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ABSTRACT This paper describes the development and application of a sensing platform which consists
of fast conductance sensors and proper data acquisition and management software which aims at the
investigation of two-phase flow parameters in pipelines. A number of sensing nodes are connected through
a network which allows monitoring the flow at different pipeline positions. In addition, a data management
Web-based platform is presented in order to store and manage the massive volume of data generated by data
acquisition. The sensor electronics has been evaluated in temporal response and the capability to measure
the parameters such as void fraction time series and structure velocities. The preliminary study of horizontal
two-phase flow experiment is presented showing the capability of the developed platform to monitor flow
parameters along a pipe.

INDEX TERMS Liquid height measurement, sensing platform, two-phase flow, two-wire sensor.

I. INTRODUCTION
The most common class of multiphase flows are two-phase
flows and it can be defined as a mixture of two different
substances in motion. The phases are immiscible substances,
so that between them there are one or more interfaces or dis-
continuities. This type of flow is commonly found in a many
industrial activities, being of particular industrial interest
when the flows are confined to pipelines, for instance, in oil
and gas exploration [1], [2]. Common engineering practice
nowadays is to use models and software to predict the behav-
ior of installations or equipment where such flows occur.
Therefore, models and predictions are only accepted for
industrial use when sufficiently validated and tested exper-
imentally. It is very common the study of such phenomena
in pilot plants, operating in controlled conditions for a wide
range of pressure and temperature. Thus, industry scenarios
are recreated and parameters of interest can be investigated.
Hence, pilot plants equipped with appropriate instrumenta-
tion allow the measurement of local flow parameters, such as
phase fraction, velocity and bubble size distribution. The void
fraction is a dimensionless quantity indicating the fraction
of a geometric or temporal domain occupied by the gas
phase, and it is probably the most significant quantity one
can measure in two-phase gas-liquid flows.

In the last decades, much effort has been given by the
industry and scientific community for the development of
sensing technology for two-phase flow monitoring. Many
techniques have been applied to investigate two-phase flows.

Each technique is sensitive to some physical property
which is different for the two phases, such as the fluid den-
sity or the electrical conductivity and permittivity [3]–[5].
An indirect way to measure void fraction is through liquid
height measurement and it has been reported as a good
approximation of the void fraction of the cross-sectional
area at certain experimental conditions and their operabi-
lity [6]–[8]. The use of wire probes to measure liquid height
by though electrical conductance/capacitance measurements
have been applied in many works [9]–[18]. This technique
was firstly introduced by Miya [19], Miya et al. [20], and
Tatterson [21] to determine the profiles of liquid film heights,
and studied in details by Brown et al. [22].
Themain objective of this work is to develop a sensing plat-

form consisting of a number of distributed sensors for high-
speed monitoring flow evolution along a pipeline. Moreover,
an acquisition instrumentation based linear Controller Area
Network (CAN) topology is presented to gather the informa-
tion of distributed sensors in a pilot plant. Additionally, a data
management system is developed in a web-based platform
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FIGURE 1. Two sensor nodes are connected to a sensing electronics.

allowing multiple connections simultaneously, providing a
complete platform to store, visualize and share data.

II. TWO-WIRE SENSOR SYSTEM
The developed two-wire sensor consists of two parallel
stainless-steel wires of 0.02 mm internal diameter (i.d.)
placed 3 mm apart and oriented normal to the flow as
shown in Fig. 1. The sensor electronics measures the con-
ductance between the two wires. Since the gas and liquid
(in this study tap water) have different electrical conductiv-
ities, the obtained conductance is a measure of the liquid
content between the wires.

The sensor is built in a printed circuit board and has 1.5mm
thickness and the wires plane is oriented normal to the flow.
The developed system consists of a dedicated electronics in
which a PIC18F46K80microcontroller handles the excitation
signal, measurement and communications in each node. Each
node comprises of two sensors forming a pair of sensors. All
the sensor nodes are connected through the CAN bus in which
the microcontroller built-in CAN controller in conjunction
with a CAN transceiver is used to communicate with the
supervisory system.

A. MEASURING ELECTRONICS
The measuring principle of the conductance between the
electrodes is known as direct impedance measurement [x],
in which a voltage is applied to the excitation electrode and
the current flowing towards the (virtually) grounded receiver
electrode is measured. This principle is also known to be
immune to stray impedances caused by cables for instance.

FIGURE 2. Simplified electronic circuit (a) excitation scheme (b) reception
scheme.

In this way, only the conductance in between the electrodes
is measured.

The electronics applies an alternating voltage to the exci-
tation electrode by means of analog switches (Maxim Inte-
grated DG419) to create a square wave of 2.5 V and −2.5 V
peaks with a frequency of 10 kHz. A bipolar excitation
voltage (DC-free) is employed to avoid electrolysis effects
and excitation scheme prevents the sensor to be simultane-
ously activated in order to prevent cross-talk. Prior the exci-
tation, the signal is buffered through an operational ampli-
fier (Texas Instruments TL08X), effectively providing a low
output impedance (Fig. 2a). A current-to-voltage converter
(TL08X based) converts the currents flowing from excitation
electrode towards receiver electrode into proportional voltage
and it is further conditioned with a rail-to-rail amplifier (Ana-
log Devices AD8542) to meet the microcontroller analog-to-
digital converter (ADC) requirements. The measured signal
is then fed into the microcontroller 12 bit ADC with config-
urable acquisition rates (Fig. 2b).

B. SENSOR NODE ACQUISITION SOFTWARE
The sensor node application was developed for set-up, con-
trol and data acquisition, proving fast and easy-to-use tool
for storing sensor information and performing data collec-
tion. The application communicates with the stand-alone
CAN controller (CP-602E-I Series Moxa) through a PCI
Express interface with capability to handle up to 255 sensor
nodes. The CP-602E-I CAN interface board uses the NXP
SJA1000 and transceiver PCA82C251, which provide the
bus arbitration and error detection. Fig. 3 shows a diagram
whereas the acquisition software communicates with the PCI
CAN controller through the pool of messages. With this
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FIGURE 3. CAN protocol - Pool of messages between the acquisition
software and sensor nodes.

protocol it is possible to set the acquisition parameters at each
sensor node and receive the measured data. The acquired data
is then exported to tabular plain text format, using coma-
separated values (.csv) for an easy SQL (Structured Query
Language) Databases, Microsoft Excel R© and MATLAB R©

integration.

C. DATA MANAGEMENT WEB-BASED PLATFORM
In order to store and manage the massive volume of data
generated by data acquisition, a web-based application was
developed. This system consists of a client-server software
that uses a website as the interface (front-end). Users can
access the application from any computer connected to the
internet or local network using a browser, as an alternative
of using an application that has been installed on their local
computer. Some of its principal advantages are cost effective
development, platform-independent model, accessible any-
where, improved interoperability, security, easy installation
and maintenance, and scalability. The experiment manage-
ment was built using concepts like clean interface and respon-
sive design, offering a professional user experience.

The back-end of a website consists of a HTTP (HyperText
Transfer Protocol) (server, an application, and a database.
Laravel (open-source PHP web framework) was chosen for
back-end application development. Laravel allows to focus
on the functionality in way to develop powerful web appli-
cations quickly, maintainable code, obeying several proven
web development patterns and best practices. Researchers
can share it using the web-interface from anywhere through
a browser. This feature is important because it makes the
experiment available to anyone just after uploading, avoiding
data from being lost using common methods for file transfer,
such as USB sticks and external hard disks. Only authorized
users can access the system. After successful login, the user
is redirected to timeline page, where the last ten submitted
experiments are listed and can be retrieved via download.

FIGURE 4. Data management web-based platform and system
measurement components.

FIGURE 5. Rise and fall time of the system in which the input is the
square wave.

In Fig. 4 the web-based platform is shownwith the network
components, in which the LAMP server is an archetypal
model of web service stacks (acronym of the names: Linux
operating system, the Apache HTTP Server, the MySQL
relational database management system (RDBMS), and the
PHP programming language. This server is connected at the
internal network whereas the service is offered. The acqui-
sition software for the two-wire sensor runs in the industrial
computer and the user may upload the gathered data acquired
form two-phase flow measurements. Further, users can have
access through the network to the stored data being able to
download it and to local processing.

III. SINGLE SENSOR RESPONSE EVALUATION
A. MEASURING TIME RESPONSE
To assess the system time response, i.e. to determine the max-
imum speed that a flow structure (e.g. bubble or wave) can
have, still being detectable, the analog circuit step response
were evaluated. The rise and fall times were obtained with the
sensor flanged in a tube filled with water in which a signal
generator applied a squared-signal of 10 kHz and 2.5 Vpp
amplitude. Therefore, the signal at the output of the receiver
circuit was measured with an oscilloscope in which the rise
and fall times were obtained respectively for 4.7 µs and
2.4 µs, as it can be observed in Fig. 5. For one oscillation
to be detected by the circuit, it must have more than twice the
longest time, which is of 4.7µs. Therefore, themeasured time
response (inverse of this period) corresponds to a maximal
sampling frequency of up to 212 kHz.
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FIGURE 6. Simulated sensor geometry considering the liquid-gas
interface as a (a) straight line and a (b) curved surface.
1h represents the difference in height.

B. FINITE ELEMENTS METHOD SIMULATION
In order to characterize the sensor electrical response, a quasi-
static approximation is considered and the simulation has
been made in the finite element method (FEM) commercial
software COMSOL. The simulated geometry is the same of
the real sensor and the emitter and receiver electrodes are set
as 1 V and ground, respectively.

The electrical conductivity of the fluids was defined based
on air and tap water (σ = 250 µS/cm) to compare with the
experimental results. Here, different liquid heights were sim-
ulated considering the interface a straight line and a curved
surface. The latter is caused due to superficial tension of water
in contact with hydrophobic pipe. Moreover, the curved inter-
face creates a variable quantity in liquid height 1h, in which
is unreliable to measure and is not the focus of this work.
This effect is reported in [23], therefore the liquid heights
and phase fraction were used to model the electric response
in this work for exemplary curved interfaces as shown
in Fig. 6a and Fig. 6b.

The phase fraction can be obtained by eq. 1 whereas the
result will vary from zero to one when the phase height hL is
equal to the pipe diameter D. We will assume the subscript X
in the following equations as L and G for liquid gas phases
respectively.

αX =

(
AX
AT

)
, (1)

where the cross-sectional area AX is obtained as function of
phase height hX, where r = D/2 andAT is the total pipe cross-
sectional area.

AX(hX) = r2 cos−1
(
r − hX
r

)
− (r − hX)

√
2rhX − h2X.

(2)

The electrical current flowing from emitter wire to
receiver wire was calculated by integrating the normal flux
through the receiver boundary for different liquid heights.
In Fig. 7 it is possible to see the normalized output cur-
rent and normalized area (i.e. phase fraction) plotted in
function of the liquid height. Moreover, one can observe
that two-wire probes give a linear response versus liquid
height.

FIGURE 7. FEM simulations response varying liquid height in curved and
straight interface.

C. LIQUID HEIGHT MEASUREMENT
A relationship between the spatial resolution of the sensor and
its response to a stratified air–water flow was investigated.
A static test was performed varying the liquid height creating
a series of liquid levels. The measuring section, composed
of an acrylic pipe of 30 cm of length and 26 mm of internal
diameter was positioned horizontally on a scale and then
filled gradually through an orifice at the top. In the exper-
iment, 33 known amounts of water were evaluated and the
liquid height was monitored. The tests were conducted with
tap water (conductivity of 250 µS/cm) at a room temperature
of 20 ◦C. For each level of water, ameasurement of 5minwith
a sampling rate of 1 kHz was made to ensure the accuracy of
the measurements.

As observed in FEM simulations, the circuit response is
linear to the liquid height in which a calibration procedure is
necessary to convert the sensor readings V into a normalized
value VN. Two references measurements are required: pipe
full with water VH and empty pipe VL as

VN =
(
V − VG
VL − VG

)
. (3)

Furthermore, gas height is obtained by multiplying the pipe
diameter to the normalized sensor readings as

hG = D · VN. (4)

In this fashion, applying equation (4) in equation (2)
and (1) it is possible to calculate the measured void fraction
which will be further discussed.

αG =

(
AG(hG)
AT

)
. (5)

Fig. 8 depicts the FEM simulations and normalized sensor
measurements with linear and cubic fitting curves. Addition-
ally, the residuals of sensor measurements from fitted models
(i.e. the differences between the response data and the fit to
the response data at each predictor value) is shown in Fig. 9.
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FIGURE 8. Comparison of void-fraction and sensor measurement and
FEM simulations normalized outputs.

FIGURE 9. Residuals of sensor measurements from linear and cubic fitted
models.

Void fraction values calculated by liquid heights with
straight interfaces were used as reference values in
comparison with the void fraction values calculated from
sensor measurements (Fig. 10). It can be seen a minor non-
linearity along the measurements in which for low void
fraction values (i.e. high liquid height) the sensor readings
tend to overestimate void fraction values. This behavior is
caused by the curvature in gas–liquid interface due to surface
tension as also observed in FEM simulations for curved shape
vs straight interfaces.

In order to quantify the amount of variation of the mea-
surement signal over time a standard deviation is depicted
in Fig. 11. The data indicates a low deviation which is tends
to be close to the mean value. Figure also shows the average
of all points = 0.0013. Considering the residuals of sensor
measurements from the cubic fit model, Fig. 12 presents the
calibration curve for liquid height input values.

IV. APPLICATION IN TWO-PHASE FLOW MEASUREMENT
The experiments were carried out in a pilot plant at
UTFPR/NUEM, Brazil. The test facility uses a virtual instru-
mentation supervisory control and data acquisition (SCADA)
developed in LabVIEW platform, which is based on a cen-
tralized control system for gathering and analyzing real time
data. The system connects the devices and allows its control

FIGURE 10. Comparison of void fraction values calculated by liquid
heights with straight interfaces and void fraction values calculated
from sensor measurements.

FIGURE 11. Standard deviation of each experimental condition (liquid
thickness).

FIGURE 12. Calibration curve for theoretical liquid height input.

through a graphical user interface for high-level supervisory
management. In this work, the system deploys many sensors
and actuators (e.g. valves, flow meters, frequency inverters,
temperature and pressure transmitters) at different positions
in the experimental facility but all connected through a Foun-
dation Field Bus network. The liquid flow rate injected to
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FIGURE 13. SCADA Block diagram with experimental facility components. The main components here represented are:
PT-X for temperature and pressure transmitters and FT for flow meters (gas and liquid). On the SCADA Unit Process the
liquid superficial velocity jL is the ratio between the liquid flow rate QL and pipe cross section area AT. Similarly the gas
superficial velocity jG is the ratio between the gas flow rate QG and cross section area AT.

FIGURE 14. Experimental facility at NUEM and its components.

the test facility is controlled by a frequency inverter (WEG -
CFW500) with a P.I.D. (proportional–integral–derivative)
controller. This communication is made through RS-485 pro-
tocol that controls the AC (alternating current) motor speed
and torque by varying motor input frequency. Gas superficial
velocity is controlled manually with needle valves. The infor-
mation and status from the reading devices (flow, pressure
and temperature meters) permits the calculation of liquid and
gas flow rates at each measuring point in real time (Fig. 13).

The experimental facility comprises of a two-phase flow
line of acrylic pipe of 26 mm i.d. and∼35 m long in which air
and water circulate simultaneously at controlled conditions
(Fig. 14). Tap water is circulated in close loop with help
of a pump and a separator/storage tank. Air is injected into
the pipeline through a compressor to form a two-phase flow.
Flow rates of both fluids are independently measured. The
two-wire node sensors are distributed along the flow line
at many measurement stations #1 (10.18 m), #2 (15.27 m),

FIGURE 15. Experimental facility two-phase gas-liquid horizontal flow
map.

#3 (20.40 m), #4 (25.53 m) and #5 (30.63 m) from the pipe
entrance. Temperature and pressure, at pipe entrance and at
each measurement station are monitored. Since gas is com-
pressible, the difference of the pressures at pipe entrance and
at measurement position is used to compensate the entrance
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FIGURE 16. Sensor readings at different measuring stations.

FIGURE 17. Evolution of time series along the measuring stations.

flow meter readings, assuring the exact volumetric gas flow
rate measurement at the measuring test station. The typical
parameter used to indicate flow rate is the superficial velocity
j, which is defined as the volumetric flow rate Q (m3/s)
divided by the pipe cross section area AT(m2).
In order to characterize the behavior of two-phase flow

along the pipe both liquid and gas superficial velocity were
varied forming a total of 11 measurement points as shown in
the flow map in Fig. 15.

V. RESULTS
After calibration procedure, the measured data in then con-
verted into phase fraction (i.e. void fraction) series, also
known as time series at each measurement station. A num-
ber of 1000 readings (1 s) from experimental point #3
(JG = 0.3, JL = 0.7 m/s) was chosen to demonstrate how

the flow structure (elongated bubbles) evolves along the mea-
surement stations. Fig. 16 depicts the time series readings
from sensor node A time-synchronized for each station in
which it is possible to see the structures (bubble and liquid
slug) increasing in velocity from station #1 to station #5. The
signal acquired from station #5 shows coalesced bubble.

Observing the time series from both sensor’s node (Sensor-
A and Sensor-B) in Fig. 17, one can see that a pair of bubbles
merging just after section #4. This behavior is mainly related
to the phenomena of gas expansion and bubble coalescence.
The pressure in the flow decreases towards the pipeline outlet
in which the gas expands leading to an increase in the bub-
ble length with a slight increase in its velocity. Therefore,
the second bubble is reached by a higher velocity bubble
summing both volume and forming new bubble, consequently
longer. The liquid slug between the coalescing bubbles is
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FIGURE 18. Comparison of Bendiksen’s model for bubble’s velocity and
calculated velocity from sensor measurements.

redistributed, increasing their lengths. The increase in lengths
caused by coalescence then leads to decreasing the frequency
of the unit cells (bubble region and liquid slug).

The distance between the displaced sensors and the time
delay of the acquired signals calculated by cross-correlation
technique allows the measure of the bubble speed. In order to
evaluate the overall quality of the results, a comparison of the
measured values of elongated bubble velocity with the values
predicted by the Bendiksen’s model [24] is performed. This
analysis is shown in Figure 18 for all experimental conditions
in bubble velocity for each measurement station. The bubble
velocity was chosen to evaluate the results because it is the
parameter most susceptible to errors in the measurements,
besides also influencing the values of the other parameters,
such as structure lengths. It can be observed that the measured
values behave as expected and that the predictions made by
Bendiksen [24] are valid for our test facility too.With this, it is
possible to confirm that the sensor measurements can provide
valuable information for the understanding of the evolution of
the flow in future systematic studies.

VI. CONCLUSION
This work presented a novel sensing platform to study two-
phase flows in pipes. The assessment of sensing electronic
time response and liquid height measurement has shown its
capability to investigate two-phase flow at high-speed with
good linearity and adequate accuracy when compared with
reference values. In order to monitor the development of
the dynamic flow, five sensor nodes were installed along a
horizontal pipeline whereas two-phase gas-liquid flows at
several conditions was investigated. Preliminary results have
shown that it is possible to calculate parameters such as
void fraction time series and structure velocities with good
accuracy i.e. 2∼5% of the corresponding predicted values
for void-fraction. Moreover, when it is used as a high-speed
distributed sensor along with the data management platform,
make the system a suitable tool to investigate the evolution
two-phase flow in pipelines.
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