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ABSTRACT The finite-time non-fragile control scheme has received great interest because of its robustness
to the controller gain errors. In this paper, we intend to study the finite-time non-fragile control problems for
a class of linear positive systems with uncertainties. It devises an appropriate non-fragile control law, such
that the closed-loop system is positive and stabilizable and satisfies the givenH∞ performance in a specified
time interval. The main issue is to give a sufficient condition for the solution of the designed finite-time
non-fragile H∞ controller associated with the several control techniques applied to the positive system. The
design result is described as an optimization problem that can be expressed through a couple of linear matrix
inequalities. In the end, we use a practical RL circuit model to evaluate the performance of the proposed
controller.

INDEX TERMS Positive system, finite-time, non-fragile control, RL circuit model.

I. INTRODUCTION
When we model some systems in actual engineering applica-
tions, we always encounter such kind of controlled objects:
when the given initial conditions of the modeled dynam-
ics are non-negative (or positive, strictly), the responses,
i.e., the states and outputs are still non-negative (or positive,
strictly). Considering the positiveness (or non-negativeness),
we always call this dynamic model as positive system. It can
be applied in several fields, for example, biological systems,
industrial engineering, system control theory, social science
and robot industry. The study of positive systems can ret-
rospect to 1970s and many results are available, such as
stability analysis [1], [2], controllability [3], observability [4]
and the relevant realization problems [5]. Based on these,
the research of positive systems has received a lot of con-
cerns in recent years and some publications can be obtained
in [6]–[10].

In general, we always assume that the designed con-
troller can be implemented precisely when we study the
dynamic systems. However, this assumption is not always
the fact because the uncertainties in controller coefficient
are often inevitable. These uncertainties will cause some
fragile disturbances during the process of controller design.

Many factors can cause such fragile disturbances, for exam-
ple, network environment circumstances [11], round off
errors in numerical calculation [12] and the inherent inac-
curacies in simulation [13]. Over the years, many scholars
have showed great interest in such fragile control prob-
lems in theory analysis and practical applications. They
are concerned about how to devise a non-fragile con-
trol law which can make some errors in feedback con-
trol gains be insensitive. Ionescu et al. [14] considered a
robust non-fragile control strategy with the help of lin-
ear matrix inequalities (LMIs) method. For Markovian
jumping nonlinear systems, the observer-based passive
non-fragile control strategy was studied [15]. Yang and
Che [16] investigated the design problems of the non-fragile
H∞ filter for discrete-time systems with FWL condi-
tions. Then, many scholars applied the non-fragile con-
trol method to solve some relevant fragile problems of
nonlinear systems [17]–[23], jumping systems [13], tracking
control [24], neural networks [25]–[27] and etc.

In traditional control fields, many experts and scholars
paid more attention to the asymptotic stability analysis, that
is, the stability study in an infinite time region. In fact,
only the asymptotically stability analysis may not fully
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satisfy the requests of some actual engineering applications.
Therefore, the stability and stabilizable problems in a spec-
ified finite-time have been received many researchers’ con-
sideration and some new results have been achieved, see
for instance, [28]–[34] and some relevant published refer-
ences. Although much research on non-fragile control and
finite-time control has devoted to many control systems, little
research has been done on positive systems. The finite-time
stabilizable (FTS) and the non-fragile control problems of
positive dynamic systems have not been intensively noticed
by scholars. Based on the previous publications, we intend
to fill the research gap of the non-fragile control scheme for
positive systemswith uncertain parameters in a specified time
interval.

The main contributions of this paper as follows. Firstly,
an appropriate non-fragile control law is devised to ensure the
state trajectories of dynamic systems are FTS and satisfy the
given finite-time H∞ performance index. Secondly, the pos-
itiveness of the closed-loop dynamics is guaranteed. Thirdly,
an appropriate non-fragile control law is designed to tolerate a
certain degree of control gain variations. Applying Lyapunov
function methods and LMIs techniques, sufficient conditions
are established to achieve the non-fragile control law such
that the closed-loop system is positive and stabilizable and
satisfies the givenH∞ performance in a specified finite-time.
Then, the performance of the proposed controller is illustrated
at last through a practical RL circuit model.

II. MAIN DEFINITIONS AND NOTATIONS
Consider the linear dynamic model described by

2 :


ẋ(t) = Ax(t)+ Bu(t)
z(t) = Cx(t)+ Du(t)
x(t) = x0, t = 0.

The following definitions and lemmas are needed before the
study.
Definition 1 [37]: 2 is a positive system, if x0 ≥ 0,

u(t) ≥ 0, it concludes x(t) ≥ 0 and z(t) ≥ 0, ∀t > 0.
Lemma 1 [35]: If matrices A, B, C , D in2 satisfy that A is

a Metzler matrix, B � 0, C � 0 and D � 0, 2 is said to be a
positive system.
Definition 2 [37]: If there exists a constant ε > 0 satisfying

A+ εI � 0, where A is a real square matrix, A can be called
as a Metzler matrix.
Remark 1: From Definition 2, we know that if A = [aij] ∈

An is a Metzler matrix, it is a real square matrix. The elements
in A on the non-diagonal line are non-negative, i.e., aij ≥
0, i 6= j. In other words, if there exists a constant ε > 0
satisfying A + εI � 0, it means the non-diagonal elements
of A are positive.
Lemma 2 [36]: For given proper dimensional matrices M

andN , there exists a constant ε > 0which satisfiesMX (t)N+
NTXT(t)MT < ε−1MMT

+ εNTN .

Notations: Throughout this paper, we assume that the nota-
tions are quite standard and all the matrices have compatible
dimensions. We give the meaning of the notations in Table 1.

TABLE 1. Symbols meanings.

III. SYSTEM FORMULATION
Consider the linear positive system with uncertainties
described by:
ẋ(t) = (A+1A(t)) x(t)+ (B1 +1B1(t)) u(t)+ B2}(t)
z(t) = (C +1C(t)) x(t)+ (D1 +1D1(t)) u(t)+ D2}(t)
}̇(t) = (H +1H (t)) }(t)
x(t) = x0, }(t) = }0, t = 0

(1)

where x(t) ∈ <n is the state, z(t) ∈ <p is the controlled
output, }(t) ∈ <q is the unknown disturbance, u(t) ∈ <m

is the controlled input. (A+1A(t)) ∈ <n×n is a Metzler
matrix, (B1 +1B1(t)) ∈ <n×q, B2 ∈ <n×m, (C +1C(t)) ∈
<
p×n, (D1 +1D1(t)) ∈ <p×q and D2 ∈ <

p×m are positive
matrices, (H +1H (t)) ∈ <m×m is a known matrix. The
uncertain matrices satisfy:[

1A(t) 1B1(t)
1C(t) 1D1(t)

]
=

[
M1
M2

]
0(t) [N1 N2] (2)

1H (t) = M30(t)N3 (3)

where 0(t) is a Lebesgue norm measurable function and
satisfies 0T(t)0(t) ≤ I ; M1, M2, M3, N1, N2, N3 are known
matrices. For given positive constants T and h, we assume
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that the unknown disturbance }(t) ∈ <q satisfies:∫ T

0
}T(t)}(t)dt < h (4)

where T > 0 and h > 0.
Supposing that the states of positive system (1) can be

available. Then we devise the state feedback control law as:

u(t) = (K +1K (t)) x(t) (5)

where K is the control law gain to be determined and 1K (t)
is an additive perturbation of the control law gain satisfying:

1K (t) = M40(t)N4 (6)

whereM4, N4 are known matrices, which incarnate the struc-
tural characteristics of the uncertain parameters.
Remark 2: In this paper, the uncertain matrices with the

symbol 1(·) in Eqs. (2), (3) and (5) can be considered
as admissible conditions. In actual applications, we always
cannot obtain the exact mathematical model of practical
dynamics directly because of some complexity processes,
environmental noises and time-varying parameters. Thus,
the uncertain dynamics existing in positive system (1) reflect
the inexactness in mathematical modeling of such positive
system. Moreover, the Lebesgue norm measurable function
0(t) is selected as a full row rank matrix and it also can
be considered as state-dependent, i.e., 0(t) = 0(t, x(t)) if
0T(t, x(t))0(t, x(t)) ≤ I . For more results of this subject,
the readers can refer to literature [15], [17], [13], [22]–[25].

Substituting the state feedback control law (5) into positive
system (1), we can get the following closed-loop system:

ẋ(t) = Ex(t)+ B2}(t)
z(t) = Fx(t)+ D2}(t)
}̇(t) = H̄ }(t)
x(t) = x0, }(t) = }0, t = 0

(7)

where

E = (A+1A(t))+ (B1 +1B1(t)) (K +1K (t)) ,

F = (C +1C(t))+ (D1 +1D1(t)) (K +1K (t)) ,

H̄ = (H +1H (t)) .

Before giving the results of the paper, the following main
definitions are necessary.
Definition 3 [38]: For given time constant T > 0, the

closed-loop system (7) is FTS on (c1 c2 T R δ), if there exists
constants c1, c2 with c2 > c1 > 0 and positive-define matrix
R > 0, such that:

xT(t)Rx(t) < c2, if xT0 Rx0 ≤ c1, }
T
0}0 ≤ δ, ∀t ∈ [0,T ] .

(8)

Definition 4 [38]: For given time constant T > 0, the state
feedback control law (5) can be considered as the finite-time
non-fragileH∞ control law of positive system (1), if under the

non-fragile control law u(t) = (K +1K (t)) x(t), the closed-
loop system (7) is FTS on (c1 c2 T R δ) and satisfies the given
H∞ performance index:

J =
∫ T

0

[
zT(t)z(t)− γ 2}T(t)}(t)

]
dt < 0. (9)

Remark 3: This paper study the non-fragile finite-time
H∞ controller design problem for linear positive system.
Although the main results in [4], [15], [18], and [19] consider
the nonlinear case, the nonlinear part is bounded and can
be linearization representation. Thus, it can be considered
as a linearization method to study the nonlinear systems
in [4], [15], [18], and [19]. In other words, the method stud-
ied in this paper also can be extended to the nonlinear system.

IV. MAIN RESULTS
Theorem 1: For given constants T > 0, α > 0, c1 > 0,

h > 0, the closed-loop system (7) is FTS on (c1 c2 T R δ),
where R > 0, if there exists constants λ > 0, c2 > c1 >
0 and positive definite and symmetric matrices P1 ∈ <n×n,
P2 ∈ <m×m, the following inequalities hold:[

ETP1 + P1E − αP1 P1B2
∗ H̄TP2 + P2H̄ − αP2

]
<0 (10)

c1λmax(P̃1)+ δλmax(P2) < c2λmin(P̃1)e−αT . (11)

Proof: For any positive-definite and symmetric matrices
P1 ∈ <n×n and P2 ∈ <m×m, we select the Lyapunov
function as:

℘(x(t), }(t)) = xT(t)P1x(t)+ }T(t)P2}(t) (12)

Along the track of the closed-loop system (7), the deriva-
tive of ℘(x(t), }(t)) is:

℘̇(x(t), }(t))
= xT(t)(ETP1 + P1E)x(t)+ xT(t)P1B2}(t)
+ }T(t)BT2P1x(t)+ }T(t)(H̄TP2 + P2H̄ )}(t). (13)

From inequality (10), we have:

℘̇(x(t), }(t))− α℘(x(t), }(t)) < 0. (14)

Multiplying the inequality (14) by e−αt and integrating
inequality (14) from 0 to t , we obtain:∫ t

0

d
dt

[
e−ατ℘(x(t), }(t))

]
dτ < 0 (15)

which implies ℘(x(t), }(t))− eαt℘(x(0), }(0)) < 0.
Definite P̃1 = R−1/2P1R−1/2 and yield:

xT(t)P1x(t)≤℘(x(t), }(t)) < eαt℘(x(t), }(t))
< eαt℘(x(0), }(0)) < eαt [xT0 P1x0 + }T0P2}0]
< eαT [λmax(P̃1)xT0 Rx0+λmax(P2)}T0}0]. (16)

Considering that:

xT(t)P1x(t) ≥ λmin(P̃1)xT(t)Rx(t) (17)
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[
ETP1 + P1E + FTF − αP1 P1B2 + FTD2

∗ H̄TP2 + P2H̄ + DT
2D2 − αP2 − γ 2I

]
< 0 (21)

and

eαT [λmax(P̃1)xT0 Rx0 + λmax(P2)}T0}0]
> λmin(P̃1)xT(t)Rx(t) (18)

we have:

xT(t)Rx(t) <
eαT [λmax(P̃1)xT0 Rx0 + λmax(P2)}T0}0]

λmin(P̃1)
. (19)

From inequality (8), we can get:

eαT [c1λmax(P̃1)+ δλmax(P2)] < c2λmin(P1). (20)

It is obviously that inequality (20) can be guaranteed by
inequality (11) for ∀ t ∈ [0,T ]. This completes the proof.

Recalling to Definition 4, we give the following
Theorem 2.
Theorem 2: For given constants T > 0, α > 0, c1 > 0,

h > 0, the closed-loop system (7) is FTS on (c1 c2 T R δ) and
satisfies the given H∞ performance index (9), if there exists
constants γ > 0, λ > 0, c2 > c1 > 0 and positive-definite
and symmetric matrices P1 ∈ <n×n, P2 ∈ <m×m, such that
inequality (11) and the following relation hold, (21), as shown
at the top of this page.

Proof: We select the similar Lyapunov function in (12)
and introduce the following inequality:

℘̇(x(t), }(t)) < α℘(x(t), }(t))+ γ 2}T(t)}(t)− zT(t)z(t).
(22)

Multiplying inequality (22) by e−αt and integrating
inequality (22) from 0 to t , it yields:

γ 2
∫ t

0
e−ατ [γ 2}T(τ )}(τ )− zT(τ )z(τ )]dτ

>

∫ t

0

d
dt
[e−ατ℘(x(t), }(t))]dτ. (23)

According to Newton-Leibniz formula, we have:

γ 2
∫ t

0
e−ατ [γ 2}T(τ )}(τ )− zT(τ )z(τ )]dτ

> e−ατ℘(x(t), }(t))− ℘(x0, }0) (24)

which means,

γ 2
∫ t

0
e−ατ}T(τ )}(τ )dτ >

∫ t

0
e−ατ zT(τ )z(τ )dτ. (25)

For ∀t ∈ [0,T ], we have:

γ 2eαT
∫ T

0
}T(τ )}(τ )dτ >

∫ T

0
zT(τ )z(τ )dτ. (26)

It is evidently that the finite-time H∞ performance index
(9) can be guaranteed by γ̄ =

√
eαT γ for ∀t ∈ [0,T ]. This

completes the proof.

Theorem 3: For given constants T > 0, α > 0, c1 >

0, there exists a finite-time non-fragile control law with
K = YX−1 and the closed-loop system (7) is positive and
FTS and satisfies the given H∞ performance index (9) on
(c1 c2 T R δ), where R > 0, if there exists constants c2 >
c1 > 0, δ > 0, ε > 0, ν > 0, µ > 0, λ1 > 0, λ2 > 0, λ3 > 0,
σ > 0, ϕ > 0, θ > 0, positive-definite and symmetric matrix
X ∈ <n×n and matrix Y ∈ <m×n, such that:[

211 212

∗ 222

]
< 0 (27)

σR−1 < X < R−1 (28)[
δλ2 − c2λ3e−αT

√
c1

√
c1 −λ1

]
< 0 (29)

AX + B1Y + µI � 0 (30)

CX + D1Y � 0 (31)

N1X + N2Y � 0 (32)

N4X � 0 (33)

where

211 =

ψ11 B2 ψ13
∗ ψ22 DT

2
∗ ∗ ψ33


212 =

 0 XNT
1 + Y

TNT
2 XNT

4
P2M3 0 0
0 0 0

,
222 =

−νI 0 0
∗ −εI 0
∗ ∗ 933

,
ψ11 = AX + XAT + B1Y + Y TBT1 + ε

−1M1MT
1

+ϕ−1B1M4MT
4 B

T
1 + θM1MT

1 − αX ,

ψ13 = XCT
+ Y TDT

1 + ε
−1M1MT

2

+ϕ−1B1M4MT
4 D

T
1 + θM1MT

2 ,

ψ22 = HTP2 + P2H − αP2 − γ 2I − ν−1NT
3 N3,

ψ33 = −I + ε−1M2MT
2 + ϕ

−1D1M4MT
4 D

T
1 + θM2MT

2 ,

933 = −ϕI + θ−1MT
4 N

T
2 N2M4.

Proof: Substituting

E = (A+1A(t))+ (B1 +1B1(t)) (K +1K (t)) ,

F = (C +1C(t))+ (D1 +1D1(t)) (K +1K (t)) ,

H̄ = (H +1H (t))

into inequality (21), we can get:[
411 412
∗ 422

]
< 0 (34)
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where

411 = [(A+1A(t))+ (B+1B(t))(K +1K (t))]T P1
+ [(C +1C(t))+ (D+1D(t))(K +1K (t))]T

· [(C +1C(t))+ (D+1D(t))(K +1K (t))]

+P1 [(B+1B(t))(K +1K (t))]+ P1 [(A+1A(t))]

−αP1
412=P1B2+[(C+1C(t))+(D+1D(t))(K+1K (t))]TD2,

422=−γ
2I+DT

2D2+[H+1H (t)]TP2+P2[H+1H (t)]

−αP2.

Using diag {P−11 , I } to pre- and post-multiply matrix (34),
and considering X = P−11 , Y = KX , we have:

�1 +1�1 < 0 (35)

where

�1 =

[
811 B2
∗ 822

]
,

811 = [(A+1A(t))+ (B1 +1B1(t)) (K +1K (t))]X

+X [(A+1A(t))+ (B1 +1B1(t)) (K+1K (t))]T

−αX ,

822= (H+1H (t))T P2+P2 (H+1H (t))−αP2−γ 2I ,

1�1 =

[
1811 1812
∗ DT2D2

]
,

1811 = X [(C +1C(t))+ (D1 +1D1(t)) (K +1K (t))]T

· [(C +1C(t))+ (D1 +1D1(t)) (K+1K (t))]X ,

1812=X [(C+1C(t))+(D1+1D1(t)) (K+1K (t))]T D2.

Then for (35), we have the following inequality by consid-
ering Lemma 2 and using Schur complement lemma:

�2 +1�2 +1�3 +1�4 < 0 (36)

where

�2 =

911 B2 913

∗ 922 DT
2

∗ ∗ −I

,

1�2 =

 0 0 0
∗ 1HTP2 + P21H 0
∗ ∗ 0

,

1�3 =

411 0 X1CT
+ Y T1DT

1
∗ 0 0
∗ ∗ 0

,

1�4 =


∏

11 0 X1KTDT
1 + X1K

T1DT
1

∗ 0 0
∗ ∗ 0

,
911 = XAT + AX − αX + Y TBT1 + B1Y ,

913 = XCT
+ Y TDT

1 ,

922 = P2H + HTP2 − γ 2I − αP2,

411 = X1AT(t)+1A(t)X + Y T1BT1 (t)+1B1(t)Y ,∏
11
= B11K (t)X +1B1(t)1K (t)X

+X1KT(t)B1 + X1KT(t)1B1(t).

According to relations (2), (3), (6) and Lemma 2, 1�2,
1�3 and 1�4 can be rewritten as:
1�2 = Z10(t)Z2 + ZT

20
T(t)ZT

1 < ν−1Z1ZT
1 + νZ

T
2Z2

1�3 = Z30(t)Z4 + ZT
40

T(t)ZT
3 < ε−1Z3ZT

3 + εZ
T
4Z4

1�4 = Z50(t)Z6 + ZT
60

T(t)ZT
6 < ϕ−1Z5ZT

5 + ϕZ
T
6Z6,

where

Z1 = [0 P2M3 0]T , Z2 = [0 N3 0] ,

Z3 = [M1 0 M2]T , Z4 = [MT
1 0 MT

2 ],

Z5 = [B1M4 +1B1M4 0 D1M4 +1D1M4]T ,

Z6 = [N4X 0 0] .

Then for (36), we can get the following inequality:

�3 +1�5 < 0 (37)

where

�3 =

[∐
11

∐
12

∗
∐

22

]
,

∐
11

=

∇11 B2 ∇13
∗ ∇22 DT

2
∗ ∗ ∇33

,
∐
12

=

 0 XNT
1 + Y

TNT
2 XNT

4
P2M3 0 0
0 0 0

,
∐
22

=

−νI 0 0
∗ −εI 0
∗ ∗ κ33

,
∇11 = AX + XAT + B1Y + Y TBT1 + ε

−1M1MT
1

+ϕ−1B1M4MT
4 B

T
1 − αX ,

∇13 = XCT
+ Y TDT

1 + ε
−1M1MT

2 + ϕ
−1B1M4MT

4 D
T
1 ,

∇22 = HTP2 + P2H − αP2 − γ 2I − ν−1NT
3 N3,

∇33 = −I + ε−1M2MT
2 + ϕ

−1D1M4MT
4 D

T
1 , κ33 = −ϕI ,

1�5 =

[
0 ϑ12
∗ 0

]
, ϑ12 =

 0 0 1B1M4
0 0 0
0 0 1D1M4

.
Recalling to Lemma 2, we can re-write 1�5 as:

1�4 = Z70(t)Z8 + ZT
80

T(t)ZT
7 < θZ7ZT

7 + θ
−1ZT

8Z8,

where Z7 = [M1 0 M2 0 0 0]T, Z8 = [0 0 0 0 0 N2M4].
Then for (37), using Schur complement lemma, we can

obtain (27).
Definite P̄1 = R1/2XR1/2 and consider max σ (x) =
1

min σ(P) , it concludes to get condition (11) by inequality (29).
Then, we prove the positiveness. From (30), we know that

(AX +B1Y ) is a Metzler matrix. Since Y = KX , (A+B1K )X
is also a Metzler matrix. From (31) and (32), we know that
N1X + N2Y and CX +D1Y are positive matrices, i.e., (N1 +

N2K )X and (C + D1K )X are positive, which means N1 +

N2K and C + D1K are positive. Therefore, E is a Metzler
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matrix and F is a positive matrix. Recalling to B2 � 0 and
D2 � 0, we get that the closed-loop system (7) is positive.
This completes the proof.
Remark 4: Theorem 1 and 2 give sufficient conditions to

ensure that the closed-loop system (7) is FTS and satisfies
the H∞ performance index from the unknown disturbance to
the controlled output. In Theorem 3, we devise the sufficient
conditions to obtain the non-fragile H∞ control law by a
couple of matrix inequalities in a specified time interval.
Remark 5: In order to obtain sufficient conditions to the

finite-time non-fragile H∞ controller, we make the appropri-
ate scaling for the selected Lyapunov function, which will
bring somewhat conservative for the controller design. The
conservative problem can be reduced by selecting different
Lyapunov functions [20]–[22].
Corollary 1:A sufficient condition to solve the non-fragile

H∞ control law of positive system (1) in a specified time
interval is given in Theorem 3. Considering that the coupling
inequalities (27)-(34) are related to X , Y , c1, c2, δ, T , α, ν,
µ, λ1, λ2, λ3, θ , ε, σ , ϕ and γ 2, we have the optimization
algorithm by setting γ 2 as an optimization variable value:

min
X ,Y ,c1,c2,δ,T ,α,ν,µ,λ1,λ2,λ3,θ,ε,σ,φ,γ 2

γ 2

s.t. LMIs(27)− (33). (38)

Remark 6: Similar to the simple optimal control,
we describe the design result as an optimization problem
in Corollary 1. However, simple optimal control has no
good robustness to controller gain error. Different with linear
model predictive control, which focuses on open-loop opti-
mal control problem. The finite-time non-fragile control stud-
ied in this paper not only concerned with the optimal solution
problem of the closed-loop control system in a specified time
interval but also ensured the result has good robustness to the
controller gain error.

V. EXAMPLE
Considering a circuit model described as Fig.1, where R1, R2,
R3 stand for the resistances, L1, L2 stand for the inductances,
u1(t), u2(t) stand for the controlled sources. Assume that the
inductance values and the resistance values are linear time-
invariant. i1L(t), i2L(t) are the currents through L1 and L2,
respectively.

FIGURE 1. The RL circuit model.

Define the state variables as x1(t) = i1L(t), x2(t) = i2L(t)

and the output variable as z(t) =
[
R1i1L(t)
R2i2L(t)

]
. Using the

Kirchhoff voltage law and considering u1L(t) = L1
di1L (t)
dt ,

u2L(t) = L2
di2L (t)
dt , we can get:

ẋ1(t) == −
R1 + R3
L1

x1(t)+
R3
L1
x2(t)+

R3
L1
u1(t)

ẋ2(t) ==
R3
L2
x1(t)−

R2 + R3
L2

x2(t)+
1
L2
u2(t)

z(t) =

[
R1x1(t)
R2x2(t)

]
.

(39)

Select the RL circuit model parameters as R1 = 1, R2 = 2,
R3 = 3, L1 = L2 = 1

3 . Thus, the circuit model can be derived
as: {

x(t) = Ax(t)+ B1u(t)
z(t) = Cx(t)+ D1u(t)

(40)

where

A =
[
−12 9
9 −15

]
, B1 =

[
9
3

]
, C =

[
1 0
0 2

]
,

D1 =

[
0
0

]
.

The other parameters are given as:

B2=
[
0.4
0.2

]
, D2=

[
0.2
0.1

]
, H= [1] , R=

[
1 0
0 1

]
,

M1 =

[
0.1
0.2

]
, M2 =

[
0.3
0.2

]
, M3 = [2] ,

M4 =
[
0.2 0.4

]
, N1 =

[
0.5 0.6

]
, N2 = [0.02] ,

N3 = [2] , N4 = [0.02] , c1 = 4, α = 9.3, T = 2.

Applying the optimization algorithm in Corollary 1 and
solving LMIs (27)-(33), we can get the non-fragile control
gain as K = [0.4595 0.7102] with c2 = 4.5615 and H∞
performance parameter γ = 7.2162.

With the initial conditions x0 = [1.3 1.2]T, we can obtain
the simulation plots in Fig 2 and Fig 3.

FIGURE 2. The state trajectories of xT(t)Rx(t).

From Fig.2, we can see that the RL circuit model system
is stabilizable within 1 second and the dynamic trajectory
xT(t)Rx(t) of the system is positive and bounded in a spec-
ified time interval [0 2] and satisfies xT (t)Rx(t) < c2 with
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FIGURE 3. The output trajectories of z(t).

c2 = 4.5615; It is obvious from Fig.3 to see that the output
signal is satisfies condition of positive system in Defini-
tion 1 and the given H∞ performance (9) with γ = 7.2162 in
a specified time interval [0 2]. The stabilizable of the output
needs to be further improved in the future work.
Remark 7: A practical RL circuit model is given to testify

the effectiveness of the proposed control scheme in simula-
tion results. In the simulation results, we consider the circuit
model (39) and (40) containing uncertainties and external
disturbances due to the aging and inaccurate measurement of
the system devices. Moreover, the designed finite-time non-
fragile controller not only applies to the RL circuit but also to
any other linear control systems described by (40).
Remark 8: The uncertain parameters and unknown distur-

bances are given values in the RL circuit model, which will
bring somewhat conservative for the simulation results. From
Fig.3, we know that the finite-time stabilization of RL circuit
model can be studied further improvement. Thus, we will
focus on these problems in the future work to improve the
proposed methods.

VI. CONCLUSION
In this paper, the research gap of the non-fragile H∞ con-
troller design problem of uncertain positive systems in a
specified time interval is filled. The message of the research
is to devise a suitable non-fragile H∞ controller such that the
close-loop system be FTS and satisfy the given finite-time
H∞ performance index. Moreover, the positiveness of the
close-loop system is also proved. In order to obtain the
sufficient conditions of the designed finite-time non-fragile
H∞ controller, the LMIs technique is used and the control
law design problem is formulated as an optimized problem.
A practical RL circuit model example is illustrated to evaluate
the performance of the proposed controller. In the future
research, we can apply the proposed control methods on other
linear positive system, such as linear positive Markov jump
system and linear positive switching system.
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