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ABSTRACT With the rapid development of the Internet of Things (IOT) and increasing research on
tracking control of the affine IOT systems with uncertainty, a nonlinear control method of command filtering
backstepping with self-organizing approximation is proposed. A command filter with a saturation structure
is used to eliminate the analytic computation of command derivatives, and tracking errors are redefined to
compensate the discrepancy between the command filtered signals and the analytic computation of command
derivatives. Command filtered backstepping is used to decouple the higher IOT system and simplify the
structure of the IOT system. Self-organizing approximation is used to online approximate the uncertain and
eliminate the effect of the uncertain in the IOT system. The approximation for the uncertain is finished by
a linear product between a set of basis functions and weighted functions on the local region. The weighted
sum of compensated tracking errors is used as the prespecified tracking accuracy performance. A new local
approximator is added to the control system according to the criterion based on the Lyapunov theory to
enhance the capacity of the approximator when the prespecified tracking accuracy performance cannot be
achieved. Finally, an application for a simple IOT system is analyzed by simulations. The simulation results
show that the control method for the IOT system is effective.

INDEX TERMS Internet of Things system, command filtered backstepping control, nonlinear control
systems, self-organizing feature maps.

I. INTRODUCTION
With the rapid development of wireless communication tech-
nology and computing penetrate into every field of our life,
the IOT and IOT system are born [1]. Testing and defending
methods including model-based nonlinear control are given
in [2]. The key technologies of IOT are presented by Ref-
erences [3]–[7]. However, the detailed control methods of
IOT system are not involved. Due to frequency interference
between the Internet of Things and other business systems
(Authorized frequency and unlicensed frequency is used
in china), parameter perturbation from Internet of Things
systems, and unmodeled dynamics for IOT system, it is
inevitable that actual nonlinear systems will contain partial

uncertainty [8]. Currently, processing these uncertainties is
the key to difficulties of model-based nonlinear control. Intro-
ducing a universal approximator into the control structure for
online approximation uncertainty, and the elimination of its
effects, has become an effective way to process uncertainty.
The focus of research into this type of control method lies in
the selection of controller structure, automatic adjustment of
the approximator, and the demonstration of closed loop sta-
bility [9]–[13]. These control approaches that contain linear
approximator are often based on the following hypothesis:
if the primary function in the approximator has an adequate
large quantity of nodes, any given ε (ε > 0) approxima-
tion precision can be gained by choosing the appropriate
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approximator parameters. To gain the expected approxima-
tion precision, one ideal approximator requires an adequate
number of nodes in the primary function [14], [15]. For the
IOT system, this will cause a sharp increase of calculation
loads. Moreover, excessive nodes in the primary function
might induce the possibility of over parameterization. That is,
it will lead to system complications and the system becomes
difficult to control.

To overcome the above-mentioned defects, the thought
of locally weighted learning was first proposed by
Atkeson et al. [15] and Schaal and Atkeson [16]. Locally
weighted leaning divides the working field into several
local approximation fields in which the corresponding local
approximator is defined. The local approximator is con-
structed into a function that is related to the operating points
of the system. When the operating points of the system
enter into new local approximation fields, the system adds a
new local approximator automatically and the approximation
precision gained by previous local approximation fields can
be accumulated continuously. In References [9], [17], [18],
the linearly parameterized model has been applied locally,
which is a special case of the receptive field weighted
regression proposed in [15] and [16]. These methods are to
replace the single approximtor which has abundant nodes in
primary function by a local approximator set that is adjusted
continuously according to system state, aiming to reduce
number of nodes, calculation load and parameter scale in the
primary function. However, for IOT system these methods
have shortages: 1) They only proved the stability of state
variable and approximator parameters, but have not proved
the system stability when the number of local approximators
change. 2) Adaptive laws of approximator parameters are
only determined by system state, but they are unrelated to
control performance. Consequently, the IOT system adds new
local approximators automatically when the operating points
of the system are far away from all local approximation fields,
but doesn’t take requirements on current control precision
into account.

Hence, a control method for self-organizing approximation
structure based on current control performance has been pro-
posed in [19]. This method can make online adjustment of
approximator structure in view of control precision, and it
still maintains the minimum quantity of local approximators.
There is no need to increase the gain control and thereby
avoids risk of high gains. However, this method may be only
applicable to the following scalar SISO IOT system:

ẋ = f 0 (x)+ f (x)+ u, x ∈ R

In [20], this method has been further expanded to
an n-order single-input single-output (SISO) input-state
feedback linearization system. The system equations are
described below:{

ẋi = xi+11 ≤ i ≤ n− 1
ẋn =

[
f 0n (x)+ fn(x)

]
+
[
g0n (x)+ gn(x)

]
u

(1)

The complete closed loop stability has been proved consid-
ering instantaneous changes of quantity of local approxima-
tors. However, the feedback linearization form in equation (1)
is difficult to be met by actual physical systems, thus limiting
the applicable range of the method significantly.

But it is generally known that the command-filtered
backstepping-based adaptive control method is an effective
tool for controller design (see [21]–[27]). However, the tra-
ditional command-filtered backstepping design procedure
requires the repeated differentiations of virtual controls,
which causes a serious instability.

Based on the command filtered backstepping controller
[28]–[31], the self-organizing approximation method [22]
has been further expanded to a more common type of n-order
SISO affine system as shown in equation (1). It realizes the
expected tracking precision without use of high gain control
and large amplitude switching. The basic principle is that:
1) the expected error allowance in tracking precision is set.
2) Online self-organizing approximation is only triggered
when breaking the error allowance. Such approximation is to
reduce effects of system model difference and make tracking
error meet the requirements. 3) Effects of inherent error of
online self-organizing approximation on control precision are
eliminated by similar slip form.

The proposed method is mainly consists of command fil-
tered backstepping and online self-organizing approximation.
The command filtered backstepping is used to overcome
the analytic solution of virtual control command in ordinary
backstepping control. As a result, the high-order cascade
structure of the control object in IOT system can be processed
by relative decoupling. The goal of online self-organizing
approximation is to continuously increase the online approx-
imators according to the system error and to reduce negative
impacts of the system model difference on system tracking
performance.

This paper is organized as follows. The description of
control problem of IOT system is briefly introduced in
Section II. The locally weigthed learning algorithm applied
in IOT system is presented in Section III. Section IV presents
the self-organizing online approximation command filtered
control. Proof of stability is given in Section V. Simulation
case analysis and results discussion are given in Section VI.
Finally, Section VII contains the conclusions.

II. DESCIPTION OF PROBLEMS
For the following n-order SISO system in IOT system:

ẋi =
[
f 0i (x)+ fi (x)

]
+
[
g0i (x)+ gi (x)

]
xi+1

1 ≤ i ≤ n− 1
ẋn =

[
f 0n (x)+ fn (x)

]
+
[
g0n (x)+ gn (x)

]
u

i = n

(2)

where x = [x1, . . . , xn]T ∈ Dn and it is a state vector. Dn is
the whole working field of the physical system, which might
be either known or unknown. x1 is the output of system, and
u is the control input signal. Functions f 0i (x) and g0i (x) are
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known models of controlled objects during controller design.
The unknown functions fi(x) and gi(x) are unknown parts of
the controlled objects, which refer to errors between the real
model of the controlled object and controller design model.
Let f 0i (x), g

0
i (x), fi(x) and gi(x) be continuous functions.

In this study, the goal of control is to design the control
input signal u to drive x1 to trace reference input x1c. Mean-
while, all states xi shall be have boundaries. For some regions,
which model errors fi(x) and gi(x) might be too large in the
system state space, the controller fails to reach the expected
tracking precision. In this study, an online approximation
controller structure and the compensation model error in the
full-state space were used to achieve the expected tracking
precision.

To protect controllability of IOT, it is suppose that
g0i (x) + gi(x), has a definite sign, boundaries, and is not
zero. Without loss of generality, the following hypothesisis
proposed: the function g0i (x) + gi(x) has a lower boundary
to make g0i (x) + gi(x) ≥gl(x) ≥gl≥ 0(∀x ∈ <n) true, where
gl (x) is a known function and gl is a known constant.

III. LOCALLY WEIGTHED LEARNING ALGOTITHM
In this study, for the IOT system, a control method that
combines online self-organizing approximation, command
filtered backstepping, and is based on locally weighted learn-
ing is proposed. In this method, the approximation value
of the unknown function fi(x) at one state point x can be
expressed by the normalized weighted mean of the following
local approximator f̂ik (x):

f̂i (x) =

∑
k wik (x) f̂ik (x)∑

k wik (x)
(3)

where, f̂ik (x) is the k th local approximation function of the
unknown function, fi(x).wik (x) is only nonzero in the local set
Sk (defined in the following text). In the set Sk , f̂ik (x) is used to
improve the approximation precision of fi(x). In the following
text, the local weighted learning algorithm is defined by
using fi(x). The definition of the unknown function gi(x) is
similar and is not introduced here.

A. WEIGTHED FUNCTION
For the f̂ik (x), one continuous, nonnegative and locally sup-
ported weighting function wik (x) is defined. Firstly, the sup-
porting set (hereinafter referred to as approximation field) of
wik (x) is defined:

Sk =
{
x ∈ Dn |wik (x) 6= 0

}
(4)

If the size of Sk is defined as ρ (S) = (‖x − y‖), the locally
supporting means that ρ(Sk ) is a smaller relative to ρ(Dn).
Let Sk be the closure of set Sk . It should be noted that Sk is
a compact set. One case of weight function that meets these
conditions is the following biquadratic kernel function:

wik (x) =

{[
1− (‖x − ck‖ /µk )2

]2
‖x − ck‖ < µk

otherwise
(5)

where ck is the central vector of k th weighting function, and
µk is a constant that expresses radius of Sk . The supporting
set corresponding to equation (5) is:

Sk =
{
x ∈ Dn |‖x − ck‖ < µk

}
(6)

Since the approximator is online self-organizing, the total
quantity N (t) of local approximator f̂ik (x) is not a constant,
but is a variable that increases overtime. Conditions for
increasing N (t) at discretization will be introduced below.
Since N (t) is a variable, the approximation field correspond-
ing to equation (3) changes with time. It is defined as:

AN (t)
=

⋃
1≤k≤N (t)

Sk (7)

When x(t) ∈ AN (t), there’s at least one k that makes
wik (x) 6= 0. The normalized weighting function is defined as:

w̄ik (x) =
wik (x)∑N (t)
k=1 wik (x)

(8)

Therefore, it can be seen that the non-negative function set
{w̄ik (x)}

N (t)
k=1 can form one unit partition in AN (t):∑N (t)

k=1
w̄ik (x) = 1x ∈ AN (t) (9)

The supporting set of wik (x) is consistent with w̄ik (x).
When x /∈ AN (t), wik (x) = 0 and 1 ≤ k ≤ N (t). To define
all x ∈ Dn in f̂i(x) in equation (3), the complete definition of
f̂i(x) is:

fi (x) =

{∑N (t)

k=1
w̄ik (x) f̂ik (x) x ∈ AN (t)

0 x ∈ Dn − AN (t)
(10)

The local weighting learning algorithm when x ∈ AN (t) is
defined in the following.

B. LOCAL APPROXIMATOR
When x ∈ AN (t), the k th local optimal approximator of fi(x)
is defined as:

f ∗ik (x) = φ
T
fik θ
∗
fik (11)

where φfik is the vector of continuous primary function
appointed by the designer. The vector θ∗fik refers to the
unknown optimal parameter estimation vector (for x ∈ S̄k ):

θ∗fik = argminθfik

{∫
S̄k
wik (x)

∣∣∣fi (x)− f̂ik (x)∣∣∣2dx} (12)

f̂ik (x) = φTfik θfik (13)

where θfik refers to online updated unknown parameter esti-
mation vector (for x ∈ Sk ).

It should be noted that θ∗fik has definitions to each k . Since
fi(x) and f ∗ik (x) have a smoothness function on S̄k . Therefore,
f ∗ik (x) is the optimal local approximator of fi(x) on Sk .

Let local approximation error εfik (x) on D
n be defined as:

εfik (x) =

{
fi (x)− f ∗ik (x) x ∈ S̄k
0 otherwise

(14)
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Let the constant εfi > 0 be the known variable. It is
hypothesized that the base vector set φfi is large enough
and µk is small enough, such that

∣∣εfik (x)∣∣ ≤ ε̄fi is always
true for some unknown positive constant ε̄fi < εfi in the
range of x ∈ S̄k . It should be noted that the boundedness of
maxx∈S̄k (

∣∣εfik (x)∣∣) is protected by the continuity of
∣∣εfik (x)∣∣

in S̄k .
For any x ∈ AN (t), fi (x) can be expressed as the following

weighted sum of local approximator:

fi (x) =
∑

k
w̄ik (x)f ∗ik (x)+ δfi (x) (15)

Since φfi may not be infinitely large, and µk may not be
infinite small, in actual design, δfi (x) in equation (15) means
that the inherent approximation error to fi(x) on AN (t) when
φfi and µk are finite values. Therefore it can be seen that∣∣δfi (x) ≤ ε̄fi ∣∣. Since:∣∣δfi ∣∣ = ∣∣∣fi (x)−∑k

w̄ik (x) f ∗ik (x)
∣∣∣

=

∣∣∣∑
k
w̄ik (x)

(
fi (x)− f ∗ik (x)

)∣∣∣
≤

∑
k
w̄ik (x)

∣∣εfik (x)∣∣ (16)

That is:∣∣δfi (x)∣∣ ≤ maxk (∣∣εfik (x)∣∣)∑k
w̄ik (x) = ε̄fi (17)

Each local optimal approximator f ∗ik (x) can reach precision
ε̄fi on S̄k . Therefore, the global precision of

∑
k w̄ik (x) f

∗
ik (x)

on AN (t) is at least ε̄fi .
Since fi(x) is an unknown function and the θ∗fik is unknown,

the control law uses equation (10) defined on AN (t) and
equation (13) defined on S̄k , to make an online approxima-
tion. The basic principle of designed the adaptive capability
of control laws is that during operation of controller, θfik
a real-time automatic adjustment to improve approximation
precision of unknown function will be made. To analyze the
convergence of the parameter estimation, the parameter error
vector is defined as θ̃fik = θfik − θ

∗
fk for the k

th local approx-
imator. The self-organizing principle of controller is seen
during the system operation, the number of f̂ik (x) will increase
automatically according to the system tracking error when
the system tracking error exceeds the design requirements,
in order to reduce effects of model error on system control
precision.

IV. SELF-ORGANIZING ONLINE APPROXIMATION
COMMAND FILTERED CONTROL
A. DEFINITION OF ERROR
For i = 1, 2, . . . , n, the tracking errors x̃i of different orders
in the system (2) are defined as:

x̃i = xi − xi,c (18)

Here x1c is the actual command trajectory, and xi,c
(2 ≤ i ≤ n) is the dummy control variable or intermediate

control variable generated in the process of command filtered
backstepping control process.

For i = 1, 2, . . . , n, the compensation tracking error of
different orders (x̄i) in system (2) is defined as:

x̄i = x̃i − ξi (19)

where ξi is defined below.
One scalar mapping of compensation tracking error is

defined as:

e =
n∑
i=1

x̄i (20)

The goal of controller design is to reach the appointed
tracking precision: |e| ≤ µe.
In the following text, the total time that the system tracking

error exceeds the expected precision (|e| > µe) is expressed
as the total time function that the system tracking error
exceeds the expected precision in the time interval [t1, t2]:

µ̄ (e, µe, t1, t2) =
∫ t2

t1
1 (|e (t)− µe|)

1 (λ) =

{
1 λ > 0
0 λ ≤ 0

(21)

B. COMMAND FILTERED BACKSTEPPING
For i = 1, 2, . . . , n− 1, it is defined that:

x0i+1,c = αi − ξi+1 (22)

u0c = αn (23)

where αi is the dummy control variable generated by the
command filtered backstepping control.

Signals xi+1,c and ẋi+1,c are gained by following filter:

ẋi+1,c = −Ki+1(xi+1,c − x0i+1,c) (24)

Signal uc is gained through the following filter:

u̇c = −K (uc − u0c) (25)

where K , Ki+1 > 0 and they are the constant set by controller
designers.

The initial condition is xi+1,c (0) = αi(0). Since equation
(24) is a stale linear filter, if the input signal x0i+1,c is bounded,
xi+1,c and ẋi+1,c must be bounded.

For i = 1, 2, . . . , n− 1, it defines:

ξ̇i = −kiξi + (g0i + ĝi + βgi )(xi+1,c − x
0
i+1,c) (26)

For i = n, it defines:

ξ̇n = −knξn + (g0n + ĝn + βgn )(uc − u
0
c) (27)

where ki > 0 (1 ≤ i ≤ n) is the control gain appointed by the
designer. The initial condition is ξi (0) = 0. The final system
input is u = uc.
Equations (26) and (27) are a low pass filter and the input

is the product of (g0i + ĝi + βgi ) and (x i+1,c − x
0
i+1,c), where
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(g0i + ĝi + βgi ) is the bounded function and (xi+1,c − x0i+1,c)
has small amplitude. Since xi+1,c and ẋi+1,c are calculated by
equation (24), this ensures that Ki+1 � ki+1 make xi+1,c and
be able to trace x0i+1,c accurately.

C. CONTROLLER DESIGN BASED ON
ONLINE APPROXIMATION
When x ∈ Dn, for i = 1, 2, . . . , n, the dummy control signal
of backstepping process αi is defined as:

αi =
uαi

g0i + ĝi + βgi
(28)

For i = 1,

uα1 = −k1x̃1 + ẋ1,c − f
0
1 − f̂1 − βf1 (29)

For i ∈ [2, n− 1],

uαi = −kix̃i + ẋi,c − f
0
i − f̂i − βfi
− (g0i−1 + ĝi−1 + βgi−1 )x̄i (30)

where βfi and βgi (1 ≤ i ≤ n − 1) are used to realize
the robustness of the inherent approximation error. They are
defined as:

βfi = εfisat (e/µe)

βgi = εgisat(e/µe)sign(xi+1) (31)

where sat(∗) is saturation function. For i = n,

uan = −knx̃n + ẋn,c − f 0n − f̂n − βfn
− (g0n−1 + ĝn−1 + βgn−1 )x̄n (32)

Here βfn and βgn are used to realize robustness of inherent
approximation error, they are defined as:

βfn = εfnsat (e/µe)

βgn = εgnsat(e/µe)sign(u) (33)

D. DYNAMICS OF COMPENSATION ERROR
When proving stability of the control system, the state vari-
able was used as the compensation for dynamics of tracking
error. Based on equations (18), (19) and (26), the dynamics
of the compensation tacking error of the system at all orders
can be divided into the following three situations:

For i = 1,

˙̄x1 = −k1x̄1 + f1 − f̂1 − βf1 +
(
g01 + ĝ1 + βg1

)
x̄2

+ (g1 − ĝ1 − βgi )x2 (34)

For i ∈ [2, n− 1],

˙̄xi = −kix̄i + fi − f̂i − βfi −
(
g0i−1 + ĝi−1 + βgi−1

)
x̄i

+

(
g0i − ĝi − βgi

)
x̄i+1 +

(
gi − ĝi − βgi

)
xi+1 (35)

For i = n,

˙̄xn = −knx̄n + fn − f̂n − βfn

−

(
g0n−1 + ĝn−1 + βgn−1

)
x̄n+(gn−ĝn−βgn )u (36)

When x ∈ Dn, derivatives of e can be gained from equa-
tions (20), (34), (35), and (36):

ė =
n∑
i=1

˙̄ix

=

n−1∑
i=1

(
−kix̄i + fi − f̂i − β fi + gixi+1 − βgixi+1

)
+ (−knx̄n + fn − f̂n − βfn + gnu− ĝnu− βgnu) (37)

V. PROOF OF STABILITY
A. STABILITY OF CONTROL SYSTEM STATE
When x ∈ Dn − AN (t), the controller cannot make an online
approximation. This means that f̂i = ĝi = 0, but βfi 6= 0 and
βgi 6= 0. When using equations (28) ∼ (33) as control laws,
the Lyapunov function has been chosen as V0 (e) = e2/2 and
its derivative given by [22] is:

V̇0 (e)

= eė

= e
n−1∑
i=1

(−kix̄i + fi − βfi + gixi+1 − βgixi+1)

+ e(−knx̄n + fn − βfn − gnu− βgnu)

= e
n∑
i=1

(−kix̄i + f − βfi )

+ e
n−1∑
i=1

(
gi − βgi

)
xi+1 + e(gn − βgn )u

≤ −ek i

n∑
i=1

x i

+ e

[
n∑
i=1

(
fi − βfi

)
+

n−1∑
i=1

(
gi − βgi

)
xi+1 + (gn − βgn )u

]
= −k ie

2

+ e

[
n∑
i=1

(
fi − βfi

)
+

n−1∑
i=1

(
gi − βgi

)
xi+1 + (gn − βgn )u

]
(38)

where k i is the minimum in all control gains ki (1 ≤ i ≤ n).
When |e(t)| > µe, if |fi| ≤ εfi and |gi| ≤ εgi , the slip forms

(31) and (33) can make the following formula true:

e

[
n∑
i=1

(fi − βfi )+
n−1∑
i=1

(gi − βgi )xi+1 + (gn − βgn )u

]
≤ 0

(39)

And, equation (38) can be simplified as:

V̇0 (e) ≤ −k ie
2
= −2k iV0(e) < 0 (40)

Therefore, |fi| ≤ εfi and |gi| ≤ εgi , V0(e) must decline
with time when |e(t)| > µe. Otherwise, V0(e) increases with
time when |e(t)| > µe. Then, |fi| > εfi or |gi| > εgi .
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This conclusion can be used as conditions for increasing local
approximators.

According to the comparison theorem:

V0(t) ≤ e−2k i(t−T0)V (T0) (41)

|e(t)| ≤ e−2k i(t−T0) |e(T0)| (42)

Therefore, if |e(t)| > µe, there’s |fi| > εfi or |gi| > εgi for
t ∈

[
T0,T0 + (1/k i)ln(|e(T0)| /µe)

]
.

On this basis, some local working fields which the con-
trolled system known model can provide adequate precision
(in other words, effects of the unknown parts are smaller, that
is, fi ≤ εfi and gi ≤ εgi ) can reach expected tracking precision
|e(t)| ≤ µe without the need of online approximation to
unknown system parts (fi and gi). This also reflects that the
error e(t) can reflect effects of the unknown parts of the
system (fi and gi) on tracking precision of the controller
effectively.

Therefore, the principle to increase f̂ik and ĝik can
be defined when the following conditions are met
simultaneously:

¬ The current working point x(t) has not activated any
existing local approximator. Therefore, the following
formula is always true when 1 ≤ i ≤ n and 1 ≤ k ≤
N (t):

wik (x) = 0 (43)

 One of following two conditions is true:

a) V̇ (t) ≥ 0 and |e(t)| > µe.
b) |e(τ )| > µe, τ ∈

[
t −

(
1/k i

)
ln (|e (T0)| /µe) , t

]
.

For ease of use in the following, the time to add the jth
local approximator is Tj. In other words, N

(
Tj
)
= j and

N
(
Tj − ε

)
= j− 1. The center position of approximation

field of the newly added local approximator is defined as
cN(Tj) = x(Tj). The initial quantity of local approximator is
N (0) = 0.

According to this definition, N (Tj) is a constant j in the
time interval ∈

[
Tj,Tj+1) . For a constant j, the approximator

has adequate approximation ability when Tj+1 = ∞.
The following is to prove that the total time of x̄i, e, θ̃fik ,

θfik , θ̃gik and θgik∈L∞ and |e(t)| > µe in the time period of
t ∈

[
Tj,Tj+1) (quantity of local approximators in this period

is fixed j) is bounded. To simplify the definition, let j = N (Tj)
and T−j+1 = N (Tj+1 − ε).

Based on above analysis, the approximation precision
of optimal approximators f ∗i (x) =

∑
k w̄ik (x) f

∗
ik (x) and

g∗i (x) =
∑

k w̄ik (x)g
∗
ik (x) on A

j can be expressed as:∣∣fi (x)− f ∗i (x)∣∣ ≤ εfi∣∣gi (x)− g∗i (x)
∣∣ ≤ εgi (44)

In other words, f ∗i (x) and g∗i (x) on A
j reach precisions at

least εfi and εgi . In the following text, for x ∈ Dn, the use
of f̂i (x) and ĝi (x) can make system control precision finally
reach |e(t)| ≤ µe.

For x ∈ Aj, the Lyapunov function was chosen as:

Vj (t) =
1
2
e2 +

1
2

n∑
i=1

j∑
k=1

(
θ̃Tfik0

−1
fik θ̃fik + θ̃

T
gik0
−1
gik θ̃gik

)
= V0 + V

j
θ (45)

where V j
θ =

1
2

n∑
i=1

j∑
k=1

(
θ̃Tfik0

−1
fik θ̃fik + θ̃

T
gik0
−1
gik θ̃gik

)
. 0−1fik and

0−1gik are diagonal positive definite matrixes and can control
rate of parameter approximation.

Let t ∈ [t1, t2] ⊂
[
Tj,Tj+1) be the time interval when the

system tracking error exceeds the expected precision (that is
|e(t)| > µe). In this period, the state x(t) might be either in
Aj or outside Aj. Without loss of generality, it can be seen in
two conditions:

¬ For any sub-interval t ∈ [τ1, τ2]⊂ [t1, t2] that meets
x /∈ Aj, parameter adaptation will stop automatically since
w̄ik (x)= 0. Therefore, V j

θ is always a constant. Based on the
above analysis, V0 declines with time in this time interval.
Therefore, Vj(t) also declines with time when t ∈ [τ1, τ2] ⊂
[t1, t2] (that is, Vj(τ2) ≤ Vj(τ1)). Therefore

V̇j (t) = V̇0 ≤ −k ie
2 < 0 (46)

 For any sub-interval t ∈ [τ2, τ3] ⊂ [t1, t2] that meets
x ∈ Aj, the derivative of Vj along equation (37) is

V̇j (t)

= V̇0 + V̇
j
θ

≤ −k ie
2
+ e

n∑
i=1

(
fi − f ∗i

)
+ e

n−1∑
i=1

(gi − g∗i )xi+1

− e
n−1∑
i=1

βgixi+1 + e
(
gn − g∗n

)
u+ e

n∑
i=1

(f ∗i − f̂i)

+ e
n−1∑
i=1

(
g∗i − ĝi

)
xi+1 + e

(
g∗n − ĝn

)
u− e

n∑
i=1

βfi

+

n∑
i=1

j∑
k=1

(
θ̃Tfik0

−1
fik θ̇fik + θ̃

T
gik0
−1
gik θ̇gik

)
− eβgnu

= −k ie
2
+ e

n∑
i=1

(
fi − f ∗i

)
+ e

(
gn − g∗n

)
u− eβgnu

− e
n−1∑
i=1

βgixi+1 + e
n−1∑
i=1

(gi − g∗i )xi+1

− e

 j∑
k=1

wikφTgik θ̃gik

 u

− e
n∑
i=1

 j∑
k=1

wikφTfik θ̃fik

−e n−1∑
i=1

 j∑
k=1

wikφTgik θ̃gik

 xi+1

− e
n∑
i=1

βfi+

n∑
i=1

j∑
k=1

(
θ̃Tfik0

−1
fik θ̇fik + θ̃

T
gik0
−1
gik θ̇gik

)
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≤ −k ie
2
−

n−1∑
i=1

[
eεgisat (e/µe) sign(xi+1)xi+1

]
−

n∑
i=1

[
eεfisat (e/µe)

]
−eεgisat (e/µe) sign(u)u

+

n−1∑
i=1

|exi+1| δgi+
n∑
i=1

j∑
k=1

[
θ̃Tfik0

−1
gik (θ̇fik − 0fik w̄ikeφfik )

]

+ |eu| δgn +
n−1∑
i=1

j∑
k=1

[
θ̃Tgik0

−1
gik (θ̇gik − 0gik w̄ikexi+1φgik )

]

+

n∑
i=1

|e| δfi +
j∑

k=1

[
θ̃Tgnk0

−1
gnk (θ̇gnk − 0gnk w̄nkeuφgnk )

]
(47)

Therefore, updating the law of approximator parameter can
be chosen as:

θ̇fik =

{
0fikwikeφfik |e (t)| > µe

0 otherwise
(48)

θ̇gik = Proj
{
Tgik

}
Tgik =

{
0gikwikexi+1φgik |e (t)| > µe

0 otherwise
(49)

θ̇gnk = Proj
{
Tgnk

}
Tgnk =

{
0gnkwnkeuφgnk |e (t)| > µe

0 otherwise
(50)

where the mapping Proj {.} is to ensure that g0i + ĝi+ βgi is a
bounded function and is not zero.

It can get by bringing equations (48)∼(50) into the
equation (47):

V̇j (t) ≤ −k ie
2
+

n∑
i=1

[
|e| δfi − eεfisat (e/µe)

]
+

n−1∑
i=1

[
|exi+1| δgi−eεgisat (e/µe) sign (xi+1) xi+1

]
+ |eu| δgn − eεgisat (e/µe) sign (u) u (51)

The mapping Proj {·} expressed in equations (49) and (50)
ensures that g0n + ĝn + βgn > gl > 0. Zhao and Farrell [19]
reported that for any tε [τ2, τ3], equation (51) can deduce that:

V̇j (t) ≤ −k ie
2 (52)

Therefore, for |e (t)| > µe and ∀tε
[
t1,t2

]
, there is:

V̇j (t) ≤ −k ie
2 < −k iµ

2
e (53)

It can be seen from equation (53) that

Vj (t2)− Vj (t1) ≤ −k iµ
2
e (t2 − t1)

= −k iµ
2
eµ̄ (e, µe, t1, t2) (54)

That is,

µ̄ (e, µe, t1, t2) ≤
Vj (t1)− Vj (t2)

k iµ2
e

(55)

It can be seen from equation (55) that in [t1, t2], the total
time of |e (t)| > µe is bounded.
Next, suppose e begins to meet requirements of control

precision from t2 to t3 (in the interval of |e (t)| ≤ µe). This
reflects that e enters into the interval |e (t)| ≤ µe at t2, but
leaves the interval at t3. Therefore, tε [t2, t3] ⊂

[
Tj,Tj+1)

refers to |e (t)| ≤ µe and the time period when N (t) is
a constant. The total time that |e (t)| > µe in the time
interval is:

µ̄ (e, µe, t2, t3) = 0 (56)

In addition, the following conditions are true: ¬ in the
time interval [t2, t3], the approximator parameter is a con-
stant. In other words, the functional approximation stops.
|e (t2)| = |e (t3)| = µe. ®|e (t)| ≤ |e (t3)|, ∀t ∈ [t2, t3].
Obviously, Vj (t2) = Vj (t3) and Vj (t) ≤ Vj (t3),
∀tε [t2, t3]. These conclusions are unrelated where x enters
into Aj in the interval of [t2, t3].
In the following text, stability at any time tε

[
Tj,Tj+1

]
is

considered. According to the adding principle, the jth local
approximator shall be added when t = Tj and t = T−j+1.
It is supposed e (t) leaves the interval |e (t)| ≤ µe at t1 = Tj
and enters into |e (t)| ≤ µe at tm. e (t) leaves the interval
|e (t)| ≤ µe at tm+1. e (t) falls outside the interval of |e (t)| ≤
µe from tm+1 to T

−

i+1. Let t̄ ∈
[
Tj,Tj+1) be the final time for

|e (t)| ≤ µe in this time interval. Therefore, in the interval of
tε
[
Tj,Tj+1) , the total time that e (t) falls outside the interval

of |e (t)| ≤ µe is:

µ̄
(
e, µe,Tj,T

−

j+1

)
=

∑
j≥1

[(
T−j+1 − tm+1

)
+
(
tm+1 − t̄

)
+
(
tm − Tj

)]

≤
1

k iµ
2
e

∑
j≥1

[(
Vj
(
T−j+1

)
− Vj (tm+1)

)

+
(
Vj (tm+1)− Vj

(
t̄
))
+
(
Vj (tm)− Vj

(
Tj
)) ]

≤
1

k iµ
2
e

∑
j≥1

[(
Vj
(
T−j+1

)
− Vj (tm+1)

)

+
(
Vj (tm+1)− Vj (tm)

)
+
(
Vj (tm)− Vj

(
Tj
)) ]

=
1

k iµ
2
e

∑
j≥1

[(
Vj
(
T−j+1

)
− Vj (tm+1)

)

+
(
Vj (tm+1)− Vj (tm)

)
+
(
Vj (tm)− Vj

(
Tj
)) ]

=
1

k iµ
2
e

[
Vj
(
T−j+1

)
− Vj

(
Tj
)]

(57)
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This proves that the total time is limited when e (t) is out-
side the interval of |e (t)| ≤ µe in the time interval

[
Tj,Tj+1) .

Therefore, either Tj+1 is infinite to make |e (t)| ≤ µe or Tj+1
is finite and N (t) is increased by 1 at t = Tj+1.

Another important conclusion is that ∀t ∈
[
Tj,Tj+1)

makes the following equation true:

Vj (t) ≤ Vj
(
Tj
)

(58)

Equation (58) is derived from the above analysis directly no
matter whether |e (t)| > µe or |e (t)| ≤ µe Therefore, these
features will be maintained continually for any N , x̄i, e, θ̃fik ,
θfik , θ̃gik and θgik ∈ L∞ even though x enters or leaves Aj for
finite times or e (t) enters or levels the interval for |e (t)| ≤ µe
for finite times.

Since Dn is a compact set and each increment of N (t)
includes one division of Dn with a radius of µ, only a limited
increment of N (t) occurs. Thus, |e (t)| ≤ µe, and x̄i, e, θ̃fik ,
θfik , θ̃gik , as well as θgik ∈ L∞.

B. STABILITY OF SELF-ORGANIZING APPROXIMATION
Theorem 1: the system in equation (2) uses the control laws
(28) ∼ (33), self-organizing functional approximation and
parameter updating laws (48) ∼ (50). It has following char-
acteristics:

¬ x̄i, e, θ̃fik , θfik , θ̃gik , θgik and N (t) εL∞.

 e =
n∑
i=1

x̄i finally converges at |e| ≤ µe.

Proof: let the working time of system is
[
T0,Tf

]
,

where Tf can be infinite. Number of initial approximator
is N (T0) = 0. As shown above, N (t) increases by 1 every
Tj.N (t) = 0 and f̂i (x) = ĝi (x) = 0 when t ∈ [T0,T1) .
As stated above, either the total time of |e (t)| > µe is
smaller than

(
1/k i

)
ln (|e (T0)| /µe) (T1 = ∞), or T1 is a

finite evaluate. Under these two conditions,

V0
(
T−1
)
≤ max

(
V0 (T0) ,

1
2
µ2
e

)
(59)

For j ≥ 1, the jth local approximator field is added at
t = Tj. In the above text, ¬ and  in Theorem 1 have been
proved under the condition of t ∈

[
Tj,Tj+1) . The only part

that has not been proved is whereVj
(
Tj
)
in the transition from

Vj−1
(
T−j
)
to Vj

(
Tj
)
is bounded.

In the following text, Vj
(
Tj
)
is a finite value. Let the

Lyapunov function at t = Tj be:

Vj
(
Tj
)
=

1
2
e2
(
Tj
)
+

1
2

n∑
i=1

j∑
k=1

[
θ̃Tfik

(
Tj
)
0−1fik θ̃fik

(
Tj
)

+ θ̃Tgik

(
Tj
)
0−1gik θ̃gik

(
Tj
)]

(60)

It is seen that e
(
Tj
)
= e

(
T−j
)
. Since e (t) is continuous

from T−j to Tj and x
(
Tj
)
has not activated the previous

j − 1 local approximator when the jth local approximator
is added into the system when t = Tj. Parameters θfik

and θgik (k = 1, · · · , j− 1) remain the same from T−j to Tj.
Therefore,

Vj
(
Tj
)
=

1
2
e2
(
T−j
)

+
1
2

n∑
i=1

j−1∑
k=1

[
θ̃Tfik

(
T−j
)
0−1fik θ̃fik

(
T−j
)

+ θ̃Tgik

(
T−j
)
0−1gik θ̃gik

(
T−j
)]

+
1
2

[
θ̃Tfik

(
Tj
)
0−fik θ̃fik

(
Tj
)
+ θ̃Tgik

(
Tj
)
0−1gik θ̃gik

(
Tj
)]

= Vj−1
(
T−j
)
+

1
2

[
θ̃Tfik

(
Tj
)
0−1fik θ̃fik

(
Tj
)

+ θ̃Tgik

(
Tj
)
0−1gik θ̃gik

(
Tj
)]

(61)

It has therefore been proved that for any t ∈
[
Tj−1,T

−

j

]
,

Vj−1 (t) ≤ Vj−1
(
Tj−1

)
. Then, it can be deduced that:

Vj
(
Tj
)
≤ Vj−1

(
Tj−1

)
+

1
2

[
θ̃Tfik

(
Tj
)
0−1fik θ̃fik

(
Tj
)

+θ̃Tgik

(
Tj
)
0−1gik θ̃gik

(
Tj
)]

≤
1
2
e2 (T1)+

1
2

n∑
i=1

j∑
k=1

[
θ̃Tfik (Tk) 0

−1
fik θ̃fik (Tk)

+ θ̃Tgik (Tk) 0
−1
gik θ̃gik (Tk)

]
(62)

For k = 1, · · · , j, every θ̃fik (Tk) = θfik (Tk) − θ
∗
fik is a

finite value as long as the initial parameter estimation θfik (Tk)
is finite at t = Tk . Under similar conditions, θ̃gik (Tk) =
θgik (Tk) − θ∗gik is finite. Since N can only grow finitely,
that is, N

(
Tj
)
= j<∞, the sum of right items in equation

(62) is limited. Since e (T1) is a finite value, it can deduce
Vj
(
Tj
)
<∞ directly. This means x̄i, e, θ̃fik , θfik , θ̃gik , and

θgik∈L∞.
It has to be pointed out that the above proof process only

proves the boundedness of system compensation tracking
error x̄i in equation (19), rather than the boundedness of the
actual system tracking error x̃i in equation (18). It can be
seen from equations (18), (19), (22), (24) and (26) that x̄i
approaches to x̃i infinitely by choosing filter gain Ki and
control law gain ki reasonably. Therefore, the boundedness
of x̃i also can be assured.

VI. SIMULATION CASE ANALYSIS
For the following 2-order SISO system [28]:{

ẋ1 = sin (x1 + x2)+ (2+ g1 (x)) x2
ẋ2 = sin (x2)+ (2+ g2 (x))u

(63)

where

g1 (x) = g2 (x) =
1
20

(
x21 + |x1|

)
cos (0.01πx1) (64)

The system state vector is x = [x1, x2]T and the rating
working field is D2

= [−3, 3] × [−3, 3]. It is supposed that
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the known design model of the system is:{
ẋ1 = 2x2
ẋ2 = 2u

(65)

where the known parts are f 01 = f 02 = 0 and g01 = g02 = 2. The
unknown parts are f1 = sin (x1 + x2) , f2 = sin (x2) and g1 =
g2 = 1

20

(
x21 + |x1|

)
cos (0.01πx1). Each unknown function

is applied to the above mentioned online self-organizing
approximation method for online approximation. f̂1k , f̂2k , ĝ1k
and ĝ2k all use the same primary function vector of normal-
ized biquadratic kernel wk (x):

wk (x)

{(
1− R2

)2
R < 1

0 R ≥ 1
(66)

R =

∥∥∥∥∥
∣∣x1 − ck,1∣∣
µk,1

,

∣∣x2 − ck,2∣∣
µk,2

∥∥∥∥∥
∞

(67)

where ck =
[
ck,1, ck,2

]T is the center of kth primary function,
µk,1 andµk,2 are radii of the kth local approximation field on
the x1 and x2 direction, µk,1 = µk,2 = 0.3. The continuous
primary function vector is appointed as:

φfik = φgik =
[
1x1 − ck,1x2 − ck,2

]T (68)

Other simulation parameters are set: k1 = 2, k2 = 4, µe =
0.1, εfi = εgi = 0.3, and 0f1k = 0f2k = 10 I3×30g1k =
0g2k= 10I3×3. Here, the first-order filter in equation (24) is
used and the gain is K2 = K = 40. The initial value of online
estimation parameter is:

θf1k (0) = θf2k (0) = θg1k (0) = θg2k (0) = [0, 0, 0, ]T .

The reference trajectory xc(t) and its derivative ẋc(t) can be
generated by the following 2-order low pass filter [23]:

ż1 = z1 (69)

ż2 = a1 [sat (a1 (sat (r)− z1))− z2][
xc
ẋc

]
=

[
1
0
0
1

] [
z1
z2

]
(70)

r = 3sin(0.2π t) (71)

where the function sat (·) is the amplitude and the rate of
restricted input signal to ensure that (xc, ẋc) ∈ D2, a1 = 2ξω,
a2 = ω2/ (2ξω), and ξ = 0.9, ω = 5.

When equations (69)∼(71) are used as input, the first four
periods of x1 − x2 plane path orbit of the control system are
shown in Fig.1.

In Fig.1, all unknown functions in the grey parallelogram
are relatively small. This shows that |fi| ≤ εfi and |gi| ≤ εgi .
The symbol × is the center of local approximation field and
the square area is the approximation field of local approxima-
tor f̂ik and ĝik (the approximation field S̄k ).

It can be seen that equations (69)∼ (71) are periodic input
signals. Thus, the phase path of the closed loop system in
Fig.1 also shows periodic changes. The control system adds
13 local approximators automatically according to error e.
The added local approximators f̂ik and ĝik are used for online

FIGURE 1. First four periods of x1 − x2 plane path orbit of the control
system.

approximation of the unknown functions fi and gi. The hor-
izontal distance between the centers of two adjacent local
approximation fields is approximately µk,1 = µk,2 = 0.3.
After the system has started, its state approaches quickly from
the original position of the origin to the final stable phase
path. When the unknown function has large impacts on the
system error e, and the sliding-mode control items βfi and
βgi cannot offset the local region of this reach independently,
the control systemwill add local approximators automatically
for the online approximation of unknown function in order
to offset adverse impacts of the unknown functions on the
system error e. Therefore, the system state returns to the
expected phase path quickly. It can be seen from Fig.1 that
the system has only state fluctuation in some regions during
the first period. Subsequently, the system state can be run
continuously in the final stable phase path.

FIGURE 2. e, N and x̄i .

The scalar mapping e of the system compensation tracking
error, the number of local approximator N and compensation
tracking error x̄i are shown in Fig.2. State xi, control com-
mand xi,c, and the actual tracking error x̃i of the system are
shown in Fig.3.

It can be seen from Fig.2 that the error e exceeds the
required range of µe = 0.1 in the time interval of 0.5∼1.63s,
5.4∼6.41s and 10.41∼10.47s, and the total time exceeding
the error range is absolutely limited. The three time intervals
correspond to the local approximation field expressed by
square area as shown in Fig.2. Under the circumstances,
βfi and βgi cannot offset the impacts of the unknown function
on error e independently.
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FIGURE 3. xi , xi,c and x̄i .

The control system adds 6, 6, and 1 local approximators
automatically to offset adverse impacts of the unknown func-
tion on error e, respectively. After 10.47s, e shows periodic
changes and always meet |e| ≤ µe = 0.1 due to the
addition of the approximator. The compensation tracking
error x̄i of the system has a similar variation law with e
and is always remained bounded after stable system run-
ning (after 10.47s). It can be seen from the comparison
between Fig.2 and Fig.3 that since the command filters (24)
and (25) use the large gains K2 and K , the compensation
tracking error x̄i and the actual tracking error x̃i are very
close.

The unknown functions (fi and gi), online approximation
functions of the unknown function (f̂i and ĝi), and βfi and βgi
are shown in Fig.6 and Fig.7.

FIGURE 4. f1, f̂1 and βf1
.

It can be seen fromFig.4 to 7 that the online approximator f̂i
and ĝi make an online approximation of fi and gi with respect
to positions (position of cycles in the interval of 0.5∼1.63s,
5.4∼6.41s and subsequent interval) in the local approxima-
tion field in Fig.1. In the time interval of 0.5∼1.63s and
5.4∼6.41s, f̂i and ĝi are in starting periods and have not been
developed completely. Under this circumstance, although βfi
and βgi have reached the saturation state, they are still unable
to offset the effects of the excessive unknown function on e.
After stable running of the system, f̂i and ĝi begin to develop
completely. At this moment, βfi and βgi always maintain

FIGURE 5. f2, f̂2 and βf2
.

FIGURE 6. g1, ĝ1 and βg1 .

FIGURE 7. g2, ĝ2 and βg2 .

the unsaturated states and the error e can always be main-
tained in the expected precision. All system states are stably
bounded.

FIGURE 8. System input.

The system input u is shown in Fig.8. It has slight
high-frequency shaking in the working time period of
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approximator, which might be caused by incompletely unrea-
sonable setting of controller parameters.

It should be pointed out that the error e in Equation (20)
is the algebraic sum of compensation tracking errors (x̄i)
of all levels and cannot reflect the actual tracking error x̃1
of the system directly. Therefore, control parameters have
to be determined according to requirements of the actual
tracking error of the system and simulation effect. In addition,
the quality of control methods is determined by the selection
of control parameters during control system design. In this
simulation case, only one reference parameter value is given,
but it is not the optimal value. Further optimization can be
made to gain the optimal control effect.

VII. CONCLUSION
Based on the command filtered backstepping controller
structure, the self-organizing approximation in IOT sys-
tem is expanded to one type of more common n-order
SISO affine system. Its application range of this method is
expanded significantly compared to the method in [29], [31],
[33], and [34].

The proposed method includes command filtered
backstepping and online self-organizing approximation. The
command filtered backstepping is to overcome the analytic
solution to virtual control command in ordinary backstepping
control. As a result, the high-order cascade structure of
controlled objects can be processed by relative decoupling.
The online self-organizing approximation is to increase local
approximators continuously according to system error in
order to reduce adverse impacts of IOT system model dif-
ference on tracking performance of the IOT system.
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