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ABSTRACT Natural images often have self-similarity, which can be used to remove noise. Therefore,
many current denoising methods denoise by processing similar image block matrix. Aiming at the problem
that these methods will destroy the two-dimensional structure of image blocks when they are expanded
into one-dimensional column vectors, a new image denoising method based on high-order singular value
decomposition is proposed. Several similar image blocks are stacked into three-dimensional arrays and
treated as a third-order tensor; then, higher-order singular value decomposition can be performed. For
the core tensor obtained by decomposition, an iterative algorithm with adaptive hard threshold coefficient
shrinkage is proposed. The experimental results show that the proposed method outperforms the state-of-
the-art methods in peak-signal-to-noise ratio, structural similarity, and visual effects.

INDEX TERMS Image denoising, tensor, high order singular value decomposition, adaptive hard thresh-
olding, threshold coefficient shrinkage.

I. INTRODUCTION
Image denoising is a fundamental problem in image process-
ing. In the process of acquisition and transmission, the image
is often affected by the factors of the image device itself
and the external environmental conditions, which inevitably
generates noise points. The denoising of the image not only
provides an image with good visual quality, but also provides
a good basis for later image analysis and understanding.

For a noise image Y = X + D, where X is the original
image and D is Gaussian noise, D∼ N (0, σ 2). The task is to
obtain a denoised image X̂ by processing and calculating the
noisy image Y , and make the error between denoised image
X̂ and original image X is the smallest.

Classic image denoising methods can be divided into
spatial domain and frequency domain methods. Tradi-
tional spatial domain linear filtering includes mean filtering,
median filtering, Wiener [1] filtering, etc. Frequency domain

denoising methods include wavelet denoising [2] and partial
differential equation denoising [3] and sparse transforma-
tion [4] denoising method, etc. Among them, more and more
attention has been paid to the transform domain denoising
method, and a lot of meaningful discussions and practices
have been carried out. It assumes that the real image signal
can be approximated by a linear combination of a set of
bases, that is to say, the real image signal can be represented
in the transform domain sparsely. Due to the advantages
of sparse coding in image information representation, it is
widely used in the field of image denoising. Reference [5]
is a method of wavelet threshold shrinkage, it can achieve
denosing based on the assumption that the expression coef-
ficients obtained by wavelet basis transform satisfy the spar-
sity. In order to achieve translation invariance, Pennec and
Mallat [6] proposed to replace the compact expression with
redundant expression. However, the above method of sparse

VOLUME 7, 2019
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

13781

https://orcid.org/0000-0003-3920-3713
https://orcid.org/0000-0003-0217-1543


2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2888499, IEEE Access

S. Gao et al.: Image Denoising Based on HOSVD With Iterative-Based Adaptive Hard Threshold Coefficient Shrinkage

and redundant representation of transform domain adopts
data-independent basis, and does not consider the charac-
teristics of the image itself in image denoising application.
Yang et al. [7] proposed a sparse and redundant expression
K-SVD based on dictionary training. The method obtained an
overcomplete dictionary by learning, and considers that each
image block could be approximated by a linear combination
of dictionary atoms, and the coefficient vector had sparsity,
that is, most elements in the vector were zero. In recent years,
the weighted nuclear norm minimization (WNNM) [8] and
the bidirectional low rank representation denoising method
based on adaptive cluster dictionary [9] decompose the image
into singular values in the transform domain, and perform sin-
gular value threshold shrinkage to achieve image denoising.
These two methods are still essentially denoising methods
based on sparse transforms.

In 2005, Buades et al. [10] proposed the concept of non-
local similarity of images, and proposed NLM (Non-Local
Means) image denoising method, which opened up a new
era of image denoising. A partial block has many similar
blocks in the entire image. The non-local self-similar prior
(NSS) takes advantage of this feature to denoise the image
which is the most successful prior to image restoration.
Zoran andWeiss proposed an Expected Patch Log Likelihood
(EPL) image restoration framework based on image block
priors [11], and the prior of image block was modeled by
using the Guassian Mixture Model (GMM). This method not
only preserved the texture details of the image, but also solved
the problem of artificial traces. PGPD [12] put forward a
well-defined NSS model learning from natural images, and
applies the priori model for high performance denoising,
which achieved good denoising effect. However, when used
the denoised image block reconstructing the entire image,
the image blocks overlap each other in order to overcome the
block effect at the edge of the image block. Therefore, one
pixel point in the image corresponds to multiple denoising
estimates. Inspired by non-local average self-similarity and
sparse coding, Mairal et al. [13] proposed a Learned Simul-
taneous Sparse Coding (LSSC)methodwhichwas considered
that the coding of each image block was not independent
of each other and the coding similarity of the image block
should be enhanced. Dong et al. [4] integrated NSS and local
sparse coding into NCSR framework, which had powerful
image restoration capability. Dabov et al. [14] combined the
non-local similarity of image and transform domain denois-
ing method, and proposed BM3D (Block Matching 3-D)
image denoising algorithm, which is one of the most clas-
sical denoising algorithms. Rajwade et al. [15] performed
high-order Singular Value Decomposition (HOSVD) on the
3D similar block array in BM3D algorithm, and obtained
the dynamic adaptive basis of 3D transform, and excellent
denoising effect has also been achieved. The basis of this
article is the two algorithms.

The rest of the paper is organized as follows: Part 2 briefly
introduces the related work of 3D similar block trans-
form denoising; combined with the properties of high-order

singular value decomposition of tensor, Part 3 proposes the
new HOSVD denoising algorithm based on iterative-based
adaptive hard threshold coefficient shrinkage; the experimen-
tal results in Part 4 show the effectiveness of our proposed
algorithm; the final part summarizes the full text and proposes
the next step.

II. RELATED WORK
At present, the majority of image denoising algorithms utilize
the non-local similarity of image blocks. However, when
processing image blocks, most of the algorithms expand
them into column vectors, which, although it is convenient
for calculation and processing, it destroys the 2-dimensional
structure information of the image blocks. The two image
denoising methods described below still treat the image block
as a 2-dimensional matrix structure.

A. BM3D
The BM3D image denoising algorithm is considered to be
one of the most classic image denoising algorithms, which
combines the non-local similarity of pixel blocks in the image
and the denoising of transform domain. The algorithmmainly
consists of two stages: basic estimation and final estimation.

1) BASIC ESTIMATION STAGE
For any reference image block P ∈ Rb×b on the noise image
Y , where b is the side length of the reference image block.
When perform similar block matching on the noise image Y ,
denote S = i : d(P,Pi) ≤ T , d(P,Pi) represents the distance
between two image blocks, and T is the threshold of the
similarity measure. Then, all of the image blocks {Pi}i∈S
which satisfy the conditions stacked together to form a 3-
dimensional array Z . Perform a 3-dimensional transformation
T3D on the 3-dimensional array Z , and then we have a hard
threshold shrinkage of the coefficients in the transformation
domain, and then carry out 3-dimensional inverse transfor-
mation T−13D to obtain a basic estimation Ẑ of Z . As follows:

Ẑ = T−13D (H (T3D(Z ))) (1)

The 3-dimensional transform T3D is composed of 2D-DCT or
2D-Bior1.5 and transform 1D-Haar. H is a hard threshold
function. Finally, each image block in Ẑ is replaced back to
the original position in the image, and a weighted average
of each overlapping pixel point results in the basic estimated
image Ybasic.

2) THE FINAL ESTIMATION STAGE
In the final estimation stage, we can take the basic estimated
image Ybasic which is obtained in the first stage as a reference.
First of all, similar to the first stage, for each reference
block Pbasic on the image Ybasic, similar block matching is
performed to obtain a 3-dimensional array Zbasic. On the noise
image, pixel blocks of the same position are selected to form a
3-dimensional Znoise. For the coefficient cbasic ∈ T3D(Zbasic)
of the 3-dimensional transform, select cnoise ∈ T3D(Znoise)
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of the corresponding position, and Eq.(2) can be obtained by
Wiener filtering:

ĉnoise =
c2basic

c2basic + σ
2
cnoise (2)

The Wiener filter coefficient ĉnoise is subjected to 3D
inverse transformation to obtain a 3-dimensional array Zfinal ,
and then it will be weighted aggregated to the original posi-
tion on the image, so we can get the final estimate of image
denoising Yfinal .

B. HIGH ORDER SINGULAR VALUE DECOMPOSITION
In recent years, theories about tensor decomposition is opti-
mizing day by day, and their applications are also more and
more widely in practice [16], [17]. In [17], the singular value
decomposition (SVD) of matrix is extended to tensors, and a
high-order SVD method for tensors is proposed. The high-
order SVD method has been applied in many fields, such
as handwritten numeral recognition [18] and texture analy-
sis [19], and achieved many good results.

Rajwade et al. [15] used HOSVD to process the
3-dimensional array in order to achieve image denoising. That
is to say, the fixed base of 3D transform in BM3D algorithm
is expanded to a dynamic adaptive base and a good denoising
effect is achieved.

III. AN ITERATIVE ADAPTIVE HARD THRESHOLD
COEFFICIENT SHRINKAGE ALGORITHM
Although the HOSVD image denoising method extends the
fixed base in the BM3D method to a dynamic adaptive base,
the BM3D algorithm flow is still used, that is to say, the first
estimated image obtained by the hard-threshold shrinkage is
used as the reference image of the second-stage Wiener filter,
and the advantages of HOSVD decomposition and dynamic
basis are not fully utilized. The image denoising effect is also
slightly inferior to BM3D.

Combining with the properties of high-order singular value
decomposition and referring to the processing framework
of other image denoising methods [20], [21], an iterative
adaptive hard-threshold algorithm is proposed in this paper.

A. SIMILAR BLOCK MATCHING AND HIGH-ORDER
SINGULAR VALUE DECOMPOSITION
For each reference block Pref ∈ Rb×b in the noise image Y ,
search for K similar blocks (including the reference block
itself) Pi, i = 1, 2, . . . ,K which are most similar in image
Y . Among them, the similarity measure uses a simple and
convenient L2 distance, which are defined as below:

d(Pref ,Pi) = ‖Pref − Pi‖22 (3)

In order to improve the numerical stability of decomposi-
tion, the blocks are normalized to each similar block before
decomposition [22], [23]:

Qi = Pi −
K∑
i=1

Pi/K = Pi − P̄, i = 1, 2, . . . ,K (4)

To stack all Qi into 3-dimensional array ZQ, calculate its
high order singular value decomposition,

(SQ,U1,U2,U3) = HOSVD(ZQ), (5)

where SQ is the core tensor obtained by decomposition,
the size is the same as ZQ which is b × b × K . U1,U2 and
U3 are orthogonal matrices, and the core tensor SQ can be
regarded as the coefficient of the 3-dimensional array ZQ in
the decomposition domain of the high order singular value.

B. ADAPTIVE HARD THRESHOLD COEFFICIENTS
SHRINKAGE
How to shrink the coefficient of the core tensor SQ is the
key of denoising algorithm. Based on the assumption that
the wavelet coefficients obey the Laplace distribution, [23]
and [24] propose a classical threshold function:

τ =
2
√
2σ 2

w

σx
, (6)

where σω is the estimate of the noise level of the image at the
kth iteration of Y (k).

σw = γ

√
σ 2 − ‖Y − Y (k)‖22, (7)

where γ is a preset parameter used to estimate the noise
level, and σx is the standard deviation of the coefficients
of the real image signal X in higher order singular values.
Here, notice the properties of the high order singular value
decomposition [16], [17]. The core tensor SQ is a third-order
tensor of b×b×K size. If slicing in the direction of the vertical
third dimension (similar to other dimensions), K different
matrix S iQ of size b× b can be obtained.

‖S iQ‖F = σ
(3)
i i = 1, 2, . . . ,K , (8)

where σ (3)
i is the ith singular value of the third dimension

matrix SQ(3) of the core tensor SQ. Equation (8) can also be
expressed as:∑

λ∈S iQ

λ2 = (σ (3)
i )2 i = 1, 2, . . . ,K (9)

From the formula (8), we can see that the coefficient in the
core tensor SQ is actually to re-decompose the corresponding
singular value so that the noise energy originally concentrated
on the singular value is mainly transferred to the smaller
coefficient in the core tensor SQ while larger coefficients
are less affected by noise. Therefore, this paper adopts the
method of hard threshold shrinkage:

ŜQ = hard(SQ, τ ) (10)

In Eq. (6), σx is the standard deviation of the coefficients
of the real image signal X in higher order singular values

σx =

√
max(σ 2

SQ − σ
2, 0), (11)

where σSQ is the standard deviation of the core tensor coef-
ficient SQ. Since the core tensor SQ coefficient approximates
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TABLE 1. Comparison I of different denoising algorithms.

the Laplace distribution (see Fig. 1), the average value of the
core tensor SQ coefficients is close to 0 and the variance is

σ 2
SQ =

∑m
i=1 λ

2
i

m
= λ̄2, (12)

where m(m = b×b×K ) is the number of all the coefficients
in the core tensor SQ and λi ∈ SQ is the coefficient of the core
tensor SQ. Combining the above two equations (9) and (10),
we get

σx =

√
max(λ̄2 − σ 2, 0) (13)

In order to obtain different hard-threshold shrinkage
thresholds for each coefficient λi, here we propose an adap-
tive threshold setting method. In the above equation, replace
λ2i with λ̄

2.

σ ix =

√
max(λ2i − σ

2, 0) (14)

This results in different shrink thresholds for each of the
coefficients so that λi, which ismore heavily affected by noise
and smaller, is more shrunk to zero.

In conclusion, the shrinking formula of adaptive hard
threshold coefficient proposed in this paper is as follows:

ŜQ = hard(SQ, τi) (15)

τi =
2
√
2σ 2

w

σ ix
, (16)

where σw and σ ix are determined by formula (6) and (14)
respectively.

C. WEIGHTED AGGREGATION AND ITERATIVE
REGULARIZATION
After obtaining the contracted core tensor coefficient ŜQ,
calculate

ẐQ = ŜQ ×1 U1 ×2 U2 ×3 U3 (17)

Get the estimated Q̂i and P̂i = Q̂i + P̄, i = 1, 2, . . . ,K ,
×i is the tensor and matrix multiplication. Put all the P̂i back
to the original position of the image. Because different image
similar blocks may overlap each other, so when we gather a
set of 3-dimensional array to define a weight

w =

{
1/m, r = 0
r/m, r > 0

(18)
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TABLE 2. Comparison II of different denoising algorithms.

FIGURE 1. The distribution of the core tensor coefficient λi of image
Peppers.

where r is the number of zero elements in the core tensor of
ŜQ, the more zero elements in ŜQ, the greater the weight of
the aggregation.

In this way, for the noise image Y (k), we get the estima-
tion X (k) of an iteration. Inspired by [20], [23], and [25],

we conduct iterative regularization processing, and update
the Y (k+1) at the beginning of the next iteration through the
following expression

Y (k+1)
= (1− δ)X (k)

+ δY , (19)

where δ is a small positive number that controls the proportion
of added noise at each iteration. In summary, the complete
algorithm can be described in Algorithm 1.

IV. EXPERIMENTAL RESULTS
In order to verify the correctness of the proposed algorithm,
we use 10 standard images of 256×256 size for testing firstly.
The experiment parameters are set as follows: the number of
iterations J = 4, the noise estimation parameter γ = 0.35
and the iterative regularization parameter δ = 0.10. When
the noise level σ ≤ 10, the image side length b = 6, K = 25,
when the noise level is 10 < σ ≤ 30, the image side length
b = 7, K = 30. To speed up the algorithm, we take a
reference block per 3 pixels, and the search window has a
radius of 25 when the similar block matches.

Firstly, we compare our algorithm with the two image
denoising algorithms BM3D [14] and HOSVD [15],
the basises of the proposed algorithm, which are also based on
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FIGURE 2. Noisy image comparison of image Hill. (a) Initial image, (b) Noise image(σ = 10), (c) BM3D(PSNR=33.03dB,
SSIM=0.8972), (d) HOSVD(PSNR=32.98dB, SSIM=0.8971), (e) EPLL(PSNR=33.50758dB, SSIM=0.8861), (f) NCSR(PSNR=33.69dB,
SSIM=0.8861), (g) PGPD(PSNR=31.871dB, SSIM=0.8392), (h) Ours(PSNR=33.16dB, SSIM=0.9004).

FIGURE 3. Noisy image comparison of image Lake. (a) Initial image, (b) Noise image(σ = 20), (c) BM3D(PSNR=28.64dB,
SSIM=0.8691), (d) HOSVD(PSNR=28.59dB, SSIM=0.8615), (e) EPLL(PSNR=29.87111dB, SSIM=0.8255), (f) NCSR(PSNR=29.88dB,
SSIM=0.8202), (g) PGPD(PSNR=29.9109dB, SSIM=0.8209), (h) Ours(PSNR=28.83dB, SSIM=0.8715).

3D image block transform.At the same time, in order to verify
the algorithms effectiveness, three other related classical
algorithms are used for comparison, including EPLL [11],

NCSR [4] and PGPD [12]. Peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) are two common image
quality metrics. Since the PSNR does not take into account
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FIGURE 4. Noisy image comparison of image Monarch. (a) Initial image, (b) Noise image(σ = 10),
(c)BM3D(PSNR=28.38dB, SSIM=0.8873), (d) HOSVD(PSNR=28.37dB, SSIM=0.8692), (e) EPLL(PSNR=28.5dB, SSIM=0.895),
(f) NCSR(PSNR=28.46dB, SSIM=0.9088), (g) PGPD(PSNR=28.49dB, SSIM=0.8209), (h) Ours(PSNR=28.80dB,
SSIM=0.8856).

Algorithm 1 Iterative Algorithm Based on HOSVD
Input: Noisy image Y ;
Output: Denoising image X (J );
Initialization: Y (l)

= Y ;
Iteration J , k = 1, 2, . . . , J ;
Step(1): similar block matching: in image Y (k), find the
most similar k image block for each reference block
Pref ;
Step(2): block standardization: use (4) to standardize
each set of similar blocks;
Step(3): HOSVD decomposition:
(SQ,U1,U2,U3) = HOSVD(ZQ);
Step(4): adaptive hard threshold shrinkage: the
coefficient shrinkage of SQ is performed by equation
(15);
Step(5): inverse transform to image space, using
equation (18) weighted aggregate to get X (k);
Step(6): if k is less than J , use formula (19) to update
Y (k+1), and continue to iterate, if k is equal to J , output
X (J ), the algorithm ends.

the visual characteristics of the human eye, it often occurs
that the evaluation result is inconsistent with the subjective
feeling of the person. SSIM measures image similarity from
the aspects of brightness, contrast and structure, so it is

better than PSNR in image denoising and image similarity
evaluation. Tables 1 and 2 show the test results of the above
six algorithms at 3 different noise levels 10, 20, 30. In each
cell of the table, the above values are PSNR values, and the
values below are SSIM values. Table 1 and Table 2 show
that the new algorithm achieves better PSNR value than the
basic two algorithms BM3D and HOSVD algorithms, and
is slightly lower than EPLL, NCSR and PGPD in different
noise levels. But SSIM is almost higher than all comparison
methods.

For a comparison of the visual quality of images after
denoising, the reader can see Fig. 2-Fig. 4. It can be seen
from the Lake image in Fig. 3 that the forest obtained by
the new method is more clear. From the Monarch image
in Fig. 4, the new method is better for the texture details
of the butterfly wings. Combine PSNR, SSIM value and
subjective comparison and we can see that the proposed
method can better preserve the details of the image, espe-
cially when the noise level is small or the image has more
texture details, the denoising effect of the newmethod is more
obvious.

For the above experimental examples, it can be seen that
the proposed iterative algorithm has certain advantages for
images with a resolution of 256*256, and the running time
cost is relatively low. In order to verify the practicability of
the algorithm, we have carried out denoising operations on
the high-resolution images (with a resolution of 512*512) of
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FIGURE 5. Denoising results of high resolution noisy images Hill. (a) Initial image, (b) Noise image(σ = 10), (c) Noise image(σ = 20),
(d) Noise image(σ = 30), (e) Denoising result(σ = 10), (f) Denoising result(σ = 20), (g) Denoising result(σ = 30).

the above 10 images. Fig. 5 and Table 3 show the denoising
results (Due to layout reason, only image Hill is selected for
display). Among them, it can be seen from the visual effect of
Fig. 5 that the proposed algorithm can achieve denoising of
high-resolution images, and also obtains better results, retain-
ing as much details as possible, such as windows, fences, and
lines on the road and so on. Table 3 gives the PSNR and SSIM
values for the denoising results of the Hill image at different
noise levels. From Table 3, it can be seen that its PSNR and
SSIM values are maintained at a high level. The effectiveness
and practicability of the algorithm are illustrated. However,
for the denoising of high-resolution images, the algorithm
also has the same problems as other algorithms, namely,

TABLE 3. PSNR and SSIM of denoised image Hill with different σ .

the time cost is greatly improved with the increase of resolu-
tion. In the next study, we will try to solve the problem of time
cost.

V. CONCLUSION
In this paper, we propose an iterative algorithm for adap-
tive hard threshold shrinkage of kernel tensor coefficients.
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It is based on the image denoising algorithms BM3D and
HOSVD, and is combined with the properties of tensor high
order singular value decomposition. The experimental results
show that the denoising effect of this algorithm is comparable
and outperforms BM3D and HOSVD algorithms to some
extent. Under the two measurement standards of PSNR and
SSIM, the new algorithm obtains higher measurement val-
ues. Compared with other classical algorithms, the proposed
algorithm also has obvious advantages in most cases. In terms
of visual comparison, it can also maintain better details than
other methods after denosing.

If the 3-dimensional array formed by accumulation of
similar blocks is regarded as a third order tensor, we can try
other forms of tensor decomposition in the next step, such as
CP decomposition [26], T-SVD decomposition [27] and so
on, exploring appropriate coefficient shrinkage method, so as
to achieve better denoising effect.
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