x) =

∑
xR∈X

∑
xm∈Hx

Ŷ xx ŶHx (x)∑
xR∈X

∑
xm∈Hx

Ŷ xx ′χxm(x)
, x ∈ X (18)

where Nh(x) is the number of non-zero coefficients retained
after hard thresholding T3D(ICEHx ) and W2D is a 2D Kaiser
window of size N1 × N1.
In the second step, the obtained basic estimate b̂basic is used

for grouping and Wiener filter is applied to obtain the final
estimate b̂final . In this case, the denoising can be improved
because the noise in b̂basic is assumed to be significantly
attenuated. The Wiener filter shrinkage operator is applied
and the same procedure is followed.

Wx = BM
(
b̂basicx

)
(19)

ŶWx = T−13D

T3D (ICEWx

) (
T3D

(
b̂basicWx

))2
(
T3D

(
b̂basicWx

))2
+ σ 2

 (20)

Wiener shrinkage coefficients are defined from the basic
estimate of 3D transform coefficients. The Inverse transform(
T−13D

)
is applied to produce the block-wise estimates located

at matched locations. To compute the final estimates b̂final of
the image, block wise estimates are aggregated by a weighted
average of the obtained block wise estimates.

WW = Ŷ xx ′ = σ
−2

∥∥∥∥∥∥∥
[
T3D(b̂basicWx

)
]

[
T3D(b̂basicWx

)
]2
+ σ 2

∥∥∥∥∥∥∥
−2

2

W2D (21)

ICED = b̂finalx (x) =

∑
xR∈X

∑
xm∈Wx

Ŷ xx ′ ŶWx (x)∑
xR∈X

∑
xm∈Wx

Ŷ xx ′χxm(x)
, x ∈ X (22)

where χxm : X → {0, 1} is the characteristic function of the
square support of a block located at xmε X. The final estimate
b̂final is the denoised image ICED in PCA domain. The final
denoised or the output image I ′ is obtained by transforming
ICED to RGB color space by applying inverse PCA transform.

III. NIGHT IMAGE SIMULATION MODEL
Night image simulation model is imperative to validate the
effectiveness of the proposed algorithm. Real night images
cannot be used to validate the effectiveness of the proposed
algorithm for various levels of noise and contrast because
in real night images the level of noise and contrast cannot

FIGURE 6. Verification of simulation model. (a) Source image, (b) real
night image, (c) simulated night image, and (d) quantitative analysis.

be measured. To do so, first night images are classified into
three levels based on the contrast: low light level (LLL), very
low light level (VLLL) and HDR images. In LLL, the image
is completely dark and the objects in the scene are partially
recognizable by the human eye. In VLLL, the overall image
is dark and objects in the scene are unrecognizable by the
human eye. HDR images have both brightest and darkest
areas due to the photosensitive element that lies in saturated
and unsaturated conditions. In LLL and VLLL images, dark
areas are due to the photosensitive element in an unsaturated
state. Fig. 2 shows the LLL, VLLL and HDR images with
their respective histograms. For LLL andVLLL, night images
are simulated from day image at different contrast levels by
first, decreasing the luminance d and then, histogram com-
pression α. The value of d is calculated from the cumulative
distribution function (CDF) with respect to threshold t . The
simulation is represented by the equation,

f (x) = α (max (x − d, 0)) , d = min {i |cdf (i) ≥ t } (23)

Similarly, HDR image is simulated by luminance saturation
d and histogram stretching α using the following equation,

f (x) = αmin
(
max (x − dlow, 0) , dhigh − dlow

)
(24)
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FIGURE 7. Comparisons of algorithms. (a) Various levels of contrast,
(b) various levels of noise.

where dlow = min {i |cdf (i) ≥ tlow },

dhigh = max
{
i
∣∣cdf (i) ≤ 1− thigh

}
,

0 ≤ tlow, thigh ≤ 1, tlow + thigh ≤ 1 (25)

Poisson noise in the night image is simulated by using the
equation,

g(z) =
e−ρρf (z)

f (z)!
(26)

where g(z), f (z) and ρ are the noisy image, the original
image and expected number of photos per unit interval
respectively.

IV. EXPERIMENTAL RESULTS
In this section, experiments were conducted with real night
images under various scenes for different lighting condi-
tions with and without human objects for subjective and
objective evaluations. The proposed algorithm is compared

FIGURE 8. Analysis of different color transforms for real night images.
(a) FR metrics, (b) blind metric.

with other existing contrast enhancement and denoising algo-
rithms for various levels of contrast, noise, and their results
are compared. The contrast and denoise analysis are done
individually utilizing generated image because the real night
image contains both noise and low contrast and it is impos-
sible to analyze separately. our simulation model is verified
by comparing real and generated night image and the results
are analyzed using FR performance metrics. Results of sim-
ulation model show that the generated image is analogous
to real night image which can be used to validate the effec-
tiveness of the proposed algorithm. Experiments are done to
analyze PCA and it is compared with other color transforms
to justify that PCA performs better in comparison with other
color transforms. For all the experiments, images were cap-
tured using SONY ILCE-7 digital camera with a resolution
1024× 768.

A. COMPARATIVE ANALYSIS OF REAL IMAGES
For real night images of different scenes Fig. 3 (a) - (d) show
some samples of images that suffer from low light conditions.
The results of the corresponding images enhanced using the
proposed algorithm are shown in Fig. 3(e) – (h). The proposed
algorithm is also compared with other existing algorithms
such as P-retinex [9], contrast pair [7], and FB [22] for LLL
image in the outdoor scene and the results are displayed
in Fig. 4. It is evident that the proposed CED algorithm
enhances contrast, removes noise and maintains consistency
in colors, while other algorithms improve only the contrast.
In the case of contrast pair (Fig. 4 (b)), the human person
is not clearly visible, while the image looks unnatural in
the case of P-retinex method (Fig. 4(c)) and FB introduces
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FIGURE 9. Contrast and denoise analysis of various algorithms for simulated image. (a) reference image, (b) example of one
simulated image (α = 0.3, ρ = 50), (c) contrast analysis with FR metric, (d) contrast analysis with blind metric, (e) denoise analysis
with FR metric, (f) denoise analysis with blind metric.

checkerboard artifacts in the image as shown in Fig. 4(d).
It is encouraging to notice that the CED algorithm avoids
over enhancement (Fig. 4 (e)). Therefore, it is obvious that
the proposed algorithm achieves better results by preserving
the brightness up to the required level without introducing
undesirable artifacts.

To substantiate the above results experiments were con-
ducted for more real night images and their results are com-
pared with state-of-the-art low light algorithms. The plots in
Fig. 5 (a) and Fig. 5 (b) give the average results of eight
(LLL and VLLL) real night images. The results are vali-
dated both in terms of blind (NIQMC and BIQME) and FR
(SSIM and PSNR) assessment methods. It is evident that the
proposed method obtains better results compared with the
state-of-the-art algorithms.

To quantify the subjective evaluation of our method,
we conducted an independent user study. In this experiment
we used different kinds of real night images and enhance them
using contrast pair, P-retinex, FB and our proposed method.
For each test we randomly order the outputs of the four algo-
rithms and the original image and display them on the screen.
We separately asked 25 participants to select the image with
best visual quality according to one’s perception. From these
trails, the percentage of times a viewer selected the output
of the proposed method is 60.9%. Input images and three
other methods correspond to 0.89%, 10.3%, 12.53%, and
15.32% respectively. This small-scale experiment gives
additional support to our conclusion in the qualitative
evaluation.
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B. SIMULATION MODEL VERIFICATION
Simulation model verification is inevitable to evaluate the
effectiveness of the proposed CED algorithm because real
night images cannot be used to validate the effectiveness
of the proposed algorithm. To verify the simulation model,
real and generated night images (from real day image) are
compared in Fig. 6. The quality of the images is mea-
sured using SSIM and PSNR. The results exhibit that the
simulated and real night images have similar appearances.
Quantitative analysis reveals that the quality of simulated
night image is analogous to real night image. In Fig. 7,
simulated night image is used to compare the SSIM outputs
of the proposed algorithm with those state-of-the-art tech-
niques such as contrast pair and P-retinex. The effective-
ness of the algorithm is evaluated using a simulated image
for various levels of contrast with fixed noise ρ = 3000
and noise with constant contrast d = 0.03; α = 0.7.
It can be seen from the figure that the proposed method
demonstrates the best performance compared with other
techniques.

C. PCA ANALYSIS OF REAL IMAGES
PCA analysis with other color transforms is ineluctable as
it is indispensable for the proposed work. PCA explores the
variance-covariance or correlation structure of samples in
vector form. It uncovers the spectral properties of colorants
to process the information for better results. Experiments
were performed for different color transforms YIQ, HSV, and
PCA for ten various types of real images including LLL and
VLLL images and the average are calculated. The experi-
mental results of different color transforms are compared and
measured with both FR and blind assessment methods where
day image is adopted as the reference. Fig. 8 clearly exhibits
that PCA obtains better scores that imply better quality of
images.

D. CONTRAST ANALYSIS
Contrst enhancement algorithms such as contrast pair and
P-retinex are applied to the simulated night images and their
result are compared with the proposed algorithm. The source
image (Fig. 9(a)) is simulated for various levels of contrast
and noise. Fig. 9(b) is the example of one simulated image
that is generated with α = 0.3, ρ = 50. The quantitative
results of the algorithm for various levels of contrast and fixed
noise are calculated using one FR and blind performancemet-
ric as shown in Fig. 9(c) and (d). The results demonstrate that
CED-CE (only contrast enhancement) surpass other existing
algorithms in terms of contrast and brightness consistently.

E. DENOISE ANALYSIS
Enhancing the contrast amplifies the noise which makes
denoising predominant. Poisson noise is inversely pro-
portional to the level of contrast in the night image.
The daytime image is used as a reference for quantitative
analysis for comparing CEDwith other denoising algorithms.

Poisson noise is random in nature and leads to degradation
of image quality and errors. Bilateral filter [37], CED and
kernel regression [38] denoising algorithms are applied to
the simulated noisy image and their results are compared
in Fig. 9(e) and (f). Bilateral filter smoothens the image while
preserving the edges. But for high noise levels, the image
looks like painting due to smoothing effect. Kernel regression
algorithm preserves the details in the image but the noise is
still present. However, CED-denoising filter not only removes
noise but also preserves the details in the image.

V. CONCLUSION
An effective CED algorithm has been proposed to per-
form contrast enhancement and denoising for night images.
Retinex based adaptive filter is applied in three scales to
improve the contrast and brightness significantly. Noise is
attenuated through collaborative filtering which reveals even
the finest details of the image. The artifacts found in tra-
ditional methods are successfully eliminated. Experimental
results show that the proposed algorithm can achieve better
image quality compared with other state-of-the-art methods.
A mathematical model for image degradation is presented to
check the effectiveness of the algorithm through simulation.
Although the simulated and real night images have similar
appearances, the quantitative analysis of simulation model
shows that the model can be improved further.

REFERENCES
[1] Z. Ling, Y. Liang, Y.Wang, H. Shen, and X. Lu, ‘‘Adaptive extended piece-

wise histogram equalisation for dark image enhancement,’’ IET Image Pro-
cess., vol. 9, no. 11, pp. 1012–1019, 2015, doi: 10.1049/iet-ipr.2014.0580.

[2] T. Thaipanich, B. T. Oh, P.-H. Wu, D. Xu, and C.-C. J. Kuo, ‘‘Improved
image denoising with adaptive nonlocal means (ANL-means) algorithm,’’
IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2623–2630, Nov. 2010,
doi: 10.1109/TCE.2010.5681149.

[3] M. S. Sayed and D. Justin, ‘‘Low complexity contrast enhancement algo-
rithm for nighttime visual surveillance,’’ in Proc. Int. Conf. Intell. Syst.
Design Appl., Cairo, Egypt, Nov. 2010, pp. 835–838.

[4] A. Yamasaki, H. Takauji, S. I. Kaneko, T. Kanade, and H. Ohki, ‘‘Denight-
ing: Enhancement of nighttime images for a surveillance camera,’’ in Proc.
Int. Conf. Pattern Recognit., Tampa, FL, USA, Dec. 2009, pp. 1–4.

[5] L. Li, R. Wang, W. Wang, and W. Gao, ‘‘A low light image enhancement
method for both denoising and contrast enlarging,’’ inProc. IEEE Int. Conf.
Image Process., Montreal, QC, Canada, Sep. 2015, pp. 3730–3734.

[6] X. Zhang, P. Shen, L. Luo, L. Zhang, and J. Song, ‘‘Enhancement and
noise reduction of very low light level images,’’ in Proc. Int. Conf. Pattern
Recognit., Tsukuba, Japan, Nov. 2012, pp. 2034–2037.

[7] A. R. Rivera, B. Ryu, and O. Chae, ‘‘Content-aware dark image enhance-
ment through channel division,’’ IEEE Trans. Image Process., vol. 21,
no. 9, pp. 3967–3980, Sep. 2012, doi: 10.1109/TIP.2012.2198667.

[8] Y.-K. Wang and W.-B. Huang, ‘‘A CUDA-enabled parallel algorithm
for accelerating retinex,’’ J. Real-Time Image Process., vol. 9, no. 3,
pp. 407–425, 2014, doi: 10.1007/s11554-012-0301-6.

[9] L. Meylan and S. Susstrunk, ‘‘High dynamic range image rendering with a
retinex-based adaptive filter,’’ IEEE Trans. Image Process., vol. 15, no. 9,
pp. 2820–2830, Sep. 2006, doi: 10.1109/TIP.2006.877312.

[10] E. P. Bennett and L. McMillan, ‘‘Video enhancement using per-pixel
virtual exposures,’’ in Proc. ACM SIGGRAPH, Los Angeles, CA, USA,
2005, pp. 845–852.

[11] M. Kim, D. Park, D. K. Han, and H. Ko, ‘‘A novel approach for
denoising and enhancement of extremely low-light video,’’ IEEE Trans.
Consum. Electron., vol. 61, no. 1, pp. 72–80, Feb. 2015, doi: 10.1109/
TCE.2015.7064113.

[12] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, ‘‘Bilateral filtering:
Theory and applications,’’Found. Trends Comput. Graph. Vis., vol. 4, no. 1,
pp. 1–73, 2009, doi: 10.1561/0600000020.

VOLUME 7, 2019 3091

http://dx.doi.org/10.1049/iet-ipr.2014.0580
http://dx.doi.org/10.1109/TCE.2010.5681149
http://dx.doi.org/10.1109/TIP.2012.2198667
http://dx.doi.org/10.1007/s11554-012-0301-6
http://dx.doi.org/10.1109/TIP.2006.877312
http://dx.doi.org/10.1109/TCE.2015.7064113
http://dx.doi.org/10.1109/TCE.2015.7064113
http://dx.doi.org/10.1561/0600000020


S. A. Priyanka et al.: Low-Light Image Enhancement by Principal Component Analysis

[13] W. Dong, L. Zhang, G. Shi, and X. Li, ‘‘Nonlocally centralized sparse
representation for image restoration,’’ IEEE Trans. Image Process., vol. 22,
no. 4, pp. 1620–1630, Apr. 2013, doi: 10.1109/TIP.2012.2235847.

[14] W. Dong, G. Shi, and X. Li, ‘‘Nonlocal image restoration with bilateral
variance estimation: A low-rank approach,’’ IEEE Trans. Image Process.,
vol. 22, no. 2, pp. 700–711, Feb. 2013, doi: 10.1109/TIP.2012.2221729.

[15] H. Talebi and P. Milanfar, ‘‘Global image denoising,’’ IEEE Trans.
Image Process., vol. 23, no. 2, pp. 755–768, Feb. 2014, doi: 10.1109/
TIP.2013.2293425.

[16] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, ‘‘Color image denois-
ing via sparse 3D collaborative filtering with grouping constraint in
luminance-chrominance space,’’ in Proc. IEEE Int. Conf. Image Process.,
San Antonio, TX, USA, Sep./Oct. 2007, pp. 313–316.

[17] J. Yang, ‘‘Enhancement of LLLIs with improved BCP and matrix com-
pletion,’’ Electron. Lett., vol. 53, no. 9, pp. 586–588, 2017, doi: 10.1049/
el.2016.4686.

[18] Q. Xu, H. Jiang, R. Scopigno, andM. Sbert, ‘‘A novel approach for enhanc-
ing very dark image sequences,’’ J. Signal Process., vol. 103, pp. 309–330,
Oct. 2014, doi: 10.1016/j.sigpro.2014.02.013.

[19] A. Łoza, D. R. Bull, P. R. Hill, and A. M. Achim, ‘‘Automatic contrast
enhancement of low-light images based on local statistics of wavelet coef-
ficients,’’ Digit. Signal Process., vol. 23, no. 6, pp. 1856–1866, Dec. 2013,
doi: 10.1016/j.dsp.2013.06.002.

[20] J. Lim, M. Heo, C. Lee, and C.-S. Kim, ‘‘Enhancement of noisy low-
light images via structure-texture-noise decomposition,’’ inProc. Int. Conf.
Signal Inf. Process., Jeju, South Korea, Dec. 2016, pp. 1–5.

[21] W. Shi, C. Chen, F. Jiang, D. Zhao, and W. Shen, ‘‘Group-based sparse
representation for low lighting image enhancement,’’ in Proc. IEEE Int.
Conf. Image Process., Phoenix, AZ, USA, Sep. 2016, pp. 4082–4086.

[22] X. Fu, D. Zeng, Y. Huang, Y. Liao, X. Ding, and J. Paisley, ‘‘A fusion-
based enhancing method for weakly illuminated images,’’ Signal Process.,
vol. 129, pp. 82–96, Dec. 2016, doi: 10.1016/j.sigpro.2016.05.031.

[23] X. Min, G. Zhai, K. Gu, X. Yang, and X. Guan, ‘‘Objective quality
evaluation of dehazed images,’’ IEEE Trans. Intell. Transp. Syst., to be
published, doi: 10.1109/TITS.2018.2868771.

[24] K. Gu, G. Zhai, X. Yang, W. Zhang, and C. W. Chen, ‘‘Automatic con-
trast enhancement technology with saliency preservation,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 25, no. 9, pp. 1480–1494, Sep. 2015,
doi: 10.1109/TCSVT.2014.2372392.

[25] K. Gu, G. Zhai, X. Yang, and W. Zhang, ‘‘Hybrid no-reference quality
metric for singly and multiply distorted images,’’ IEEE Trans. Broadcast.,
vol. 60, no. 3, pp. 555–567, Sep. 2014, doi: 10.1109/TBC.2014.2344471.

[26] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004, doi: 10.1109/
TIP.2003.819861.

[27] K. Gu, G. T. Zhai, and M. Lin, ‘‘The analysis of image contrast: From
quality assessment to automatic enhancement,’’ IEEE Trans. Cybern.,
vol. 46, no. 1, pp. 284–297, Jan. 2015, doi: 10.1109/TCYB.2015.2401732.

[28] X. Min, K. Gu, G. Zhai, J. Liu, X. Yang, and C. W. Chen, ‘‘Blind
quality assessment based on pseudo-reference image,’’ IEEE Trans.
Multimedia, vol. 20, no. 8, pp. 2049–2062, Aug. 2018, doi: 10.1109/
TMM.2017.2788206.

[29] K. Gu, W. Lin, G. Zhai, X. Yang, W. Zhang, and C. W. Chen, ‘‘No-
reference quality metric of contrast-distorted images based on information
maximization,’’ IEEE Trans. Cybern., vol. 47, no. 12, pp. 4559–4565,
Dec. 2017, doi: 10.1109/TCYB.2016.2575544.

[30] K. Gu, D. Tao, J.-F. Qiao, and W. Lin, ‘‘Learning a no-reference qual-
ity assessment model of enhanced images with big data,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 1301–1313, Apr. 2018,
doi: 10.1109/TNNLS.2017.2649101.

[31] X. Min, G. Zhai, K. Gu, Y. Liu, and X. Yang, ‘‘Blind image quality
estimation via distortion aggravation,’’ IEEE Trans. Broadcast., vol. 64,
no. 2, pp. 508–517, Jun. 2018, doi: 10.1109/TBC.2018.2816783.

[32] S. A. Priyanka, H.-J. Tung, and Y. K. Wang, ‘‘Contrast enhancement of
night images,’’ inProc. Int. Conf. Mach. Learn. Cybern., Jeju, SouthKorea,
Jul. 2016, pp. 380–385.

[33] D. Y. Tzeng and R. S. Berns, ‘‘A review of principal component analysis
and its applications to color technology,’’ Color Res. Appl., vol. 30, no. 2,
pp. 84–98, Jan. 2005.

[34] M. C. Hanumantharaju, M. Ravishankar, and D. R. Rameshbabu, ‘‘Natural
color image enhancement based on modified multiscale retinex algorithm
and performance evaluation using wavelet energy,’’ in Recent Advances
in Intelligent Informatics, vol. 235. Springer, 2014, pp. 83–92, doi:
10.1007/978-3-319-01778-5_9.

[35] S.-C. Huang, F.-C. Cheng, and Y.-S. Chiu, ‘‘Efficient contrast enhance-
ment using adaptive gamma correction with weighting distribution,’’
IEEE Trans. Image Process., vol. 22, no. 3, pp. 1032–1041, Mar. 2013,
doi: 10.1109/TIP.2012.2226047.

[36] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2008.

[37] F. Durand and J. Dorsey, ‘‘Fast bilateral filtering for the display of high-
dynamic-range images,’’ ACM Trans. Graph., vol. 21, no. 3, pp. 257–266,
2002, doi: 10.1145/566654.566574.

[38] H. Takeda, S. Farsiu, and P. Milanfar, ‘‘Kernel regression for image pro-
cessing and reconstruction,’’ IEEE Trans. Image Process., vol. 16, no. 2,
pp. 349–366, Feb. 2007, doi: 10.1109/TIP.2006.888330.

STEFFI AGINO PRIYANKA received the bach-
elor’s degree in electronics and communication
engineering from the Loyola Institute of Tech-
nology, Anna University, India, in 2012, and
the master’s degree in applied electronics from
St. Joseph’s College of Engineering, India,
in 2014. She is currently pursuing the Ph.D. degree
with the Applied Science and Engineering, Fu Jen
Catholic University, Taiwan. Her research interests
include deep learning, neural networks, computer

vision, pattern recognition, and digital image processing.

YUAN-KAI WANG received the B.S. degree in
electrical engineering and the Ph.D. degree in
computer science and information engineering
from National Central University, in 1990 and
1995, respectively. From 1995 to 1999, he was
a Post-Doctoral Fellow with the Institute of
Information Science, Academia Sinica. In 1999,
he joined the Department of Electrical Engineer-
ing, Fu Jen Catholic University, as an Associate
Professor, where he has been a Professor, since

2017. He was the chair, the co-chair, and the program committee member of
many international conferences and a reviewer of many journals and IEEE
TRANSACTIONS. He has served in the Board of Directors and Supervisors of the
Chinese Image Processing and Pattern Recognition Society, from 2004 to
2010. He has served in the Board of Directors of the Information Service
Association of Chinese Colleges, from 2005 to 2007. He was invited as
a Panel Speaker for the International Conference of Pattern Recognition,
in 2014.

He has published more than 90 papers, with many papers being awarded
by conferences as Best Papers, such as the International Conference on
Machine Learning and Cybernetics and the International Conference on
Pattern Recognition. His research interests include computer vision, pattern
recognition, neural networks, genetic algorithms, machine learning, and
artificial intelligence, with a special focus on video surveillance, face recog-
nition, biometrics, robotic vision, embedded computer vision, and health
care. He was a recipient of the Excellent Research Award of the Ministry of
Technology, from 2008 to 2017, the National Industrial Innovation Award,
the Excellent Team Award from the National Science Council, in 2011, and
the Technology Development Program Paradigm Award from the Ministry
of Economic Affairs, in 2012.

SHIH-YU HUANG received the B.S. degree in
information engineering from the Tatung Insti-
tute of Technology, Taipei, Taiwan, in 1988, and
the M.S. and Ph.D. degrees from the Department
of Computer Sciences, National Tsing Hua Uni-
versity, Taiwan, in 1990 and 1995, respectively.
From 1995 to 1999, he was with the Telecommu-
nication laboratory, Chungwa Telecom Co., Ltd.,
Taiwan. In 1999, he joined the Department of
Computer Science and Information Engineering,

Ming Chuan University, Taiwan. His current research interests are video
processing and steganography.

3092 VOLUME 7, 2019

http://dx.doi.org/10.1109/TIP.2012.2235847
http://dx.doi.org/10.1109/TIP.2012.2221729
http://dx.doi.org/10.1109/TIP.2013.2293425
http://dx.doi.org/10.1109/TIP.2013.2293425
http://dx.doi.org/10.1049/el.2016.4686
http://dx.doi.org/10.1049/el.2016.4686
http://dx.doi.org/10.1016/j.sigpro.2014.02.013
http://dx.doi.org/10.1016/j.dsp.2013.06.002
http://dx.doi.org/10.1016/j.sigpro.2016.05.031
http://dx.doi.org/10.1109/TITS.2018.2868771
http://dx.doi.org/10.1109/TCSVT.2014.2372392
http://dx.doi.org/10.1109/TBC.2014.2344471
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TCYB.2015.2401732
http://dx.doi.org/10.1109/TMM.2017.2788206
http://dx.doi.org/10.1109/TMM.2017.2788206
http://dx.doi.org/10.1109/TCYB.2016.2575544
http://dx.doi.org/10.1109/TNNLS.2017.2649101
http://dx.doi.org/10.1109/TBC.2018.2816783
http://dx.doi.org/10.1007/978-3-319-01778-5_9
http://dx.doi.org/10.1109/TIP.2012.2226047
http://dx.doi.org/10.1145/566654.566574
http://dx.doi.org/10.1109/TIP.2006.888330

	INTRODUCTION
	CED ALGORITHM
	CONTRAST ENHANCEMENT
	DENOISING

	NIGHT IMAGE SIMULATION MODEL
	EXPERIMENTAL RESULTS
	COMPARATIVE ANALYSIS OF REAL IMAGES
	SIMULATION MODEL VERIFICATION
	PCA ANALYSIS OF REAL IMAGES
	CONTRAST ANALYSIS
	DENOISE ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	STEFFI AGINO PRIYANKA
	YUAN-KAI WANG
	SHIH-YU HUANG


