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ABSTRACT In the context of green communication and energy-efficiency in wireless communication, this
paper investigates distributed estimation algorithms in an energy-constrained wireless sensor network and
proposes an energy-efficient distributed leader selection algorithm. The existing state-of-the-art diffusion
algorithm and the recently introduced distributed leader selection algorithm are investigated. To evaluate the
energy consumption of the algorithms, their respective algorithmic complexity, and number of operations
and information exchanges are derived and compared. The obtained values are used as a basis to estimate the
execution time and energy consumption of the algorithms. We propose and introduce the energy-efficient
distributed leader selection algorithmwhich retains the performance of the existing leader selection algorithm
while reducing the complexity and energy consumption. For the simulations, the algorithms are mapped to
widely used wireless sensor network hardware architectures (MSP430 and RSL10). The numerical results
show that the proposed algorithm is able to decrease the energy consumption of the network by 32%–53%
and can extend the network lifetime by 14%–46% as compared with the diffusion and the distributed leader
selection algorithms.

INDEX TERMS Energy-efficiency, distributed estimation, wireless sensor networks, distributed leader
selection, diffusion.

I. INTRODUCTION
Recently, data traffic has had an exponential growth due to
the rapid increase of the usage of wireless devices. With new
applications on the horizon in the field of Internet-of-Things
(IoT), the amount of energy consumed by wireless applica-
tions and systems is on the rise. This has put a lot of focus on
energy-efficiency (EE) and green communication (GC) sys-
tems to reduce the amount of energy consumed [1], [2]. EE in
wireless sensor networks (WSN) is an important topic that has
received a lot attention due to the numerous applications that
WSNs have in IoT [1]–[4]. Many recent works have aimed
at reducing the amount of energy consumed by optimizing
protocols and clustering on the physical and the network
levels [5]–[7]. Similarly, hardware such as microcontrollers
(MCUs) and radio modules are being optimized for low-
power systems and applications [8]. The above approaches
are especially important when theWSN is energy-constrained

and the nodes have limited battery capacity to work with.
In this work we focus on distributed estimation as one of
the applications of WSNs and on the energy-efficiency of the
underlying algorithms.

The idea behind distributed estimation is to solve a com-
mon task or to estimate some process in a network and by
means of cooperation to enhance the performance of the
network and of the nodes. Distributed estimation is a popular
research topic in various interdisciplinary fields, such as agri-
culture, military, environmental studies and signal processing
[9], [10]. We are interested in fully distributed solutions
without any centralized processing unit. The benefits of fully
distributed estimation include low energy consumption, low
processing complexity and robustness [10].

Methods proposed for solving distributed estimation prob-
lems include incremental, consensus, diffusion and leader
selection algorithms [10]–[12]. Incremental algorithms suffer
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from a NP hard problem as a cyclic route through the network
has to be defined for the algorithm to work [10]. Consensus
algorithms are outperformed by diffusion algorithms and
also have stability issues under infinitesimally small step-
sizes [11]. Therefore, in this work we focus on the diffu-
sion algorithm and the distributed leader selection algorithm.
Diffusion algorithms have shown good performance as well
as robustness [10], [13]. Distributed leader selection (DLS)
has been proposed in our earlier work [12]. DLS, while not
always able to outperform the diffusion algorithms, has the
benefits of being simpler and more robust in terms of the
secondary parameter estimation accuracy [14].

When considering a massive number of devices communi-
cating in a distributed fashion in an energy-constrained situa-
tion, it is critical to have an extended lifetime for the network
and thus, as a first step, we want to estimate the energy cost of
the diffusion algorithm and of the DLS algorithm. The energy
costs of the algorithms are obtained by using high-level esti-
mation and are based on the number of operations required for
the algorithms to run. Thus, we investigate the complexity of
the aforementioned algorithms, as well as the required num-
ber of operations for both of the algorithms. It has been shown
that by using high-level estimation it is possible to get accu-
rate andmeaningful estimations of the energy consumption of
the algorithms [15]–[17]. The estimates are a good basis for
knowing how the algorithms scale on real hardware architec-
tures. We are also interested in further improving the energy-
efficiency of the DLS algorithm. We analyse the energy cost
of the DLS algorithm and propose a novel method to reduce
its energy consumption. The resulting proposed energy-
efficient distributed leader selection (EEDLS) algorithm is
described and compared to the diffusion algorithm and the
DLS algorithm. The results are verified by simulations. For
the simulations, the algorithms are mapped onto widely used
WSN hardware architectures (MSP430 and RSL10).

To summarize, the purpose of this work is to investigate and
compare the diffusion algorithm and the DLS algorithm from
the perspective of energy cost of the computations and radio
communication, and propose a novel method to improve the
energy-efficiency of the DLS algorithm.

The research contributions are detailed as follows:
• The analysis and comparison of the diffusion algo-
rithm’s and DLS algorithm’s complexities and number
of operations required. Previous works have outlined
the number of operations required for the diffusion
algorithm [11]; this work extends this by including the
additional operations and complexity for the weight
calculations and comparing it to the complexity and
operations of the DLS algorithm. In addition, the impact
of the size of the neighbourhood and of the LMS filter
length on the number of operations required are explic-
itly considered.

• A novel method for reducing the energy consump-
tion of the DLS algorithm by reducing the compu-
tations and radio communication. There exist works
on reducing the energy consumption of the diffu-

sion algorithm by modifying either the algorithm, the
communication frequency, or the topology [18]–[21].
However, in these works additional complexity is intro-
duced [18], [19] or the performance of the diffusion
algorithm degrades [20], [21]. We propose a novel EE
method for reducing the energy consumption of the
DLS algorithm. In contrast to existing works, the pro-
posed EEDLS algorithm is able to reduce the amount of
required radio communications to the minimum and to
reduce the complexity while retaining the performance
of the DLS algorithm.

• A numerical simulation study of the computational and
radio communication energy consumption of the diffu-
sion, DLS, and the proposed EEDLS algorithms con-
sidering the MSP430 MCU and the RSL10 radio mod-
ule. Previous works have focused on the diffusion algo-
rithm’s analytical side [22], [23] and, to the authors’ best
knowledge, there are no works that explore the physical
energy requirements of the diffusion algorithms and
that estimate the energy consumption on real hardware
models. Simulation results of the EEDLS algorithm
show that the network energy consumption is reduced by
32 − 53% and the network lifetime is extended by
14 − 46% as compared to the DLS algorithm and dif-
fusion algorithm.

The remainder of the paper is organized as follows.
In Section II we outline the diffusion algorithm and the DLS
algorithm, as well as describe the problem setting. Section III
gives an overview of the computational and radio communi-
cation energy consumption estimation and the network life-
time estimation. The complexity and number of operations
required for the diffusion algorithm and DLS algorithm are
given and compared. The computational impact of the neigh-
bourhood and of the LMS adaptive filter length are described.
The proposed EEDLS algorithm is introduced in Section IV.
Section V presents the simulation setting and the numerical
results for the diffusion, DLS, and EEDLS algorithms for
different topologies. Section VI concludes the paper.

In this paper, italic letters are used for scalars (e,E) and
lower case bold letters denote vectors (x). All vectors are
column vectors, except for the regression vector uk,i. The
operator E[·] stands for mathematical expectation of the sub-
ject and (y∗) denotes the complex conjugate transpose of (y).

II. ENERGY-CONSTRAINED DISTRIBUTED ESTIMATION
In this section, we introduce the problem setting and outline
the diffusion and DLS algorithm for the readers’ better under-
standing of the analysis of the algorithms presented later on
in Section III.

A. GENERAL MODEL
Assume that there are K nodes that are estimating a com-
mon parameter, signal source, or information about some
target or object. Each of the nodes have access to dk (i) and
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uk,i at each time instant i:

dk (i) = uk,iwo
+ vk (i), (1)

where dk (i) is the measurement at node k , uk,i is the row
regression vector,wo is the unknown column vector and vk (i)
is zero-mean white random noise with power σ 2

v,k .
vk (i) and uk,i are assumed to be independent for all k

values. The uk,i has a positive-definite covariance matrix,
Ru,k = E u∗k,iuk,i > 0. The nodes estimatewo by minimizing
the global cost function:

Jk (w) = E | dk (i)− uk,iw |2 . (2)

Each of the nodes employs the LMS algorithm for adaptation:

wk,i = wk,i−1 + µku∗k,i[dk (i)− uk,iwk,i−1], (3)

where µk is a constant positive step-size such that, 0 < µk <
2

λmax (Ru,k )
.

In this manner the nodes in the network are working inde-
pendently by employing a LMS filter locally to the data. The
performance of the individual nodes and that of the network
can be improved if the nodes cooperate and communicate
in some manner [10]. As noted earlier, we are looking at
fully distributed algorithms and we focus on the diffusion
algorithm and the DLS algorithm as they have been shown
to have good performance [14].

The K nodes form a WSN. Each of the nodes is able to
communicate with a subset of nodes and with itself, which
forms the node k-s neighbourhood Nk . In addition, the nodes
are energy-constrained which means that the energy available
to the nodes is limited; the nodes have a certain amount of
battery capacity C . During its lifetime, a node can carry out a
certain amount of communications to its neighbours as well
as a certain amount of computations, which is reflected by the
amount of iterations the node can carry out before running out
of energy and dying. The topology of the network is assumed
to be strongly connected and the connections between the
nodes are lossless and noiseless. The nodes are identical
with respect to processing power and physical attributes. The
nodes do not possess any a priori knowledge about other
nodes and the network topology.

B. DIFFUSION
We outline the diffusion algorithm in this subsection. In the
following two variants of the diffusion algorithm, each of
the nodes calculate the estimates using an LMS filter. The
estimates are shared with the node’s neighbours from the
neighbourhood Nk . The nodes combine the estimates using
weights αl,k (i) which form the Amatrix [24]. Since there are
limitations to the energy available to the nodes, we do not
consider exchanging the measurements between the nodes,
i.e. the matrix for measurement weights is C = I and the
measurements are only available to the node itself. Sharing
the measurements can improve the performance of the dif-
fusion algorithm, but will double the amount of information

exchanges per iteration [24]. The combination step and adap-
tation step can be performed in different order, resulting in
the ATC (adapt and then combine) and the CTA (combine
and then adapt) variants of the diffusion algorithm which are
given as Algorithms 1 and 2, respectively. The algorithms
have identical computational complexity [11], but it has been
shown that the ATC algorithm attains better performance and
therefore, later on we consider the ATC algorithm [24].

Algorithm 1 ATC Diffusion
1: for each time instant i > 0:
2: each node k = 1, 2, ...,K performs the update:
3: ψk,i = wk,i−1 + µku∗k,i[dk (i)− uk,iwk,i−1]
4: wk,i =

∑
l∈Nk

αl,k (i)ψ l,i

5: end

Algorithm 2 CTA Diffusion
1: for each time instant i > 0:
2: each node k = 1, 2, ...,K performs the update:
3: ψk,i−1 =

∑
l∈Nk

αl,k (i)wl,i−1

4: wk,i = ψk,i−1 + µku
∗
k,i[dk (i)− uk,iψk,i−1]

5: end

There exist several methods for calculating the weights
αl,k (i) in the A matrix, such as Metropolis, uniform, rel-
ative degree etc. [24]–[26]. The network performance can
be further improved by assigning weights based on the
situation of the nodes, which is related to some sec-
ondary parameter [10]. The noise power σ 2

v,k can be
used as a secondary parameter to calculate the weights.
In practice, the noise powers are not usually known and
have to be estimated. Works on estimating noise powers
at different nodes are available in e.g. [12], [27], [28].
In this work, we assume that the nodes have a priori
knowledge of their noise powers as the calculations for the
secondary parameter estimation would be identical for the
diffusion algorithm and DLS algorithm. The relative variance
rule and relative degree-variance rule weight calculations
for the diffusion algorithms have shown good and similar
performance and are given in (5) and (5) [27].

αl,k (i) =


σ−2v,l∑

l∈Nk
σ−2v,l

, if l ∈ Nk

0, if l /∈ Nk ,

(4)

αl,k (i) =


nlσ
−2
v,l∑

l∈Nk
nlσ
−2
v,l
, if l ∈ Nk

0, if l /∈ Nk ,

(5)

where αl,k (i) is the weight calculated at node k for neighbour-
ing node l, i is the current iteration, σ 2

v,k is the noise power
at node k , Nk is the neighbourhood of node k and nk is the
number of neighbours of the node plus the node itself.

The diffusion algorithm including the weight calculation
based on the relative variance rule is given as Algorithm 3.
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Algorithm 3 Diffusion Algorithm
1: for each time instant i > 0:
2: each node k = 1, 2, ...,K performs the update:
3: ψk,i = wk,i−1 + µku∗k,i[dk (i)− uk,iwk,i−1]
4: for each l ∈ Nk

5: αl,k (i) =
σ−2v,l∑

l∈Nk
σ−2v,l

6: end
7: wk,i =

∑
l∈Nk

αl,k (i)ψ l,i

8: end

C. DISTRIBUTED LEADER SELECTION
In contrast to the diffusion algorithms, the nodes in the DLS
algorithm determine a leader node in the network. The DLS
has been previously introduced in [12] and [14]. The nodes
only have access to the information from the neighbours from
the neighbourhoodNk and select the node which corresponds
to the best performing neighbour ck . The estimates from this
node are used and distributed along with the corresponding
weight (Algorithm 4). In this manner, the nodes converge
to local leaders in their neighbourhood and then to a global
leader. A secondary parameter is required to select the leader.
Whether this secondary parameter is known or estimated,
the nodes are able to use its information to determinewhich of
the nodes is the best performing one and follow its lead. In this
work, as for the diffusion algorithm, the secondary parameter
is the noise power at a node and is assumed to be known by
the node (see Subsection II-B).

The nodes exchange the estimate ek,i between themselves,
together with the corresponding weight αk (i) that is assigned
to the estimate at iteration i. Unlike the diffusion algorithm
where the communication paths are weighted, the weights
of the DLS algorithm correspond to the nodes themselves.
The nodes compare their weight to that of their neighbouring
nodes in Nk and if they have the highest weight, they become
the leader node (Algorithm 4 line 4). Otherwise they become
follower nodes, in which case they listen to their best neigh-
bour ck (Algorithm 4 line 8). ek,i is the estimation result that
is used by the node.

III. ENERGY CONSUMPTION ESTIMATION
In this section, the energy consumption models and estima-
tion method are described. The complexity and the required
number of operations for the diffusion algorithm and DLS
algorithm are derived.

A. NETWORK ENERGY CONSUMPTION
We estimate the energy consumed by a sensor node by fol-
lowing the model proposed and used in [29] and [30]. The
energy E consumed by each sensor is given as:

E
V
= Iata + Il tl + It tt + Ir tr +

∑
Ictc, (6)

where V is the voltage of the power supply. Ia and ta are the
current drawn and execution time of the MCU (Microproces-
sor Control Unit) in the active mode. Il and tl are the current
drawn and execution time of theMCU in the low powermode.
It , Ir , tr and tr are the currents drawn and execution times
of the radio in transmit and receive modes, respectively. Ic
and tc are the currents drawn and execution time of other
components.

Since we are interested in the comparison and the per-
formance of the algorithms, we simplify the formula by
focusing only on the active, transmit and receive modes. The
energy consumption for the low power mode and for the other
components are assumed to be the same for both algorithms.
We also have to take into account that the computational
times, transmit and receive times for each node are unique
due to the topology and how many neighbours the node
communicates with (see Subsection II-A). We note that if the
amount of neighbours change during estimation, the value
changes according to the iteration i. We then can write for
node k at iteration i:

Ek (i)
V
= Iata,k (i)+ It tt,k (i)+ Ir tr,k (i) (7)

and the energy consumption for node k at iteration i:

Ek (i) = V (Iata,k (i)+ Ir tr,k (i)+ It tt,k (i))

= Ecomp,k (i)+ Eradio,k (i). (8)

Node k uses Ek (i) energy per iteration i. Eradio,k (i) is the com-
munication energy consumption of node k and the computa-
tional energy consumed by node k at iteration i is Ecomp,k (i).
The energy consumed by the network in one iteration i is
given as:

Enetwork (i) =
K∑
k=1

Ek (i). (9)

The energy consumed by the network during the observa-
tion period iobs is given as:

Eobs =
iobs∑
i=1

Enetwork (i). (10)

Algorithm 4 Distributed Leader Selection
1: for each time instant i > 0:
2: each node k = 1, 2, ...,K performs the update:
3: wk,i = wk,i−1 + µku∗k,i[dk (i)− uk,iwk,i−1]
4: if αk (i− 1) ≥ max

k∈Nk
(αk (i− 1))

5: ek,i = wk,i
6: αk (i) = (1− µk )αk (i− 1)+ µkσ

−2
v,k

7: else
8: ck = argmax

k∈Nk
(αk (i− 1))

9: ek,i = eck ,i
10: αk (i) = (1− µk )αck (i− 1)+ µkσ

−2
v,k

11: end
12: end
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B. COMPUTATIONAL ENERGY CONSUMPTION
The computational energy consumption of the algorithms
can be calculated through the complexity and the number of
operations. From these values we can deduct the execution
time needed for the computations and the energy consumed.
It has been shown that calculating the energy consumption
based on the number of operations can be used as a good
benchmark [31]. We also note that the current drawn by the
MCU is considered constant during different operations [29].
Therefore, the computational energy consumption from node
to node differs in the execution time, which in turn is depen-
dent on the number of operations the node has to carry out.

The complexities for the diffusion algorithm (Subsec-
tion II-B) and DLS algorithm (Subsection II-C) per node
are given in Tables 1, 2 and 3. The complexities of the
LMS and diffusion step have been derived in earlier works,
but the complexity for calculating the weights had not been
included [11].M is the size of the LMSfilter and nk is the size
of the neighbourhood. To further reduce the computational
complexity, the relative variance method is used since the
relative degree-variance method would introduce additional
complexity due to additional multiplications in the weight
calculations (4), (5). For the DLS, the complexities of the
leader node and of a follower node are given separately as the
nodes have different complexities, see Tables 2 and 3. We can

TABLE 1. Diffusion algorithm complexity.

TABLE 2. DLS (leader node) algorithm complexity.

TABLE 3. DLS (follower node) algorithm complexity.

see that the complexity of the node employing the diffusion
algorithm is higher than that of the node employing the DLS
algorithm, which makes the latter less complex.

The computational energy required for one iteration i at
node k can be calculated as:

Ecomp,k (i) = IcVtc,k (i), (11)

where tc,k (i) is the execution time for node k at iteration
i in seconds, V is the supply voltage and Ic is the current
consumed by the MCU in a second.

The execution time for the operations at node k at iteration
i is given as:

tc,k (i) = f (#Om,k (i)Cm + #Od,k (i)Cd
+ #Oa,k (i)Ca + #Oc,k (i)Cc), (12)

where f is the frequency of the MCU, #Om,k (i), #Od,k (i),
#Oa,k (i), #Oc,k (i) are the number of multiplications,
divisions, additions and comparisons, respectively, and
Cm,Cd ,Ca,Cc are the number of clock cycles required for
multiplication, division, addition and comparisons, respec-
tively.

The multiplications, divisions, additions, comparisons and
vector exchanges for the diffusion algorithm and the DLS
algorithm are given in Table 4. We can see that the number
of operations required for the diffusion algorithm increase
substantially in comparison to the DLS algorithm when the
filter sizeM increases (Fig. 1a) or when the neighbourhood of
the node increases (Fig. 1b). Therefore, for applications with
larger filter lengths and more connected networks, the DLS
algorithm would be preferred.

TABLE 4. Operations for diffusion and DLS.

To further illustrate this point, the amount of operations
required for one node in the diffusion network and the DLS
network are given in an example (Fig. 1c). While the filter
length M is the same for all the nodes, the number of neigh-
bours nk is different from node to node and nodes with larger
numbers of neighbours require more operations. We can see
that the number of operations for the diffusion algorithm’s
nodes depend more on the topology and will vary to a larger
degree than for the DLS algorithm nodes.

C. RADIO COMMUNICATION ENERGY CONSUMPTION
The radio communication energy consumed Eradio,k (i) by
node k at iteration i is given as:

Eradio,k (i) = V (Ir tr,k (i)+ It tt,k (i)), (13)
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FIGURE 1. (a) Number of operations based on the length of the LMS filter. (b) Number of operations based on the number of nodes in the
neighbourhood. (c) Number of operations per node of the diffusion algorithm and the DLS algorithm.

where Ir and It are the currents drawn by the receiver and
transmitter, respectively, and tr,k (i) and tt,k (i) are the com-
munication periods for the receiver and transmitter at node k
at iteration i, respectively.

Each of the nodes communicates with each of its neigh-
bours once per iteration. Nodes with more connections con-
sume more energy. The vector exchanges per iteration are
given as nk in Table 4. It is important to note that the value
nk includes the self-loop i.e. the vector exchange with the
node itself. Since the node does not consume energy com-
municating with itself, the amount of radio communications
required is nk − 1. We can write the energy consumed by
each communication path as V (Ir tr + It tt ) and write the
communication energy consumed at node k at iteration i as:

Eradio,k (i) = (nk (i)− 1)V (Ir tr + It tt ), (14)

where nk (i)− 1 is the number of neighbours for node k .
We can further write that the network radio consumption

can be given as:

Eradio(i) =

(
K∑
k=1

(nk (i)− 1)

)
V (Ir tr + It tt )

= (N (i)− K )V (Ir tr + It tt ), (15)

whereN (i)−K is the amount of connections without the self-
loops in the network at iteration i.

D. NETWORK LIFETIME
The network lifetime can be computed by taking into account
the computational and the communication energy consump-
tions. We refer to the method proposed in [32]. Each node is
assumed to have the same battery capacity C . The lifetime
for a sensor node k can be computed as:

Ltk =
C

Ik
, (16)

where C is the battery capacity in mAh, Ltk is the lifetime of
the node k , Ik is average current consumption.

Since we are also interested in the amount of iterations
the nodes are able to carry out before running out of battery

energy and dying, we modify the formula as:

LIk =
C

Ek
(17)

where LIk is the lifetime of the node k in number of iterations
and Ek is the average energy consumed by node k .

IV. ENERGY-EFFICIENT DISTRIBUTED LEADER SELECTION
In this section, the proposed EEDLS algorithm is introduced.
The algorithm is based on the DLS algorithm introduced in
Subsection II-C.

A. PROPOSED ALGORITHM
The goal of the proposed EEDLS is to reduce the energy
consumed by the nodes in the DLS algorithm. Under the
assumption that the energy saving mode duration has been
selected appropriately so that during this duration the leader
node does not change, we can reduce the amount of connec-
tions and computations. In this manner we are able to use the
energy more efficiently and extend the lifetime of the net-
work. The basis of this energy reduction is the vector cwhich
contains the neighbours of all the nodes that they follow, see
Algorithm 4. Based on this vector we are able to reduce the
amount of connections and the traffic required in the network
andmodify the topology to reduce the communication energy
consumption. Since the nodes only use the information from
the best performing neighbour, communication to the other
nodes is redundant and connections only remain between the
nodes which are used to spread the information across the
network.

Working under the assumption that during the energy sav-
ing mode the leader node does not change, we can determine
the leader in the network and then discontinue its selec-
tion. Based on this, we are able to reduce the number of
computations. In addition, since the computations from the
follower nodes are not required and only computations from
the leader node are required, we can reduce the computational
complexity of the algorithm as well. These reductions do not
impact theMSD (mean squared deviation) performance of the
EEDLS algorithm, which can be seen in Fig. 2a. Therefore,
the MSD performance of the EEDLS algorithm and DLS
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FIGURE 2. (a) MSD network performance of the non-cooperating
algorithm, DLS algorithm and the EEDLS algorithm. (b) The EEDLS
algorithms leader selection mode (red) and energy saving mode (green).

algorithm are identical; for reference, the performance of the
DLS algorithms has been shown previously in [12] and [14].

In order to obtain the vector c, the network has to run and
select the leader, which can be accomplished after a certain
number of iterations. The amount of iterations required for
this depends on the topology of the network and the amount
of nodes. The maximum amount of iterations for the leader
selection is ils = K − 1 which is the longest path in the
network with K nodes if all the nodes in the network are in
serial connections. This is the maximum amount of iterations
required for the leader node to be selected for the worst
case scenario network. In other cases, the leader would be
selected in lesser amount of iterations. For example, in the star
topology the leader node would be selected in one iteration.

The information about the amount of nodes in the net-
work might not be available beforehand, but during the
leader selection time this can be communicated or estimated
between the nodes. In this work, we assume that the nodes
are able to communicate it across the network.

During the leader selection mode, the algorithm performs
as the DLS algorithm (Fig. 2b (red)). After the leader has

been determined, the network enters the energy saving mode
where redundant connections are disabled and the computa-
tional complexity is decreased (Fig. 2b (green)). The leader
node continues the adaptation step (Algorithm 5) and the
follower nodes follow the leader nodes estimations. The fol-
lower nodes relay the information from the leader across the
network (Algorithm 6) and the leader continues its estimation
until the observation period ends.

Algorithm 5 EEDLS (Leader Node)
1: for each time instant i > ils:
2: wk,i = wk,i−1 + µku∗k,i[dk (i)− uk,iwk,i−1]
3: ek,i = wk,i
4: end

Algorithm 6 EEDLS (Follower Node)
1: for each time instant i > ils:
2: ek,i = eck ,i
3: end

B. COMPUTATIONAL ENERGY REDUCTION
The complexity of the computations in the nodes is reduced
after ils iterations and is given in Table 5. Before (ils + 1)
iterations, the complexity of the algorithm is that of the
DLS algorithm as given in Tables 2 and 3. The leader node
resumes the LMS adaptation step and the follower nodes only
receive and send information to other nodes. The number
of operations required is given in Table 6. The size of the
neighbourhood nk does no longer affect the amount opera-
tions required for one iteration and the length of the filter M
only impacts the amount of operations required for the leader
node.

TABLE 5. The EEDLS algorithm’s leader and follower node complexities in
the energy saving mode.

TABLE 6. The EEDLS algorithm’s operations for the leader and follower
node in the energy saving mode.
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C. RADIO COMMUNICATION ENERGY REDUCTION
We switch off the communication that is redundant for the
DLS algorithm (Algorithm 5, 6). The selection of the com-
munication paths is determined by the vector c which holds
the connections that are required to maintain the performance
of the algorithm.

The resulting amount of connections might not decrease
for every node; the amount of vector exchanges for one node
is given in Table 6. Theminimumnumber of vector exchanges
is 2 when the node is communicating to one node and to itself.
The minimum number of radio communications required
is 1 as the node does not need radio communication for the
vector exchange with itself. If all the connections of a node
are needed for the network connectivity or to maintain the
performance of the algorithm, then the resulting amount of
vector exchanges is nk and radio communications nk − 1.
Therefore, the radio communications for one node depend
on the topology of the network, as can be seen from the
example in Fig. 3. Overall, the amount of radio communi-
cations in the network is reduced to the minimum amount of
communications possible to retain the connectivity which is
NEEDLS = K − 1.

NEEDLS =
K∑
k=1

(nk (ils + 1)− 1) = K − 1, (18)

where nk (ils + 1)− 1 is the amount of neighbours for node k
in the energy saving mode.

FIGURE 3. (a) Topology of the network. (b) The EEDLS algorithm topology
with reduced connections.

The communication energy consumed by the network after
ils iterations can be computed as:

Eradio(ils + 1) = (K − 1)V (Ir tr + It tt ). (19)

The network radio communication energy savings during
the energy saving mode of the reduced topology can be
expressed through (15) as:

E1radio = ((N (i)− K )− (K − 1))V (Ir tr + It tt )

= (N (i)− 2K + 1)V (Ir tr + It tt ). (20)

V. SIMULATION RESULTS
In this section we present the simulation setup and the numer-
ical results obtained from the simulations for the diffusion,
DLS, and EEDLS algorithms.

A. SIMULATION SETUP
For the simulations different sensor networks were randomly
generated with different number of nodes and connections,
which are given in Table 9. All of the generated networks
are strongly connected. We take a closer look at the network
with K = 33 nodes and N = 93 connections which can be
seen in Fig. 3a. The networks employ the diffusion algorithm,
the DLS algorithm and the EEDLS algorithm (which were
introduced in Subsections II-B, II-C and IV-A respectively).
The EEDLS topology can be seen from Fig. 3b where the
redundant connections have been disconnected. Each of the
nodes in the networks employ a TIMSP430 family micropro-
cessor [33]. The TIMSP430 has been selected as it is a widely
used low-power MCU in WSNs as can be seen from recent
examples in the literature [34]–[36]. The ON Semiconduc-
tor RSL10 Ultra-Low-PowerMulti-protocol Bluetooth Radio
SOC (system on a chip) [37] has been selected as the radio
module.

TABLE 7. Simulation parameters.

The parameters for the simulations are given in Table 7.
The radio communication current values are used as IRx and
ITx at supply voltageU = 3V [37]. Communication times for
sending and receiving are given as TRx and TTx [38]. For the
computational current, the value Ic is used [38]. The battery
capacity for each of the nodes is C . The clock frequency of
the MCU is given as f [33]. The LMS filter length for the
simulations is selected asM = 8 and the step size is selected
for all nodes as µ = 0.01.

B. COMPUTATIONAL ENERGY CONSUMPTION
The required clock cycles based on the MSP430 architecture
for each of the operations are given in Table 8 [33], [39].
We see that the largest number of clock cycles are required for
the division operation [39], which makes the diffusion algo-
rithm computationally heavy as the weight calculations for
the algorithm require nk division for each iteration (Table 4).

TABLE 8. MSP430 clock cycles for different operations.
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FIGURE 4. (a) Computational energy consumption at different nodes for
the diffusion algorithm, DLS algorithm and EEDLS algorithm. (b) Network
computational energy consumption for the diffusion algorithm, DLS
algorithm and EEDLS algorithm.

We can see from Fig. 4a that the computational energy
consumption for the diffusion algorithm varies from node to
node as the computational amount is impacted by the amount
of neighbours nk of node k . The DLS computations vary to a
lesser degree from node to node. The EEDLS algorithm in the
energy saving mode attains the lowest energy consumption,
requiring only the leader node to carry out operations on
the MCU. From Fig. 4b we can see that the DLS algorithm
consumes 68% less computational energy than the diffusion
algorithm on the network level for this example. The EEDLS
algorithm is further able to reduce the network computational
energy by 98% as compared to the diffusion algorithm.

C. RADIO COMMUNICATION ENERGY CONSUMPTION
The radio energy consumption for the DLS algorithm and the
diffusion algorithm are identical as the amounts of commu-
nication and vector exchanges are identical. From Fig. 5a we
can see that the EEDLS algorithm is able to reduce the radio
communication energy for each node compared to the DLS
algorithm and the diffusion algorithm. The amount of radio
communication energy reduced by the EEDLS algorithm

FIGURE 5. (a) Radio communication energy consumption at different
nodes for the diffusion algorithm, DLS algorithm and EEDLS algorithm.
(b) Network radio communication energy consumption for the diffusion
algorithm, DLS algorithm and EEDLS algorithm.

depends on the topology as the amount of radio communi-
cations at node k can remain unchanged if the connections
are required for the other nodes to retain connectivity to the
network (Table 6). The overall network radio communication
energy consumption is reduced by 47% (Fig. 5b) as the
number of connections in the network has been reduced.

D. OVERALL REDUCED ENERGY CONSUMPTION
In addition to the earlier example (K = 33 nodes and
N = 93 connections) we analyse the results for the two
larger randomly generated sensor networks with K = 206
and K = 510, which can be seen in Table 9. We compare
the different topologies employing different algorithms based
on the values given in the table. The averaged values have
been calculated by averaging the results over 1000 iterations.
The network energy has been calculated by (9). The network
lifetime in number of iterations has been calculated by con-
sidering the first node that runs out of energy and dies based
on (17). The average lifetime in iterations is calculated over
all the nodes in the network.
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TABLE 9. Results for different topologies.

We see that the diffusion algorithm’s average computa-
tional energy consumption is the highest and that the DLS
algorithm consumes 68% less energy in the worst case and
74% less in the best case as compared to the diffusion algo-
rithm. The EEDLS algorithm is improved on top of this and
is able to further reduce the amount of computational energy
required. Compared to the diffusion algorithm the reduction
is 98% in the best case and 87% in the worst case. From the
average radio communication energy consumption, we see
that the DLS algorithm and the diffusion algorithm con-
sume the same amount of energy, as expected. The EEDLS
algorithm is able to reduce the radio communication energy
consumption by 32% in the worst case and 52% in the best
case.

The average energy consumption numbers are quite sim-
ilar to the radio communication energy consumption values
as the impact of the computational energy consumption is
marginal in the overall energy consumption. The DLS algo-
rithm consumes less energy than the diffusion algorithm, but
only by a slight margin and it can be said that there is no
advantage between the two algorithms if we consider both
the computational energy consumption and the radio commu-
nication energy consumption. Given the above, the EEDLS
algorithm is able to reduce the average energy consumption
per iteration by 32% in the worst case and by 53% in the
best case. The network energy consumption values show the
same improvements for the EEDLS algorithm compared to
the other algorithms.

The average node lifetime and the network lifetime dif-
ference between the DLS and the diffusion algorithm are
similar with marginal improvements for the DLS algorithm.
The EEDLS algorithm is able to improve the network lifetime
in the worst case by 14% and in the best case by 46%.
As noted before, if the topology includes nodes that have
multiple connections which cannot be disconnected and are
needed to retain the performance or the connectivity of some
the nodes in the network, the lifetime of these nodes is not
improved as much as the other nodes’ lifetime in the network.
This is evident from the average node lifetime as it improves
under the EEDLS algorithm in the worst case by 52% and in
the best case by 70%.

Overall, the EEDLS algorithm notably improves the
energy-efficiency of the network in every aspect and in some
areas by quite large margins. Comparing different network

sizes illustrates that the EEDLS algorithm is able to improve
the energy-efficiency of all the networks and for larger net-
works with more connections the improvements are greater.

VI. CONCLUSION
In this work, we started by investigating the computational
complexity of the diffusion algorithm and the DLS algorithm.
We found that the DLS algorithm is less complex in terms of
computations. Furthermore, the DLS algorithm requires less
operations and is preferred in applications where the network
is more densely connected or longer adaptive filter lengths are
required. In addition, we analysed the energy consumption for
both of the algorithms taking into account energy-constrained
conditions.Whereas the computational efficiency is better for
the DLS algorithm in comparison to the diffusion algorithm,
the radio communication energy consumption for both algo-
rithmsmakes the computational energy savings negligible. To
further reduce the overall energy consumption we proposed
EEDLS, a new energy-efficient distributed leader selection
algorithm, which reduces the amount of computations and
radio communication in the network while retaining the per-
formance of the DLS algorithm. In the simulation section
we demonstrated the energy consumption and illustrated the
energy savings of the proposed EEDLS algorithm on the TI
MSP430 microcontroller family architecture and on the On
Semiconductor RSL10 Bluetooth radio module. We are able
to reduce the network energy consumption compared to the
diffusion algorithm and the DLS algorithm by 32% in the
worst case and 53% in the best case. We are able to extend
the network lifetime by 14% in the worst case and 46% in the
best case compared to the diffusion and the DLS algorithm.
The increase of the average lifetime of a node is 52% in the
worst case and 70% in the best case.
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