IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 25, 2018, accepted December 10, 2018, date of publication December 18, 2018,
date of current version February 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2888568

Detecting Android Locker-Ransomware
on Chinese Social Networks

DAN SU“'!, JIQIANG LIU“?, XIAOYANG WANG?2, AND WEI WANG !

! Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China
2Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China

Corresponding author: Wei Wang (wangweil @bjtu.edu.cn)
This work was supported in part by the National Key R&D Program of China, under Grant 2017YFB0802805, in part by the Fundamental

Research Funds for the Central Universities of China, under Grant 2018JBZ103, and in part by the Natural Science Foundation of China,
under Grant U1736114 and Grant 61672092.

ABSTRACT In recent years, an increasing amount of locker-ransomware has been posing a great threat
to the Android platform as well as users’ properties. Locker-ransomware blackmails victims for ransom by
compulsorily locking the devices. What is worse, a mature locker-ransomware transaction chain has taken
shape on Chinese social networks. The effective detection of locker-ransomware is an emergent yet crucial
issue. To deal with this issue, in this paper, we are motivated to propose a light-weight and automated method
for the detection of locker-ransomware. First, we conduct a thorough survey of the locker-ransomware’s
transaction market and perform a comprehensive analysis of locker-ransomware’s behaviors. Second, to cope
with the code obfuscation problem, we extract features of both displayed texts and background operations
based on the observed behaviors. The fine-grained features are extracted from multiple sources, which can
profile locker-ransomware in different aspects. Finally, we employ the ensemble of four machine learning
algorithms for detection. The experimental results show that our method outperforms VirusTotal. It achieves
the best performance with the detection accuracy of 99.98%.

INDEX TERMS Android, locker-ransomware, malware detection.

I. INTRODUCTION

Ransomware is a type of malware that blackmails users for
ransom by blocking access to devices or data. In general
ransomware can be categorized as locker-ransomware and
crypto-ransomware. More specifically, locker-ransomware
blocks users’ interactions with the device by resetting the PIN
code or popping up a full-screen window. The window covers
the screen, which makes it impossible for users to interact
with the device. The window may disappear only after the vic-
tims pay for the password and input it, as promised. Crypto-
ransomware encrypts users’ data and demands payment for
the decryption. Locker-ransomware and crypto-ransomware
occasionally appear together. It should be noted, however,
paying the ransom does not guarantee that users can get the
password and regain access to the devices. Most ransomware
attackers are driven by profit. To instigate users to pay the
ransom without hesitation and suspicion, the attackers turn to
psychological tactics. They often equip the ransomware with

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessio Vecchio.

humiliating messages and pornographic images. Their tricky
use of both technology and psychology make ransomware a
severe problem to the public, which requires to be urgently
addressed.

Ransomware first appears on computers. The first ran-
somware, known as AIDS, was created in the late 1980s [1].
It encrypted files and demanded ransom by mail. With the
development of the Internet and cryptocurrency, ransomware
has become formidable with multiple ways of propagation
and payment, causing significant losses in the past few
years. In 2017, after infecting over 200,000 computers across
150 countries with economic losses of 4 billion dollars [2],
WannaCry earned its reputation as the most widespread ran-
somware attack to date.

In recent years, smart mobile devices have been widely
favored. As the most popular mobile operating sys-
tem, Android dominates the market with a global share
of 85.9% [3]. The open nature of Android system and the
readily-available application distribution mechanism attract
lots of attackers. Android devices have become lucra-
tive targets and ideal hosts for ransomware to propagate.

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission. 20381

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8230-466X
https://orcid.org/0000-0003-1147-4327
https://orcid.org/0000-0002-5974-1589

IEEE Access

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

Sypeng [4], which appeared in 2014, is the first Android
locker-ransomware sample. It infected devices via a coun-
terfeit Adobe Flash update message. It locked the screen
and popped up a fake FBI message with a demand
of $200 ransom. Koler [5] is notable for being the first
Android ransomware worm, on account of its self-replicated
behaviors. It would automatically send messages enclosing a
download link to the worm to everyone in an infected device’s
contact list. In 2015, Lockerpin [6] appeared as the first real
example of ransomware that was capable of resetting the
PIN code of a device. It left victims with a locked mobile
screen, demanding for a $500 ransom. In 2017, Kaspersky
Lab detected over 544 thousand mobile ransomware [7].
McAfee Lab [8] claimed that mobile malware authors have
set their sights firmly on monetization. They have added
ransomware capabilities to create a new threat on the mobile
platform. Clearly the mobile ransomware targeting Android
has posed a great threat to Android ecosystem and users’
properties.

China is the largest smart phone market in the world.
In 2018, 50.37% of the population in China used a smart-
phone [9]. In December 2017, Android held a share of 78%
of the mobile operating system market in China [10]. How-
ever, according to Mobile Tencent Analytics [11], 42% of
Chinese users’ system versions are still below Android 6.0.
The drawbacks in the early versions of platform, e.g., lacking
flexible permission management, expose users to high risks
of being attacked. Moreover, on Chinese social networks,
Android ransomware transaction has become a mature indus-
trial chain. QQ [12] developed by Tencent [13] is one of the
largest online communities worldwide with over 899 million
active accounts [14]. Its popularity and anonymous registra-
tion mechanism make it a hot market for ransomware trans-
actions. When we search the keyword “Android locker” in
Chinese, we can find hundreds of QQ groups aiming at trad-
ing ransomware. The detailed tutorials shared in the groups
enable those with little Android knowledge to make their own
ransomware. The low technical requirement and high profit
tempt a great number of common people into developing and
propagating ransomware, making the situation even worse.
The significant growth of ransomware targeting Android
increasingly requires efficient methods that can automatically
profile and detect them.

One of the challenges of effectively detecting locker-
ransomware is that most of locker-ransomware is built with
code obfuscation. The names of functions are replaced by
simple letters, e.g., reset_password() is replaced by a(),
which increases the difficulty in analyzing the code. In addi-
tion, locker-ransomware normally appears along with shells.
It masques as popular apps for download. After being
installed, the shell will immediately release the inside locker-
ransomware to perform malicious behaviors. Under the pro-
tection of shells, amounts of locker-ransomware can escape
existing detection methods.

In this paper, we focus on the Android locker-ransomware
that are widely spread on Chinese social networks.

20382

Android locker-ransomware shows new tricks in devel-
opment, masquerade and propagation. Equipped with
psychological tactics, locker-ransomware has become a trou-
blesome issue. To resolve this issue, first, we join the
ransomware-trading groups and conduct a thorough survey
of the transaction market. We acquire detailed information
about traders as well as the complete transaction process.
Second, we collect 301 latest unique samples distributed in
real world. We perform a comprehensive analysis of locker-
ransomware’s behaviors and their techniques. Some inter-
esting points are revealed, e.g., locker-ransomware is more
likely to masquerade as hot game cheaters or red pocket
grabbers. Third, we propose a light-weight framework to
effectively profile and detect locker-ransomware. Observing
that widgets are normally not on the obfuscation list, we make
use of the texts shown in the widgets. Unlike typical malware,
which hides itself from victims, locker-ransomware tends to
interact with victims by making a clear notification reminding
victims to pay the ransom. Keywords such as “lock™ and
“unlock” frequently appear thus we build a text feature
set to detect the lock-related texts. However, some benign
locker apps also have the same keywords, so texts alone are
inadequate to distinguish them. We enlarge the feature set
with background behaviors. Finally, an ensemble detector
which combines four kinds of machine learning approaches is
applied to detect locker-ransomware. Our ensemble method
achieves the accuracy as high as 99.98%.

We make the following contributions:

(1) We make a thorough survey of the transaction of locker-
ransomware on Chinese social networks. We describe the
details about this industrial chain, including ways of ran-
somware developed and distributed. To the best of our knowl-
edge, this is the first systematic work on detecting Android
locker-ransomware distributed on Chinese social networks.

(2) We perform a comprehensive analysis of locker-
ransomware’s behaviors and their techniques. We provide a
detailed description of their malicious behaviors. Both tech-
nical and psychological tricks are exposed.

(3) We extract six categories of features that combine
displayed texts and background operations. One category
of features is extracted from multiple sources, aiming at
profiling one typical characteristic of locker-ransomware.
Our method can handle common obfuscation and root
shells.

(4) We propose an ensemble approach to effectively detect
locker-ransomware. The detection result is determined by
four kinds of machine learning algorithms. It outperforms
antivirus engines in VirusTotal and achieves the accuracy
of 99.98%. The experimental results demonstrate the effec-
tiveness of the features and detection method.

The rest of this paper is organized as follows. Section II
introduces related work on Android malware detection.
Section III describes the propagation and behaviors of locker-
ransomware. Section IV describes the proposed method.
Section V describes the evaluation. The conclusion follows
in Section VI.

VOLUME 7, 2019

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

IEEE Access

Il. RELATED WORK

A. ANDROID PLATFORM

To better understand the behaviors of Android locker-
ransomware, we first introduce the basics of Android appli-
cations (apps). An Android app is a compressed Android
Package (APK) file that contains the app’s manifest file, code,
resources, assets, and certificates. The AndroidManifest.xml
declares the components in the app, including Activity, Ser-
vice, Broadcast Receiver and Content Provider [15]. Apps
require specific permissions to perform sensitive operations.
The requested permissions are also declared in the manifest
file. The implemented classes and methods are compiled in
the Dex file format which is understandable by the Dalvik vir-
tual machine. We can disassemble the code to readable Smali
files and extract APIs the app has invoked. The resources,
e.g., images, strings, .xml files that control the layout of activ-
ities, are in res/ directory. The layout of a floating window
is controlled by these layout files. The assets that can be
retrieved by AssetManager [16] are in assets/ directory. Some
ransomware conceals the malicious part as assets and releases
it after installation.

Users can download apps from multiple sources, including
but not limited to official or third-party markets, websites and
social networks. The various sources facilitate the distribution
of apps, however, bring great risks at the same time. Though
most sources deploy antivirus engines to prevent malware
from sneaking in, malware is becoming much more sophisti-
cated and stealthier to break the defense. Attackers can evade
the detection by multiple tricks, e.g., compress malware in
encrypted zip files.

B. ANDROID MALWARE DETECTION

Android malware detection has been a widely studied topic,
and some inspiring work has been published. Arp et al. [17]
presented DREBIN, which extracted static features such as
component names, permissions, intents, API, etc. They con-
sidered linear SVM for the training task. Shabtai et al. [18]
extracted features from Android app files, such as Java
bytecode and XML files. They tested several feature selec-
tion approaches to find the most representative sets of
features. Zhu et al. [19] extracted four kinds of features
including permissions, system events, APIs and permissions.
Then an ensemble random forest classifier was learned to
detect whether an app was potentially malicious or not.
They achieved an accuracy of 89.91%. Some work [20-25]
extracted HTTP header and statistic information (e.g., num-
ber of received packages) to profile malapps’ network behav-
iors, and machine learning algorithms were applied for the
classification. Arora et al. [26] combined static permissions
and dynamic network traffic information as features. For
the detection method, they combined Supervised Learning
(KNN Algorithm) and Unsupervised Learning (K-Medoids
Algorithm) and achieved overall detection accuracy
of 91.98%. Martinelli et al. [27] proposed BRIDEMAID
which matched static n-grams and monitored device, app and
user behaviors. Their evaluation was based on 2794 malapps

VOLUME 7, 2019

with a detection accuracy of 99.7%. Canfora et al. [28]
also applied frequencies of opcodes n-grams as features.
Du et al. [29] divided a function call graph into community
structures and used features of these community structures
to detect malware. They reduced the computation time by
improving the Girvan-Newman algorithm and using machine
learning classification instead of a similarity comparison of
subgraphs.

In previous work, we developed an anomaly detection
system called Anomadroid [30] to profile normal behaviors
of normal apps. Apps whose behaviors deviated from the
normal profile were identified as malicious. We also built a
framework [31] to effectively manage a big app market in
terms of detecting malware and categorizing benign apps.

In recent years, researchers have paid great attention to
ransomware. For PC ransomware, Chen et al. [32] monitored
dynamic behaviors of the app and generated API call flow
graphs. They converted 2-sequences of APIs as features and
the frequency of corresponding 2-sequences as feature values.
Then they adopted four machine learning classifiers for the
detection. To detect crypto-ransomware, Scaife et al. [33]
proposed CryptoDrop, an early-warning detection system
that alerted a user during suspicious file activity. They identi-
fied three primary indicators suited to detect malicious file
changes. Kharraz et al. [34] proposed a dynamic analysis
system called UNVEIL. It generated an artificial user envi-
ronment, and detected when ransomware interacted with user
data.

Only a few work has been released on detecting mobile ran-
somware. Andronio et al. [35] proposed HelDroid to monitor
threatening texts, locking and encryption behaviors. Partic-
ularly, they applied texts extraction and static code analysis
to detect locker-ransomware. Maiorca et al. [36] proposed
R-PackDroid, a supervised machine learning approach to dis-
criminate between ransomware, generic malware and benign
apps. They applied the presence of API packages as features.
Chen et al. [37] focused on crypto-ransomware and proposed
RansomProber. Based on the observation that ransomware
did not display the encryption process during the attack,
they utilized UI analysis technique to judge the legality of
encryption operations.

The existing work has left some problems unsolved. First,
the code obfuscation has been a great challenge for analysis
and detection. Some approaches in previous work is inca-
pable to deal with it. Second, most ransomware is protected
by shells. Some approaches ignore the shells and unable
to extract the ransomware inside, thus become vulnerable.
Effective and efficient features and detection approaches are
in great demand.

Ill. ANDROID LOCKER-RANSOMWARE

In this section, we will describe the propagation and behav-
iors of locker-ransomware. We find hundreds of QQ groups
that are related to transactions of locker-ransomware. The
transaction of ransomware has become a mature industry
chain on Chinese social networks. We observed the following

20383

IEEE Access

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

strategies about the propagation and behaviors of Android
locker-ransomware.

A. PROPAGATION

1) CHINESE MARKET

To elude regulations and enhance transaction probabilities,
the trading environment requires anonymity as well as
convenience for traders to negotiate and pay. QQ’s anony-
mous registration mechanism and its digital wallet per-
fectly match the requirements. Moreover, the large number
of QQ users are potential customers for ransomware sell-
ers. To sell ransomware, the sellers can either join existing
QQ groups or create their own groups. QQ groups that sell
ransomware can easily be found by searching the keyword
“Android locker” in Chinese. The groups normally require
membership fees less than ¥ 10. The number of group mem-
bers ranges from dozens to over one thousand. For buyers,
they can pay to join the group and send a message to all
group members to ask for ransomware. It is worth noting that
not only the group owner but all other members in the group
can be sellers. A group is an open market. After negotiation,
one ransomware normally costs less than ¥ 10. The buyer can
pay the seller by QQ wallet and the seller will send him the
ransomware.

In some groups, the group owners share ransomware devel-
opment tools, video tutorials and source code. Once paid
about ¥ 100, they also provide one-on-one tutoring on how to
develop ransomware. Therefore, besides selling ransomware,
sellers can profit from membership fees, ransom and tutoring
fees. Although the unit-price seems unsatisfying, given the
large number of buyers, the profit is tempting. Many com-
mon people and even victims are engaging in ransomware
dealing, making the ransomware market prosperous on social
networks. The transaction process can be seen in Fig. 1.

To curb the diffusion of ransomware, QQ has been
equipped with an online antivirus engine to scan uploaded
files and delete the identified malware. But the sellers manage
to avert the scanning simply by compressing the ransomware
in an encrypted .rar file and sending the file with password to
buyers. Without the password, the antivirus engine is unable
to extract and detect ransomware. As a result, the sellers can
easily break the defense and share group files.

2) DEVELOPMENT TOOLS

Android Studio is the official integrated development envi-
ronment for Android which runs on PC. However, to accel-
erate the development process, attackers are more likely to
use AIDE [38], which can be operated on Android devices.
It can edit, debug, compile, sign and run APKs with simple
operations. To generate their own ransomware, new learners
can make use of existing ransomware’s source code by only
changing unlock password and contact information. With
detailed tutorials, one can complete the repackage procedure
even with little knowledge of Android. The low requirements
of hardware and skills make AIDE the most popular tool in
ransomware development.

20384

!

R 1 Tuition — — _ -
-~
~
AN
_ N
¢ Transaction >
Create New Groups 2 |
v

QQ Groups

S~ = _-
0 Ransom — —

A
|
|

- Membership Fees — — — — — ¢t ———————— a

FIGURE 1. Transaction of locker-ransomware.

3) MASK

Ransomware always masquerades as popular apps to seduce
downloading. According to the ransomware’s names, locker-
ransomware normally disguises as free cheaters of hot games,
red pocket grabbers, QQ added-service providers and porno-
graphic video players. These apps have some characteris-
tics in common: (1) Most of the targeted apps are illegal
and unavailable on official application markets. Therefore,
whoever needs them have to turn to other sources, which
makes opportunities for ransomware to distribute. (2) These
apps tend to require more permissions and even the root
permission. Victims who are familiar with these apps will not
hesitate to grant the permissions during installation. (3) They
have a broad user base. The ransomware targets on users with
special needs but with little knowledge of Android. In dis-
guise, ransomware seduces downloading without difficulty.

B. BEHAVIORS
1) LOCKING SCREENS
The most common behavior of locker-ransomware is to make
the devices unavailable by creating a floating window on the
screen or changing the PIN code. The floating window shows
threatening messages, along with attacker’s contact informa-
tion and payment methods. The window does not respond to
any touch event, and neither does the back or home button,
making the device completely inaccessible. On Android
platform, the placement and appearance of windows are con-
trolled by WindowManager [39]. The ransomware creates the
floating window by setting specific layout parameters of Win-
dowManager. For example, the window is granted with top
privilege when its type is set as TYPE_SYSTEM_ERROR.
It can appear on top of everything. If its flag is set as
FLAG_NOT_FOCUSABLE or FLAG_NOT_TOUCHABLE,
the window cannot ever get key input focus or receive touch
events, so the user is unable to send key or other button events
to it. An example can be seen in Fig. 2.

To disable the physical or virtual key, e.g., home, back
and menu, attackers overwrite the onKeyDown() method to

VOLUME 7, 2019

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

IEEE Access

WIParan
wmParams .
wmParams
wmParam
wmParams .
wWmParam

Layout

Paraneters

width = WindowManager.LayoutParams.FILL_ PARENT;
wmParams.height = WindowManager.lLayoutParams.FILL PARENT;
LayoutInflater inflater = LayoutInflater.from(getApplication());
mEloatLayout = inflater.inflate(R,layout. e, null);
mWindowManager . addView (mFloatLayout, wmParams) ;

}

FIGURE 2. Layout parameters.

Secret key
Input password here

“Spend more time with your family”.

Contact information

FIGURE 3. A screenshot of a locked phone.

ignore the press event. Some ransomware seduces users to
grant the device administrator privilege. The ransomware
creates an intent with the action of DevicePolicyMan-
ager. ACTION_ADD_DEVICE_ADMIN [40] to add itself as
a new device administrator to the system. Once the admin-
istrator is active, the ransomware will have the permis-
sion to rewrite /data/system/password.key file and reset the
PIN code to lock the screen. Even worse, the app with admin-
istrator permission cannot be uninstalled by being dragged
to the trash, in the way common apps are. Thus it is diffi-
cult for users unfamiliar with system settings to get rid of
ransomware.

Fig. 3 shows the screen of a locked phone. A text view is
presented to the victim to insert a password. The generation of
password is based on the secret key displayed on the screen.
The attacker leaves his QQ number as contact information.
Victims are expected to contact his QQ and pay the ransom
in order to get the password.

2) BLOCKING PHONE CALLS

Some ransomware can block phone calls to make the
device inaccessible. Whenever a call comes in, Android
system will broadcast the event to all apps. The ran-
somware can listen to the event by registering a Broadcast
Receiver [41]. It can extract the phone number from Telepho-
nyManager [42]. If the number is not the one predefined by

VOLUME 7, 2019

<intent-filter

android:priority="2147483647">

<actilion android:name="android.intent.action. BOOT_COMPLETED" />
</intent-filter>

FIGURE 4. An example of priority setting in the AndroidManifest.xml.

attackers, the ransomware will terminate the call. By setting
the mode of ringer to RINGER_MODE_SILENT, the ran-
somware can mute the phone to make the blocking process
underground.

3) HIGH PRIORITY

Most ransomware starts working as soon as the device
completes booting. It registers a BroadcastReceiver and
listens to BOOT_COMPLETED intent. In AndroidMani-
feat.xml, there is one attribute of intent-filter, named pri-
ority. It controls the order in which broadcast receivers
are executed. Apps with higher priority values are called
before those with lower values. Ransomware sets the pri-
ority as the largest value of integer, which gives it the
highest priority. It will be the first app to know the device
has completed booting, and then it aborts the broadcast
and starts malicious services. An example can be seen
in Fig. 4.

4) HIJACKING ACTIVITIES

After the device completes booting, the ransomware will
detect the top activity at intervals by utilizing ActivityMan-
ager [43]. If the package name of the top activity does not
belong to the ransomware, the ransomware can kill the top
activity by calling killBackgroundProcesses() and restart its
own activity.

5) ROOT SHELLS

Some ransomware utilizes root shells to masquerade as pop-
ular apps, as discussed in Section A. The root shell’s task
is to get root permission and release the ransomware in the
system directory. The real ransomware that locks the screen
hides in the /asset directory and disguises as a .so file, e.g.,
dalvik.so. After obtaining the root permission, the root shell
will copy dalvik.so to /system/app/ directory and rename it
as x.apk. After rebooting the system, the ransomware will
be automatically installed on the device. Android regards
it as a pre-installed system app which cannot be directly
uninstalled. Although most ransomware can be removed by
Android Debug Bridge (ADB) [44], it still bothers common
users.

C. PASSWORD AND UNLOCKING

1) PASSWORD

a: NO PASSWORD

The ransomware pops up a full-screen floating window
with only contact information. After receiving the ransom,
the attacker will trigger the self-destructive program by call-
ing or texting to the victim.

20385

IEEE Access

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

b: CONSTANT PASSWORD

Some passwords are constant values, e.g., birthdays or sen-
tences that can be easily remembered. The floating window
will disappear only after the correct password is entered. Con-
stant passwords can be effortlessly located by professionals in
the decompiled code.

¢: ADVANCED PASSWORD

This kind of password adopts complicated logical calcula-
tions or encryption algorithms, e.g. AES, DES. To generate
numerous different passwords, the ransomware can create a
random number and take it into calculation. In some cases,
the encryption progress includes several rounds to make the
password unbreakable.

2) UNLOCKING

a: BY PASSWORD

The most common way to unlock the device is to pay for pass-
word. After the password is entered in the floating window,
the window will disappear and the victim regains control of
the device.

b: BY PHONE CALLS OR SMS

Another way is to trigger self-destructive program by calling
or texting to the victim. The attacker predefines his phone
number in the code of ransomware and registers a listener
to monitor the phone state. When a call or SMS comes in,
the ransomware will check whether it is from the attacker.
If the calling number is the same as the predefined phone
number, the ransomware will kill its service. But in this way,
the attacker’s phone number is exposed.

¢: BY UNLOCKING TOOLS

To decrypt advanced password, attackers usually develop an
unlocking tool to automatically make a reverse calculation of
encryption algorithms. They will send victims the tool after
receiving the ransom. The victims can generate the password
and unlock the phone by themselves.

d: BY THE INTERNET

In order to protect their personal information, attackers apply
an anonymous communication technology, e.g., Onion Net-
work, to remotely unlock the device. This technology was
originally designed to protect the privacy of sender and recip-
ient, but was abused by amounts of malware.

D. PAYMENT

Most attackers leave their QQ numbers as contact informa-
tion and the victims are instructed to make payments via
QQ wallet. Unlike the high ransom in other countries, ran-
som of Chinese locker-ransomware is affordable, normally
¥20 - ¥50, so victims will not call the police with the
mentality of ‘“‘the less trouble, the better”. Besides, QQ is
pseudonymous, the victim is unable to find personal
information about the attacker. Some attackers hide their

20386

QQ numbers by leaving a QR code instead. The QRcode links
to the payment interface of attacker’s QQ wallet. Therefore,
the victims pay the ransom without any knowledge about the
attackers. Though some international ransomware supports
Bitcoin, we have not observed any samples on Chinese social
networks.

E. LOW LEVEL OF API

We find that most locker-ransomware is based on early ver-
sions of API. 86% of our samples are targeted on API 21
which corresponds to Android 5.0. The early versions lack
flexible permission control mechanism. Users need to grant
the app install-time permissions, otherwise the app will not
be successfully installed. If the users indiscreetly install ran-
somware and grant them dangerous permissions, the permis-
sions are irrevocable, which gives ransomware chances to
damage the device. However, 42% of Chinese users’ system
versions are still blow Android 6.0. They are more likely
to subject to ransomware than those with higher versions of
Android.

F. PSYCHOLOGIC TRICKS

Ransomware is motivated by profit. Attackers take full advan-
tage of psychologic tricks to achieve the goal. They make use
of users’ greed and seduce them install the ransomware by
offering free apps. To prevent victims from seeking help, they
turn to fear and shame. Unlike most malware’s underground
and sneaky behaviors, ransomware tends to show off the vic-
tory. Ransomware displays threatening messages and porno-
graphic images, along with loud music and high-frequent
vibration to compel victims to pay the ransom. The victims
will be too humiliated and scared to ask for professionals’
assistance, and have to make the payments obediently.

IV. METHOD

A. OVERVIEW

In this section, we propose a framework to profile and
detect locker-ransomware based on the behaviors discovered.
As described in Fig. 5, after the apps are fed into the frame-
work, text and behavior modules work in parallel to extract
texts displayed in the UI and behaviors in the background.
Six categories of features are extracted. With the ensemble of
four classifiers, the apps are finally identified as benign apps
or locker-ransomware.

B. FEATURE EXTRACTION

The extraction and selection of features are important in
effectively detecting locker-ransomware. In previous work,
one type of features is usually from one single source. For
example, permissions are only extracted from the manifest
file and APIs are from decompiled code. However, during the
development of locker-ransomware, multiple existing ways
serve to the same function, e.g., the texts in widgets may
appear in layout files, string resources or decompiled code.
Therefore, in our work, a type of features in our feature

VOLUME 7, 2019

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

IEEE Access

i isplayed Texts
String Displ
",
=
Layout Xml |
Files | Behaviors
) || | (o)
Code |
|
|

|
|

|

|

|

Com) G
: |

! |

! |

|

" “Background)

IHI
H ' —Decompile: E=||

Samples Feature Extraction

FIGURE 5. Framework of our method.

set may come from different sources. Based on the locker-
ransomware’s behaviors discussed in Section III, we have two
observations:

(1) Unlike other malware, which hide its malicious behav-
iors, locker-ransomware makes clear statements that it is
responsible for the locking behaviors.

(2) Unlike benign apps’ various functions, locker-
ransomware’s function is straightforward, e.g., creating a
floating window or resetting the PIN code to lock the screen.

Based on the observations, we take both displayed texts
and background behaviors into consideration. We extract the
following six categories of features. The summary of features
can be seen in Table 1.

1) TEXT

Since locker-ransomware aims for ransom, the texts dis-
played on UI widgets are much different from that of benign
apps. For example, most of ransomware’s texts contain key-
words of ““lock”, ‘““unlock™ and ““pay’, which is rare in
benign apps. We define 22 keywords related to locking and
unlocking behaviors. The texts in widgets can be set in
multiple ways: (a) layout xml files, (b) string resources and
(c) decompiled code. We take a comprehensive analysis of
these files to get the texts.

2) ADMINISTRATOR

Amounts of locker-ransomware request device administrator
privilege to reset the PIN code. In order to use the device
administrator API, (a) the app’s manifest should include
the BIND_DEVICE_ADMIN permission and an intent filter
to respond to the ACTION_DEVICE_ADMIN_ENABLED
intent. (b) In the XML files, the app needs to declare
the relevant security policies, e.g.,” reset-password”,
“wipe-data”, etc. An example can be seen in Fig. 6.
(¢) In the code, the attackers overwrite the APIs in
DeviceAdminReceiver class to implement locking behaviors.
We extract these administrator-related operations as a feature
set.

VOLUME 7, 2019

SVM

Decision
Tree

I
OII1T11T1717111
'{ Random
Ge ot

Logistic
Regression

Feature Vectors Classifiers Results
TABLE 1. Features.
Feature Source Number of features
1 Text A, B, C 22
2 Administrator B,C,D 7
3 Window property C,D 9
4 System operation C 6
5 Priority C,D 2
6 Permission D 1791

A. String resources B. Layout xml files
C. Decompiled code D. Manifest

<device-admin xmlns:android="http://schemas.android.com/apk/res/android" >
<uses-policie
<limit-password />
<watch-login />
<reset-password />
<f lock /)

</uses-policies>
</device-admin>

FIGURE 6. The layout of a device administrator.

3) WINDOW PROPERTY

A great amount of locker-ransomware implements the lock-
ing behavior by creating a floating window. The ransomware
manipulates properties of the window to keep it from
responding to users. By setting the layout parameters in
WindowManager class, it creates a floating window which
displays on top and ignores all the touch events. We extract
the APIs related to window properties to form a feature set.

4) SYSTEM OPERATION

For those protected by shells, the root shell can remount
the system directory and release the locker-ransomware after
obtaining the root permission. The commands of ‘“‘remount”,
“chmod”, “cp” and “mv” targeting system directory are
regarded as suspicious behaviors.

5) PRIORITY
To achieve the goal of locking the screen as soon as the
device completes booting, locker-ransomware will register an

20387

IEEE Access

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

intent-filter to listen to the BOOT_COMPETED broadcast.
In the meanwhile, it sets the priority of intent-filter as the
highest value in order to be the first one to receive the
message. Some locker-ransomware even aborts broadcast
afterwards. Setting priority in the manifest file and aborting
broadcast in the code are considered to be suspicious.

6) PERMISSION
Android controls access to system resources with permis-
sions. Specific permissions are required when an app inter-
acts with system APIs or databases. The permissions are
declared in AndroidManidest.xml. Both developer-defined
and system-defined permissions are taken into consideration.
High dimensional feature vectors are required for classifi-
cation. A feature vector, which represents a malware sample,
is defined as F = (f1,f2, .. .fu), where n is the number of
features. The features we extract are all binary features. If the
app has the i-th feature, f; will be set to 1, otherwise 0.

C. THE ALGORITHMS FOR DETECTION

We employ four machine learning approaches as classi-
fiers, namely, Support Vector Machine (SVM) [45], Decision
Tree (DT) [46], Random Forest (RF) [47] and Logistic
Regression (LR) [48]. Since each algorithm has two sides,
to compensate for the disadvantages, we apply ensemble
learning to obtain the final detection result. First, the clas-
sifiers work in parallel to predict the label of the test
app. Then the final label is determined by majority opinions
of the four classifiers, e.g., the test app’s final label will be
“benign” if two or more classifiers identify it as a benign app,
and vice versa. The ensemble decision outperforms single
machine learning algorithm in locker-ransomware detection.

V. EVALUATION
In this section, we conduct a series of experiments to evaluate
the features and the detection algorithms.

A. DATA SET

The benign apps are downloaded from Anzhi Market [49],
one of the largest third-party markets in China. We collect
9 categories of popular apps. Specifically, we download many
benign wallpaper apps. We intend to test whether our features
can distinguish locker-ransomware from benign wallpaper
apps. The categories of apps can be seen in Table 2.

Since we focus on the locker-ransomware on Chinese
social networks, our ransomware samples are collected in
real world. We join 30 most popular ransomware-transaction
QQ groups and download 664 locker-ransomware from the
shared files. We remove the repeated ones according to their
SHAT1 values and finally get 301 locker-ransomware in total.

We employ Apktool [50] to decompile locker-ransomware
APKSs and obtain targeted files. To deal with the problem of
root shells, we try to decompile each file in /assets/ directory,
regardless of its extension name. As a result, in the 301 APKs,
226 more APKs are found. We regard the outside shell and
inside APK as one APK.

20388

TABLE 2. Benign dataset.

Category Number of samples
1 Photography 248
2 Communication 354
3 Weather 371
4 Music 394
5 Finance 884
6 News 983
7 Social 1052
8 Shopping 1796
9 Wallpaper 9669
Total 15751
100.0 99.98
99.93
9988 99.86 []

99.8 99.74
g 99.6
b4
>
@ 99.4
(o]
z

99.2

99075y oT RF R Ensemble

Classifier

FIGURE 7. Average accuracy of classifiers.

The experiments are conducted on a PC with a quad-core
3.4 GHz i7 processors and 16G memory. Our method is
implemented in Python language. The whole detection pro-
cess can automatically conduct by shell commands without
manual intervention.

B. DETECTION RESULTS

We test the effectiveness of extracted features on Support
Vector Machine (SVM), Decision Tree (DT), Random For-
est (RF) and Logistic Regression (LR) respectively. Then
we apply the ensemble learning to make the final decision.
We use n-fold cross-validation in our experiments to reduce
overfitting. The average accuracy of each classifier is shown
in Fig. 7.

From Table 3 we can see that all the detection accu-
racy is above 99%. It demonstrates that our features can
effectively distinguish locker-ransomware from benign apps,
regardless of the detection algorithms. For single algorithm,
DT achieves the highest TPR which is 98.92%. LR achieves
the highest accuracy of 99.93% and the lowest FPR of 0.02%.
It is seen that after employing an ensemble of all classifiers
with majority voting mechanism, we achieve the highest
accuracy of 99.98%. Our ensemble method performs better
than the single machine learning method.

To evaluate the time consumption of our method, we take
an analysis of the execution time of each phase on

VOLUME 7, 2019

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

IEEE Access

TABLE 3. Detection results.

Classifier TPR FPR F- Accuracy
(%) (%) score(%) (%)
SVM 97.85 0.09 94.79 99.88
DT 98.92 0.24 91.92 99.74
RF 94.62 0.03 97.80 99.86
LR 96.77 0.02 97.83 99.93
Ensemble 98.92 0.00 99.46 99.98
TABLE 4. Time consumption of each phase.
A B C D
SVM DT LR RF
(s) 3250 31 0.15 0.07 0.75 0.74 0.026

Total: 3282.74s Average: 10.91 s/sample
A. Decompilation B. Feature extraction
C. Detection of single classifiers D. Ensemble

our 301 ransomware dataset, which is shown in Table 4.
Decompiling is the most time consuming step, accounting
for 99% of the total time. It takes 3250 seconds to decompile
301 ransomware samples and their inner APKs, which is
10.8 seconds per sample. Decompiling is time consuming
because one ransomware sample may contain several inner
hidden APKs. It would take much less time to decompile
apps without root shells. Feature extraction is light-weighted,
taking 0.1 second on each sample. Then on classification
step, four classifiers work in parallel. The prediction process
does not take much time. Finally, we apply the ensemble
results of the four classifiers. In general, it takes an average
of 10.91 seconds to analyze each sample. The experimental
results indicate that our method is efficient to detect locker-
ransomware.

C. FEATURE COMPARISON
To figure out the behaviors that locker-ransomware prefers,
we rank the features according to their frequency. The top fre-
quently appeared features are shown in Table 5. Up to 96.25%
of locker-ransomware requests receive_boot_completed per-
mission. It is understandable that most locking behaviors
are triggered by the completed-booting broadcast. Sys-
tem_alert_window is a signature-level permission. It allows
an app to create a window shown on top of all other
apps. Although the Developer Guide [51] suggests that very
few apps should use this permission, 92.49% of locker-
ransomware requests it. In addition, 81.91% of locker-
ransomware intends to obtain the highest priority of filter
intents. And as expected, over 80% of ransomware has key-
words of “lock™ and ‘““unlock’. The displayed texts remind
victims that their devices have been locked and they have to
pay the ransom to unlock the phones.

To figure out the differences between locker-ransomware
and benign apps, we also make a comparison of their features.
It is worth pointing out a category of benign apps named

VOLUME 7, 2019

TABLE 5. Top features of locker-ransomware.

Feature % in locker-ransomware
Receive_boot completed 96.25
System_alert window 92.49
Window_proprity 83.62
Priority 81.91
Keyword lock 80.55
Keyword unlock 80.34
Administrator 70.65
Mount unmount filesystems 68.94

TABLE 6. Average number of permissions an app request in different
datasets.

Dataset A B C D
Average number of permissions 7 11 8 16
A. Locker-ransomware dataset B. All benign app dataset
C. Wallpaper apps D. Benign apps exclude wallpaper
apps

wallpaper, has similar functions to manipulate the screen.
Some wallpaper apps can not only change wallpapers, but
can also turn off and lock the screen or reset password.
On one hand, the functional similarities lead to the similar-
ities in permission request. Due to their purposive functions,
locker-ransomware and wallpaper apps tend to request less
permissions than other categories of benign apps which pro-
vide more complicated services. We compare the average
number of permissions an app request in different datasets:
(A) locker-ransomware dataset, (B) benign app dataset,
(C) wallpaper apps, (D) benign apps exclude wallpaper
apps, which is shown in Table 6. The average number
of permissions that locker-ransomware and wallpaper apps
request is around 8, while other kinds of benign apps request
16 permissions. One the other hand, locker-ransomware and
wallpaper apps do have differences. The most intuitive differ-
ence is that benign wallpaper apps’ behaviors follow users’
commands, while locker-ransomware compulsorily controls
phones, which are irrelevant to users’ expectations. We rank
he features by their frequency and list the most different
features in ranking, which is shown in Fig. 8. We can see
that 70.65% of locker-ransomware asks for administrator
privilege, while only 2.23% wallpaper apps have this fea-
ture. 65.53% of locker-ransomware aborts the broadcast after
they received completed-booting signal, while only 5.94% of
benign apps do. In contrast, most locker-ransomware does not
request the location information, leading to the percentage
of 2.05%, compared with 52.41% of all benign apps.

D. COMPARISON WITH OTHER WORK

1) COMPARISON WITH VIRUSTOTAL

VirusTotal is a state-of-the-art tool that provides free check-
ing of files for viruses. It contains over sixty widely used
antivirus engines e.g., McAfee and Symantec. It analyzes

20389

IEEE Access

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

100

A. Locker-ransomware
B. All Benign Apps

eres

‘SZ b6

16[‘99

‘ 106

C. Wallpaper Apps
D. B exclude C

80

el T

Jeaso
‘Eg‘gg

60

Percentage (%)
v

40

SSE

20

we'ST
LSL

w1
{44

‘ 908

kO'BV

-
g
=y

n

2
& © o~
e 2

1618
‘GS‘GE

e 1z

Je<6s
9599

ez
‘ll'lg
25

09 6¢
PQ‘EV
BT0p

192

‘99'1.1

o0

i’
areie cend-

A BI'FT
S0

Feature

FIGURE 8. Top features in different datasets.

the submitted apps and returns the detection results of each
antivirus engine. The app is labelled as “True” or “‘False”
which respectively means malicious or benign. Much pre-
vious work employed the detecting results of VirusTotal to
label their datasets. We upload the 301 locker-ransomware
samples to VirusTotal to test the detecting performance of
online antivirus engines.

Among the 68 antivirus engines, ESET-NOD32 wins the
first place with average detection accuracy of 98.98%, fol-
lowed by McAfee with accuracy of 95.90%. For Symantec,
the accuracy is 84.30%. Fig. 9 shows the average detec-
tion accuracy of antivirus engines in VirusTotal. Each point
represents an antivirus engine. The overall detection result
is not desirable. Only 20 engines’ accuracy is above 90%.
36 engines’ accuracy is below 50%. Microsoft only
reaches 13.65%.

Based on the detection result of each locker-ransomware
sample, we find that only 50%-60% of antivirus engines can
detect them. None of samples triggers 70% or more antivirus
engines, which can be seen in Fig. 10. We notice that a
sample has the lowest detection rate of 25.42%, which means
only 25.42% of antivirus engines regard it as a malware
sample. This sample is covered up by a root shell. It mas-
querades as an automated red pocket grabber, and seduces
user to grant the root permission. Then it releases the locker-
ransomware in system directory and reboots the device. After
the device has completed booting, the screen is locked by a
floating window. It is clear that most antivirus engines are not
able to handle shells. They can only analyze the outer layer.
If nothing is abnormal, they will regard the sample as a benign
app. However, the inner layer which is ignored by most

20390

100,

8 8 o ° o

60)

40

Average Detection Accuracy (%)
]
®

20 e

o .)
Antivirus Engine

®ma 06 O..8

FIGURE 9. The average detection accuracy of antivirus engines in
VirusTotal. The nodes represent antivirus engines. The y-axis represents
their detection accuracy on our locker-ransomware dataset.

antivirus engines is the real malicious part. In our approach,
we decompile each file in /assets/ directory, regardless of
its extension name. Features of both the outside shell and
the inside hidden app are taken into consideration. Thus our
approach achieves better performance than antivirus engines
in VirusTotal.

2) COMPARISON WITH R-PACKDROID

To facilitate comparison with existing work, we con-
duct experiments with R-PackDroid that was proposed by
Canfora et al. [28]. R-PackDroid is a supervised machine
learning system for the detection of Android ransomware.
It characterizes apps by a list of system API packages and
employs Random Forest for the classification task. We ran-
domly select 1500 benign apps from our benign dataset,

VOLUME 7, 2019

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

IEEE Access

100,

80|

2 \

FIGURE 10. Percent of antivirus engines that can detect locker-
ransomware samples. The nodes represent locker-ransomware samples.
The y-axis represents the percentage of antivirus engines that identify it
as malware. Only 25.42% of antivirus engines regard the pointed sample
as malware.

Lock-ransomware

TABLE 7. Detection results of R-droid and our ensemble method.

Classifier TPR FPR F- Accuracy
(%) (%) score(%) (%)
R-Droid 86.00 3.42 79.63 95.49
Ensemble 96.00 0.00 97.96 99.16
Method

together with 300 locker-ransomware samples, based on
which we implement and evaluate R-PackDroid. We use
n-fold cross-validation in our experiments and the detection
result is shown in Table 7. Our method achieves better detec-
tion results than R-PackDroid. The TPR of our method is 10%
higher than R-Droid. It verifies that our features can better
profile locker-ransomware and distinguish it from benign

apps.

E. DISCUSSION

To reduce the size of APKs and evade the detection, ran-
somware applies obfuscation which transforms the code
without affecting the functionality to make it obscure and
unintelligible. Much previous work [17, 52] that uses
API-name-based features to detect malapps may become less
effective since obfuscation can rename classes or functions.
Based on our observations, however, both benign and locker-
ransomware normally do not obfuscate widgets. Thus even
though the information from APIs is invalid, we can still
figure out its attempt according to the texts shown in the
widgets. We thoroughly extract texts from three sources that
configure widgets: layout files, string resources and decom-
piled code. Along with other representative features, e.g.,
window properties, we comprehensively profile the locker-
ransomware behaviors.

The main reason we applied static analysis is that most
informative features can be efficiently extracted by static
code analysis. On the contrary, an emulator is locked after
each execution of the locker-ransomware sample during the
dynamic analysis. Although we can fix it with ADB com-
mands, static features can better meet the demands of being

VOLUME 7, 2019

efficient and effective when faced with large scale of ran-
somware. Dynamic payloads may affect the detection perfor-
mance. However, dynamic payloads and root shells both can
achieve the aim of hiding malicious components and evading
detection. Based on our survey, locker-ransomware prefers
root shells because of the lower technical requirements. The
root shell’s task is to get the root permission and release
the locker-ransomware in the system directory. In this way,
we dig out the inner hidden APK to overcome the root shell
problem and achieve better performance than VirusTotal.

VI. CONCLUSION

Locker-ransomware applies various techniques to seduce
users to download, makes the devices inaccessible and com-
pels victims to pay ransom, thus poses a great threat to
users’ properties. In addition, Code obfuscation and shells
enable ransomware to bypass the detection of many antivirus
engines, which makes Android ecosystem insecure. More-
over, the transaction of locker-ransomware has become a
severe problem on Chinese social networks. However, it does
not attract much attention. To the best of our knowledge,
this is the first systematic work on analyzing Android locker-
ransomware distributed on Chinese social networks.

In this work, we conduct a comprehensive analysis
of locker-ransomware’s transaction process and behaviors.
To protect users from locker-ransomware, we are motivated
to provide a light-weight and effective detection framework.
To overcome the challenges of code obfuscation and root
shells, we extract six types of features from multiple sources.
The features can highly summarize locker-ransomware’s
behaviors. We employ an ensemble of four classifiers by
means of majority voting to have the final detection results.
The experimental results demonstrate the effectiveness of
features and the method. We achieve the best detection result
with the accuracy of 99.98%.

In the future, we will continue to closely watch the latest
development of ransomware and explore more informative
features to better profile locker-ransomware in the aim to
effectively monitor and detect them.

REFERENCES

[1] Introduction of Ransomware. Accessed: May 14, 2018.

Available: https://www.malwarebytes.com/ransomware/

Wannacry. Accessed: May 14, 2018. [Online]. Available: https:/

www.cbsnews.com/news/wannacry-ransomware-attacks-wannacry-virus-

losses/

[3] Report of Gartner. Accessed: May 14, 2018.
Available: https://www.gartner.com/newsroom/id/3859963

[4] Sypeng. Accessed: May 14, 2018. [Online]. Available: https://www.
carbonite.com/blog/article/2017/08/the-evolution-of-a-cybercrime-a-
timeline-of-ransomware-advances/

[S] Koler. Accessed: May 14, 2018. [Online]. Available: https://www.
vpnmentor.com/blog/history-ransomware-threat-past-present-and-future/

[Online].

2

—

[Online].

[6] Lockerpin. Accessed: May 14, 2018. [Online]. Available: https://
thehackernews.com/2015/09/android-lock-ransomware.html
[7] (2017). Mobile Malware Evolution. [Online]. Available:

https://securelist.com/mobile-malware-review-2017/84139/

[8] 2018. McAfee Mobile Threat Report QI. [Online]. Available: https://
www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-
2018.pdf

20391

IEEE Access

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Smartphone Penetration Rate as Share of the Population in China.
Accessed: May 14, 2018. [Online]. Available: https://www.statista.
com/statistics/321482/smartphone-user-penetration-in-china/

Market share in China. Accessed: May 14, 2018. [Online]. Available:
https://www.statista.com/statistics/262176/market-share-held-by-mobile-
operating-systems-in-china/

Percentage of Android Versions in China. Accessed: May 14, 2018.
[Online]. Available: https://mta.qq.com/mta/data/device/os

Introduction of QQ. Accessed: May 14, 2018. [Online]. Available: https://
en.wikipedia.org/wiki/Tencent_QQ

Tencent Homepage. Accessed: May 14, 2018. [Online]. Available:
https://www.tencent.com/en-us/index.html

Active Accounts of QQ. Accessed: May 14, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/List_of_virtual_communities_with_more_
than_100_million_active_users

Fundamentals of Android. Accessed: Jun. 16, 2018. [Online]. Available:
https://developer.android.com/guide/components/fundamentals
Introduction of Asset Manager. Accessed: Jun. 16, 2018. [Online].
Available: https://developer.android.com/reference/android/content/res/
AssetManager

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of Android malware in
your pocket,” in Proc. NDSS, Aug. 2014, pp. 23-26.

A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ‘““Andromaly’:
A behavioral malware detection framework for Android devices,” J. Intell.
Inf. Syst., vol. 38, no. 1, pp. 161-190, 2012.

H.-J. Zhu, T.-H. Jiang, B. Ma, Z.-H. You, W.-L. Shi, and L. Cheng,
“HEMD: A highly efficient random forest-based malware detection frame-
work for Android,” Neural Comput. Appl., vol. 30, no. 11, pp. 3353-3361,
2018.

C. Yang, J. Zhang, and G. Gu, “Understanding the market-level and
network-level behaviors of the Android malware ecosystem,” in Proc.
IEEE Int. Conf. Distrib. Comput. Syst., Atlanta, GA, USA, Jun. 2017,
pp. 2452-2457.

M. R. Amin, M. Zaman, M. S. Hossain, and M. Atiquzzaman, “Behavioral
malware detection approaches for Android,” in Proc. IEEE Int. Conf.
Commun. (ICC), 2016, pp. 1-6.

J. Li, L. Zhai, X. Zhang, and D. Quan, “Research of Android malware
detection based on network traffic monitoring,” in Proc. Ind. Electron.
Appl. (ICIEA), Hangzhou, China, Jun. 2014, pp. 1739-1744.

S. Garg, S. Peddoju, and A. K. Sarje, “Network-based detection of Android
malicious apps,” Int. J. Inf. Secur., vol. 16, no. 4, pp. 385-400, 2017.

Z. Li, L. Sun, Q. Yan, W. Srisa-An, and Z. Chen, “DroidClassifier: Effi-
cient adaptive mining of application-layer header for classifying Android
malware,” in Proc. Int. Conf. Secur. Privacy Commun. Syst., Guangzhou,
China, 2016, pp. 597-616.

A. Arora and S. K. Peddoju, “Minimizing network traffic features for
Android mobile malware detection,” in Proc. Int. Conf. Distrib. Comput.
Netw., Hyderabad, India, 2017, Art. no. 32.

A. Arora, S. K. Peddoju, V. Chouhan, and A. Chaudhary, ‘““‘Hybrid Android
malware detection by combining supervised and unsupervised learning,”
in Proc. 24th Annu. Int. Conf. Mobile Comput. Netw., New Delhi, India,
2018, pp. 798-800.

F. Martinelli, F. Mercaldo, and A. Saracino, “BRIDEMAID: An hybrid
tool for accurate detection of Android malware,” in Proc. ACM Asia Conf.
Comput. Commun. Secur., New York, NY, USA, 2017, pp. 899-901.

G. Canfora, A. De Lorenzo, E. Medvet, F. Mercaldo, and C. A. Visaggio,
“Effectiveness of opcode ngrams for detection of multi family Android
malware,” in Proc. Int. Conf. Availability, Rel. Secur. (ARES), Toulouse,
France, Aug. 2015, pp. 333-340.

Y. Du, J. Wang, and Q. Li, “An Android malware detection approach using
community structures of weighted function call graphs,” IEEE Access,
vol. 5, pp. 17478-17486, 2017.

D. Su, W. Wang, X. Wang, and J. Liu, “Anomadroid: Profiling Android
applications’ behaviors for identifying unknown malapps,” in Proc. Trust-
com, Tianjin, China, Aug. 2016, pp. 691-698.

W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting Android
malicious apps and categorizing benign apps with ensemble of classifiers,”
Future Gener. Comput. Syst., vol. 78, pp. 987-994, Jan. 2018.

Z.-G. Chen, H.-S. Kang, S.-N. Yin, and S.-R. Kim, “Automatic ran-
somware detection and analysis based on dynamic API calls flow graph,”
in Proc. RACS, Krakow, Poland, 2017, pp. 196-201.

20392

(33]

(34]

(35]

(36]

(37]

(38]
(39]

[40]

(41]
[42]

[43]

[44]
(45]
[46]
[47]
(48]
(49]
[50]

[51]

[52]

N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “CryptoLock (and
drop it): Stopping ransomware attacks on user data,” in Proc. Int. Conf.
Distrib. Comput. Syst., Jun. 2016, pp. 303-312.

A.Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “UNVEIL:
A large-scale, automated approach to detecting ransomware,” in Proc.
USENIX SecurSymp, 2016, pp. 1-17.

N. Andronio, S. Zanero, and F. Maggi, “HelDroid: Dissecting and detect-
ing mobile ransomware,” in Proc. Int. Workshop Recent Adv. Intrusion
Detection, 2015, pp. 382-404.

D. Maiorca, F. Mercaldo, G. Giacinto, C. A. Visaggio, and
F. Martinelli, “R-PackDroid: API package-based characterization
and detection of mobile ransomware,” in Proc. Symp. Appl. Comput.,
Marrakech, Morocco, 2017, pp. 1718-1723.

J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G.-J. Ahn, “Uncovering
the face of Android ransomware: Characterization and real-time detec-
tion,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1286-1300,
May 2018.

AIDE Homepage. Accessed: Jun. 16, 2018. [Online]. Available:
http://www.android-ide.com/
WindowManager. Accessed: Jun. 16, 2018. [Online]. Available:

https://developer.android.com/reference/android/view/WindowManager
DevicePolicyManager. Accessed: Jun. 16, 2018. [Online]. Available:
https://developer.android.com/reference/android/app/admin/DevicePolicy
Manager

BroadcastReceiver. Accessed: Jun. 16, 2018. [Online]. Available: https://
developer.android.com/reference/android/content/BroadcastReceiver
TelephonyManager. Accessed: Jun. 16, 2018. [Online]. Available: https://
developer.android.com/reference/android/telephony/TelephonyManager
ActivityManager. Accessed: Jun. 16, 2018. [Online]. Available: https://
developer.android.com/

reference/android/app/ActivityManager

Android Debug Bridge (ADB). Accessed: Jun. 16, 2018. [Online]. Avail-
able: https://developer.android.com/studio/command-line/adb

V. Vapnik, The Nature of Statistical Learning Theory, vol. 8. New York,
NY, USA: Springer, 1995, no. 6, pp. 988-999.

J. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA, USA:
Morgan Kaufmann, 1992.

L. Breiman, “Random forest,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

Scikit-Learn Library. Accessed: Jun. 16, 2018. [Online]. Available: http://
scikit-learn.org/stable/modules/linear_model.html#logistic-regression

Anzhi Market. Accessed: Jun. 16, 2018. [Online]. Available:
http://www.anzhi.com/
Apktool. Accessed: Jun. 16, 2018. [Online]. Available:

https://ibotpeaches.github.io/Apktool/

Developer Guide. Accessed: Jun. 16, 2018. [Online]. Available: https://
developer.android.com/reference/android/Manifest.permission#SYSTEM
_ALERT_WINDOW

M. Qiao, A. H. Sung, and Q. Liu, ‘““Merging permission and API features
for Android malware detection,” in Proc. Int. Congr. Adv. Appl. Inform.,
Jul. 2016, pp. 566-571.

DAN SU received the B.S. degree from Beijing
Jiaotong University, China, in 2014, where she
is currently pursuing the Ph.D. degree with the
School of Computer and Information Technol-
ogy. Her main research interest includes mobile
security.

JIQIANG LIU received the B.S. and Ph.D. degrees
from Beijing Normal University, in 1994 and 1999,
respectively. He is currently a Professor with the
School of Computer and Information Technology,
Beijing Jiaotong University. He has published over
70 scientific papers in various journals and inter-
national conferences. His main research interests
include trusted computing, cryptographic proto-
cols, privacy preserving, and network security.

VOLUME 7, 2019

D. Su et al.: Detecting Android Locker-Ransomware on Chinese Social Networks

IEEE Access

VOLUME 7, 2019

XIAOYANG WANG received the B.S. degree from
Beijing Jiaotong University, China, in 2014, where
he is currently pursuing the Ph.D. degree with the
School of Computer and Information Technology.
His main research interests include complex net-
works and data mining.

WEI WANG received the Ph.D. degree in control
science and engineering from Xi’an Jiaotong Uni-
versity, China, in 2006. He is currently a Profes-
sor with the School of Computer and Information
Technology, Beijing Jiaotong University, China.
He was a Postdoctoral Researcher with the Uni-
versity of Trento, Italy, from 2005 to 2006. He
was a Postdoctoral Researcher with TELECOM
Bretagne and INRIA, France, from 2007 to 2008.
He was a European ERCIM Fellow with the Nor-
wegian University of Science and Technology (NTNU), Norway, and also
with the Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, from 2009 to 2011. He visited INRIA, ETH,
NTNU, CNR, and New York University Polytechnic. He has authored or co-
authored over 60 peer-reviewed papers in various journals and international
conferences. His main research interests include mobile, computer, and
network security. He is a young AE of the Frontiers of Computer Science
Journal.

20393

	INTRODUCTION
	RELATED WORK
	ANDROID PLATFORM
	ANDROID MALWARE DETECTION

	ANDROID LOCKER-RANSOMWARE
	PROPAGATION
	CHINESE MARKET
	DEVELOPMENT TOOLS
	MASK

	BEHAVIORS
	LOCKING SCREENS
	BLOCKING PHONE CALLS
	HIGH PRIORITY
	HIJACKING ACTIVITIES
	ROOT SHELLS

	PASSWORD AND UNLOCKING
	PASSWORD
	UNLOCKING

	PAYMENT
	LOW LEVEL OF API
	PSYCHOLOGIC TRICKS

	METHOD
	OVERVIEW
	FEATURE EXTRACTION
	TEXT
	ADMINISTRATOR
	WINDOW PROPERTY
	SYSTEM OPERATION
	PRIORITY
	PERMISSION

	THE ALGORITHMS FOR DETECTION

	EVALUATION
	DATA SET
	DETECTION RESULTS
	FEATURE COMPARISON
	COMPARISON WITH OTHER WORK
	COMPARISON WITH VIRUSTOTAL
	COMPARISON WITH R-PACKDROID

	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	DAN SU
	JIQIANG LIU
	XIAOYANG WANG
	WEI WANG

