
Received October 24, 2018, accepted November 16, 2018, date of publication December 18, 2018,
date of current version January 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2886230

A High-Speed, Scalable, and Programmable
Traffic Manager Architecture for
Flow-Based Networking
IMAD BENACER 1, FRANÇOIS-RAYMOND BOYER1, AND YVON SAVARIA 2, (Fellow, IEEE)
1Department of Computer and Software Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
2Department of Electrical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada

Corresponding author: Imad Benacer (imad.benacer@polymtl.ca)

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), in part by
Prompt Québec, in part by Ericsson Research Canada, in part by Mitacs, and in part by Kaloom.

ABSTRACT In this paper, we present a programmable and scalable traffic manager (TM) architecture,
targeting requirements of high-speed networking devices, especially in the software-defined networking
context. This TM is intended to ease the deployability of new architectures through field-programmable gate
array (FPGA) platforms and to make the data plane programmable and scalable. Flow-based networking
allows treating traffic in terms of flows rather than as a simple aggregation of individual packets, which
simplifies scheduling and bandwidth allocation for each flow. Programmability brings agility, flexibility, and
rapid adaptation to changes, allowing to meet network requirements in real-time. Traffic management with
fast queuing and reduced latency plays an important role to support the upcoming 5G cellular communication
technology. The proposed TM architecture is coded in C++ and is synthesized with the Vivado High-Level
Synthesis tool. This TM is capable of supporting links operating beyond 40 Gb/s, on the ZC706 board and
XCVU440-FLGB2377-3-E FPGA device from Xilinx, while achieving 80 Gb/s and 100 Gb/s throughput,
respectively. The resulting placed and routed design was tested on the ZC706 board with its embedded ARM
processor controlling table updates.

INDEX TERMS Traffic manager (TM), flow-based networking, data plane, high-level synthesis (HLS),
field-programmable gate array (FPGA).

I. INTRODUCTION
With the growing demand for higher network bandwidth
and need to satisfy various subscribers requirements for a
wide range of connected devices running applications such
as smart phones, watches, detectors, etc., network opera-
tors and service providers are consistently upgrading their
equipment. Many advanced applications of the so-called
5G [1], [2] next generation communication infrastructures
impose requirements for very low latency packet switching
and short delay routing.

With the current thrust toward Software Defined Network-
ing (SDN) [3], it becomes natural to associate each packet to a
flow. A crude definition of a flow is a set of packets associated
with a client of the infrastructure provider having the same
header information or sharing common specific packet fields.
For instance, a flow could correspond to a web page, an email,
a file, or a streaming application (video, call or conference),
etc. In cellular networks like 5G, bandwidth is assigned to

subscribers, so each packet is already part of a flow with
some assigned bandwidth. For that reason, one of the feasible
solutions is to tag the incoming packets with flow numbers
as soon as they enter the network. This helps allocating
bandwidth and simplifies scheduling.

Flow tagging is expected to become part of the context
of next generation networking equipment as part of the
so-called flow-based networking [3]. In the literature, priority
queues (PQs) have been used to maintain real-time sorting
of queue elements at link speeds [4]–[9]. Also, different
schemes and data structures were presented to deal with
such networking needs and to maintain this priority based
scheduling in today’s high-speed networking devices.

Programmable network capability brings and improves
agility, while enabling real-time prioritization of heavy traffic
such as video during special events for example. An auto-
matically tuned network is more flexible than one that
would be subject to manual tuning by a network operator.

VOLUME 7, 2019
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2231

https://orcid.org/0000-0001-9608-2474
https://orcid.org/0000-0002-3404-9959

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

Automatic control loops could orchestrate the tuning of the
network to meet the needs of each application on the fly. For
a flow-based traffic manager (TM), it sets a need for various
features. For instance, bandwidth that is not used by some
flows could be dynamically re-allocated to more active ones.
Specific flows or applications could also be dynamically
prioritized, i.e., video call over file sharing, etc. [10]–[12].

Traffic managers are usually located in a line card, pro-
viding the necessary queuing and scheduling functionali-
ties for the incoming traffic in network processing units
(NPUs) [13]–[15]. Packet scheduling is a demanding task
dealing with priorities that are implicit and that depend
on several factors, for example, protocols, traffic intensity,
congestion, etc. Usually, packet classification precede the
TM. Commercially available TM solutions are either rigid
because they rely on ASIC implementations, or require high-
speed processing platforms [15], [19], [27]. In the research
community, especially academia, only a few published works
report complete TM architectures [13], [28], [29], while the
majority of previous publications focus on specific func-
tionalities such as scheduling [9], [16]–[18], and congestion
management [20].

In this work, we claim the following contributions:
1) An FPGA-prototyped TM architecture offering pro-

grammability, scalability, low-latency with scheduling
packet departures in a constant 2-cycle per packet.
This TM architecture exploits pipelined operations,
and supports links operating beyond 40 Gb/s without
loosing performance during flow updates (tuning), with
minimum 64 byte sized packets.

2) The TM integrates core functionalities of policing,
scheduling, shaping, and queue management for flow-
based networking entirely coded in C++. High-level
synthesis provides more flexibility, and faster design
space exploration by raising the level of abstraction.

3) TM programmability can be supported with the popu-
lar P4 (programming protocol-independent packet pro-
cessors) language, together with TM integration as a
C++ extern function.

Even though the reported TM architecture was validated
with an FPGA platform, it could also be synthesized as an
application-specific integrated circuit (ASIC), since our con-
figurability is not obtained through re-synthesis. Of course,
further flexibility and configurability can be supported on
FPGA if a pass through the tool chain from high-level syn-
thesis to routing is allowed, but such configuration is not
currently supported on the fly.

The remainder of this paper is organized as follows.
In Section II, we present a literature review of some existing
TM solutions. In Section III, we describe the architecture of
the TM, its underlying modules and some supported schedul-
ing schemes. In Section IV, we present two solutions to deal
with schedule time overflow. In Section V, we present the
HLSmethodology and directives / constraints used to achieve
the desired performances. In Section VI, hardware imple-
mentation of the proposed architecture and comparisons to

other works in the literature are provided, while Section VII
summarizes our main conclusions.

II. RELATED WORK
In this section, we first introduce flow-based networking,
programmable switches, and then review relevant works
related to traffic management for different platforms.

A. FLOW-BASED NETWORKING
The core idea behind flow-based networking is to process the
network traffic in terms of flows rather than individual pack-
ets. An early design of a flow-based networking device is the
Apeiro router fromCaspian, in which a flow is defined as a set
of packets sharing the same header characteristics or mainly
the 5-tuple (source and destination IP, source and destination
port, and protocol). The Apeiro flow-based router ensures
quality of service (QoS) of each flow and fairness versus other
traffic types [10].

Software defined networking enables the separation of the
control of network devices from the data they transport, and
the switching software from the actual forwarding network.
In other terms, the control plane is separated from the data
plane. OpenFlow is a standard defined by the Open Network-
ing Foundation (ONF) for implementing SDN in networking
equipment. This protocol allows the OpenFlow controller to
instruct an OpenFlow switch on how to handle incoming
data packets. These control functions (control actions) are
structured as flows. Each individual flow contains a set of
rules for filtering purposes. The flow actions, i.e., forward,
drop, modify, etc., and statistics gathering are grouped in the
flow table. The OpenFlow architecture enables flow-based
networking with capabilities including software-based traffic
analysis, centralized control, dynamic updating of forwarding
rules, etc. [11].

B. PROGRAMMABLE SWITCHES
In the literature, works around hardware programmable
switch architectures [33] and other about their software
abstractions [34] were proposed. While many packet-
processing tasks can be programmed on these switches, traf-
fic management is not one of them (more details are given
in the next subsection). Programmable switches can benefit
from our proposed TM by the use of externs through
P4 language in its latest release P416. From architectural point
of view, the TM is seen like an external accelerator attached
to the switch pipeline providing the necessary TM function-
ality and programmability needed in today’s networks (More
details are provided in Section III-B.6.c).

C. TRAFFIC MANAGERS
Traditionally, traffic management has been implemented
using hardwired state machines [21]. It evolved from ded-
icated modules in NPUs [22], [23] to separate standalone
solutions [15], [19], [24] that can be used as co-processors.
Generally, TMs are considered as independent process-
ing elements attached to a flexible pipeline in a NPU.

2232 VOLUME 7, 2019

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

FIGURE 1. Generic architecture around the traffic manager in a line card.

Current solutions use dedicated traffic management inte-
gratedwithinNPUs to speed-up traffic processing, with exter-
nal memories for packet buffering and queuing purposes.
A TM can be found in the data path of a NPU, of a line
card, etc. This corresponds to the so-called flow-through
mode. By contrast, in the look-aside mode, the TM is outside
the data path and it communicates only with the NPU or
the packet processor, acting as a co-processor (see Fig. 1).
TheNPU sends tags, temporary headers, or packet descriptors
to the TM. The packet buffer is only attached to the packet
processor.

The available traffic management solutions in the liter-
ature are essentially commercial products with only few
works done in academia. Paulin et al. [25] proposed a mul-
tiprocessor system-on-chip (MP-SoC) architecture for traffic
management of IPv4 forwarding. The proposed platform is
composed of multiple configurable hardware multi-threaded
processors, with each processor running part of the traffic
management features or tasks. To process more traffic and
to cope with network requirements, this architecture requires
more processors, eventually limiting its scalability.

Zhang et al. [14] proposed a complete TM implemented
in an FPGA platform, focusing on the programmability and
scalability of the architecture to address today’s networking
requirements. However, the queue management solution that
was adopted slows down the entire system with at least
9 cycles per enqueue/dequeue action, and an implementation
running at 133 MHz. This TM solution achieved around
8 Gb/s for minimum size 64 byte packets.

Khan et al. [26] proposed a traffic management solution
implemented with dedicated circuits that can support 5 Gb/s
with full duplex capabilities. Khan showed all the design steps
up to the physical realization of a TM circuit. This solution
remains rigid as it targets an ASIC. This design choice limits
its ability to support future networking needs.

Table 1 summarizes the TM solutions offered by com-
mercial vendors and published by academia, along with the
platform for which they were developed, their configuration
and the reported throughput.

III. TRAFFIC MANAGER ARCHITECTURE
In this section, we present a generic TM architecture and its
functionalities in a line card. Then, we detail its underlying
modules and some supported packet scheduling schemes.

TABLE 1. Traffic management solutions.

It is of interest to mention that this work is an extension
of a previous related work [28], [29], which is extended as
follows:

1) Integration of a queue manager (QM) with throughput
reaching 100 Gb/s for minimum sized packets, which is
a significant improvement over the previously reported
47 Gb/s (More details are given in Section III-B.5).

2) Policer functionality with decision based on actual
queue occupancy and flow heuristics to actively assess
the flow state andmanage any eventual congestions and
flow attacks (see Section III-B.2).

3) Analysis of TM operations leading to improvements
that allowed matching the performance of hand-written
register transfer logic (RTL) codes from an HLS design
(see Section V-A).

4) Test and validation on the ZC706 FPGA board of
the TM design to verify its correct functionality after
placement and routing (More details are given in
Section VI-B).

A. TRAFFIC MANAGER OVERVIEW AND FUNCTIONALITIES
Traffic management allows bandwidth management, priori-
tizing and regulating the outgoing traffic through the enforce-
ment of service level agreements (SLAs). A SLA defines
the requirements that a network must meet for a specified
customer, some service, or level of service that must be
ensured to a subscriber by the service provider. Popular level
of service measures include guaranteed bandwidth, end-to-
end delay, and jitter.

Traffic management is applied to different types of traffic
that have distinct characteristics and requirements to meet.
For example, traffic characteristics are the flow rate, flow
size, burstiness of the flow, etc. while traffic requirements are
the QoS in general. Overall, network operators are targeting
to meet all SLAs, to achieve fairness and enforce isolation,
while prioritizing the different traffic flows, and to maximize
network utilization through traffic management.

VOLUME 7, 2019 2233

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

FIGURE 2. Proposed traffic manager architecture.

A generic TM in a line card (switches, routers, etc.) is
depicted in Fig. 1. The packet processor classifies to a specific
flow the data traffic prior entry into the TM. The classi-
fied data traffic allows the TM to prioritize and decide how
packets should be scheduled, i.e., when packets should be
sent to the switch fabric. Traffic scheduling ensures that each
port and each class of service (CoS) gets its fair share of
bandwidth. Traffic should be shaped before being sent onto
the network. The shaper enforces packets to follow a spe-
cific network pattern by adding delays. The shaper provides
such delays to outgoing traffic to ensure it fits a specific
profile (link usage, bandwidth, etc.) and enforces QoS. Packet
congestion can cause severe network problems, including
throughput degradation, increased delay, and high packet loss
rates. Congestion management can improve network conges-
tion by intelligently dropping packets. The policer makes
decisions to drop packets preventing queues overflow and
network congestion.

B. TRAFFIC MANAGER STRUCTURAL DESIGN
The proposed TM architecture is depicted in Fig. 2. It is
composed of the following modules: policer, flow manage-
ment table (FMT), scheduler, shaper, and a QM. The system
architecture assumes that each packet received by the TM
has already been tagged with a flow number by the packet
processor as per the classification stage. The TM handles
only the packet descriptor identifier (PDI). Each PDI contains
the priority, packet size, flow ID or number, and its address
location in the packet buffer. The PDI may contain other
attributes. The size of PDI fields are determined according
to the system configuration. For example, to support any
standard Internet packet size, the PDI size field is set to
16 bits. The PDI enables packets to be located in the network,
providing fast queue management with reduced buffering
delays, where the entire packet is stored outside the TM.
Usually packet buffering is handled by the NPU. Using the
PDI’s has the same impact as if real packets were being
handled by the TM, while the actual packet is buffered by the
NPU processing engine. With the adopted model, a packet is
forwarded to the egress port when its PDI is received by the
NPU dispatch unit.

Algorithm 1 illustrates the overall algorithmic operation
of the proposed TM. The TM operates in three phases:
first, the policer checks if the received PDI is legitimate.

Algorithm 1 Flow-Based Traffic Management
Input: PDIin
Output: PDIout

// Phase one: FMT-policer
1: if (not PDIin.isValid)
2: Drop PDIin and skip to phase three;
3: ref flow ≡ FMT[PDIin.flowID];
4: if (decision is to drop, from QM_status and flow.Ts)
5: skip to phase three;

// Phase two: FMT-scheduler/shaper
6: Tag PDIin with flow.Ts and remove validity bit;
7: flow.Ts += PDIin.size × flow.bandwidth-1;
8: Set push to active;
9: Send the new PDI (PDIin) to queue manager;

// Phase three: queue manager
10: if (top PDI in QM is ready to exit or external dequeue

activated)
11: Set pop to active;
12: Set QM_action to enqueue, dequeue, replace or no oper-

ation according to push and pop states;
13: Check QM_status for packet to be dropped if any;

The policer drops a packet if it is not valid (lines 1-2), or its
flow is considered abusive according to its timestamp and the
algorithm of Fig. 4 (lines 3-5). Second, the scheduler tags
each packet with its estimated schedule time (line 6), and asks
to push it into the queue (lines 8-9). The shaper computes the
schedule time for the next packet of the same flow (line 7).
Finally, the queue manager will pop the top packet either if
its scheduled time is reached or an external dequeue from
the TM is activated (lines 10-11); the push requested by the
scheduler and the pop requested by the queue manager are
done synchronously (line 12). If the queue status is full with
enqueue operation activated in the QM, the last packet in the
queue is sent to the drop port (line 13). The traffic manager
architecture with its surrounding modules are detailed in the
subsequent subsections.

1) FLOW MANAGEMENT TABLE
The TM includes a single FMT in which each record contains
state and configuration parameters. The state is a times-
tamp (Ts) that is the expected time when the next packet of

2234 VOLUME 7, 2019

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

the flow can be sent to the egress port, and depends on the
packet’s flow. The configuration is the inverse of the allocated
bandwidth (Alloc. BW), measured in bit-time, programmable
according to required flow restrictions. Fig. 3 depicts the
interconnection of the FMT with the different TM modules.

FIGURE 3. General block diagram interconnect of the traffic manager
modules.

A single FMT is sufficient, because the priority of packets
is implicit to the characteristics of their flow and their band-
width usage. The packets are simply ordered according to
their scheduled departure times. Note that, contrary to classic
TM architectures [13], [15], this TM architecture avoids a
hierarchy of queues by leveraging the flow number associated
with each packet.

The proposed traffic manager functionalities are shown
in Fig. 4 that presents functionalities related to (a) policing,
(b) scheduling, and (c) shaping. These functionalities are
further detailed in the next subsections.

2) POLICER
Policing ensures that traffic does not exceed certain bounds.
In this work, the policer acts like an arbiter/marker with the
following considered control actions, or namely the policing
mechanisms:
(i) Drop a packet without enqueue, preventing congestion

situations and overflow of the TM queue.
(ii) Drop a packet from the QM while enqueuing.
(iii) Forward incoming traffic if queue capacity allows it,

i.e., there is room for the incoming packet.
The policing decision algorithm is a heuristic based on

the packet timestamp record from the FMT and queue
occupancy status, as depicted in Fig. 4 with TM policing
functionality (a).

For the first mechanism (i), the policer acts before the
packet is enqueued (so this control mechanism is an active
congestion scheme). It checks if the packet is allowed based
on the FMT records as stated in Algorithm 1 (lines 1-2), and
to prevent queue overflow (lines 3-5). Once the packet passes
the policer, it enters the next stage (scheduler/shaper).

The secondmechanism (ii) is activatedwhile theQM status
is full, and the incoming packet PDI is legitimate. In that
case, the last packet in the queue is dropped to have room to
accommodate a legitimate packet as depicted in Algorithm 1
in line 13 (so this control mechanism is a passive conges-
tion scheme). The third mechanism (iii) reflects the normal

FIGURE 4. The proposed TM functionalities: (a) policing, (b) scheduling,
and (c) shaping.

operation of compliant flows entering the TM. It is activated
when the first mechanisms (i) and/or (ii) do not apply in a
given cycle.

Policer mechanism (iii) enables to absorb bursts by check-
ing the queue occupancy in real-time, if enough room exists,
the burst is allowed to enter the TM until 1/3 of queue
occupancy (first threshold) where packet are virtually green
in analogy to three color markers [35]. Above this thresh-
old, we start applying the burst limit for each specific flow,
up to 2/3 of queue occupancy (second threshold, packets
are virtually yellow). Beyond the second threshold, the first
policing mechanism (i) is applied more aggressively. Only
compliant flows are granted entry according to their expected
arrival time (stored Ts records of each flow in the FMT,
see Fig. 4). Thus, packets are virtually red and discarded
as nonconforming to prevent overuse of the bandwidth and
network congestion.

3) SCHEDULER
The proposed TM scheduling functionality is depicted
in Fig. 4(b). The purpose of scheduling is to tag each PDI
prior entry into the QM as depicted in Algorithm 1 (line 6).
This schedule represents the earliest time at which the packet
should be sent back to the network. Tagging the incoming
packet plays an important role in avoiding that low pri-
ority packets be dequeued before the higher priority ones.

VOLUME 7, 2019 2235

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

Also, the same holds for older existing packets versus the
current incoming ones. This time tag is calculated from the
shaping policy (detailed in the next subsection).

4) SHAPER
After the policer stage, each received packet is tagged with
a timestamp. Packets timestamps of different flows are com-
puted according to Fig. 4 with the TM shaping functional-
ity (c). The Ts value stored in the FMT depicts the earliest
moment in time that the PDIin has to wait in the QM before
it can be dequeued (PST), while the new computed Ts is
the expected packet schedule time (EPST) for the upcoming
packet for the same flow i. The calculated packet schedule
time is in terms of clock cycles, and it depends on the size of
the incoming packet and the corresponding inverse allocated
bandwidth of flow i, as depicted in Algorithm 1 (line 7).
This shaping enables the exact calculation of the EPST of
incoming packets belonging to the same flow i, to follow and
guarantee the requested flow bandwidth.

The adopted shaping policy enables a fair share of the
bandwidth to the different flows, enforcing isolation through
prioritization. For non-compliant flows trying to flood the
network, their packets timestamps would be de-prioritized
with this shaping policy, and therefore they would not affect
the compliant one’s as their Ts would be larger, i.e., they
would have low priority. Nevertheless, once the upper thresh-
old of the policer heuristic is reached (the allowed burst limit),
with no room available to absorb this abusive flow in the
QM (queue is 2/3 full), policer’s first and second control
mechanisms (i, ii) are both activated. Packets belonging to the
non-compliant flowswill be dropped by the policer. Theywill
be seen as part of a flow attacker or bandwidth abuser, andwill
not be allowed until the source’s flow reduces its transmission
rate, while complying with policer’s first or second control
mechanisms.

5) QUEUE MANAGER
The most important component of the QM is the PQ that is
responsible for enqueuing, dequeuing and replacing incom-
ing packets in a single clock cycle. Also, the PQ sorts the
packets in order of priority according to their timestamps
in ascending departure order. More details about the queue
management can be found in [8] and [9].

Fig. 5 depicts the PQ content. The PQ is divided
in m groups. Each group contains N packets Ag, . . .Zg,

FIGURE 5. The hardware priority queue content.

where g is the group number. Ag and Zg represent the min
and max elements, respectively, of that group, and all remain-
ing elements are placed in an unordered set Sg. Namely,
a group Xi contains N elements {Ai,Si,Zi} with Si =
{Xi\{minXi,maxXi}}. The letters A . . . Z are used for gen-
erality, regardless of the actual number of packets, except
in examples where N is known. Each group is being con-
nected with its adjacent groups, each independently apply-
ing in parallel a common operation on its data. This PQ
architecture is register-based single-instruction-multiple-data
(SIMD), with only local data interconnects, and a short broad-
casted instruction.

The priority queue accepts a new entry or returns the
packet tag (PDI) with the lowest timestamp every clock
cycle. The three basic operations supported by the priority
queue are enqueue, dequeue, and replace (i.e., a combina-
tion of dequeue-enqueue), while the packet movement obeys
Algorithm 2 for each defined queue operation representing
packet selection and sort inside each distinct queue groups.
From the performance analysis of this hardware PQ from [8],
the performance decreases in O(logN), where N is the num-
ber of packets in each group, while the quality of dismissed
elements when the queue is full is 1/N (lower is better). In this
work, N is fixed to 2 packets in each queue group, for all
queue sizes. The PDI timestamp at the top of the queue (high-
est priority element) is compared to the current system time
(in clock cycles). If the PDI Ts is reached, the pop signal is
activated (Algorithm 1, lines 10-11), and the queued elements
are re-ordered according to their schedule time (Algorithm 2).
Also, an external pop can be issued, for example in case the
packet dispatcher is idle. The packet at the top of the PQ is
sent to the NPU packet dispatch unit to be dequeued from the

Algorithm 2 Hardware Priority Queue Operations
Input: PDIin (Element In)
Output: PDIout (Element Out = A1, but not pertinent on

enqueue)
for all groups i (i = 1, 2, . . .m) do

// On enqueue operation:
group i← order{Zi−1,Ai,Si};
// On dequeue operation:
group i← order{Si,Zi,Ai+1};
// On replace operation:
group i← order{max{Zi−1,Ai},Si,min{Zi,Ai+1}};

Where:
• order X = 〈minX ,X \{minX ,maxX},maxX 〉
• S = {X\{minX ,maxX}}
• Z0 is the incoming packet (Element In),
• Am+1 is the ‘‘none/invalid’’ packet equivalent to empty
cell which must compare as greater (>) to any valid
packet,

• max{Z0,A1} = Z0 during replace, since A1 is dequeued,
• From invariants 1 and 2 [8], we have A1 ≤ (S1) ≤ A2 ≤
(S2) ≤ A3 . . . , etc. while the Zi’s are gradually ordered.

2236 VOLUME 7, 2019

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

packet buffer, and sent back to the network either to an egress
port or the switch fabric interface (see Fig. 2).

6) PROGRAMMABLE TRAFFIC MANAGER
a: NEW FLOW CREATION
To allow creating new flows and erasing the record of inac-
tive ones, the Ts in the FMT can be updated in real-time.
This feature enables to create new flows in the FMT and
override any previous records without requiring FPGA re-
synthesis. This is done by updating directly the on-chip Block
RAMs (BRAMs) through the create/update port. This latter
information is either forwarded from the control plane or the
packet processor to the TM through the create/update flow
information port. During this phase, the PDIin port should
contain all necessary information for flow creation.

b: FLOW BANDWIDTH UPDATE
During operation of the TM, the bandwidth of one or a set
of flows can be increased/decreased by the network opera-
tor, or as requested by the application requirements, a change
in the QoS, or to exploit the unused bandwidth of the inac-
tive flows. Updating the inverse allocated bandwidth records
can be done simultaneously while processing the incoming
traffic, with no performance impact. This is done through
the use of dual port memories, enabling a single read and
write in the same clock cycle to process and update different
incoming flow bandwidth traffic information. During this
phase, the create/update flow information port should contain
all necessary information for flow update.

c: P4 SUPPORT WITH EXTERN MODULES
P416 supports integration of specialized hardware through
extern. The TM is coded in C++ and can be easily ported
into P4 program as an extern object/function, and attached to
a flexible and programmable pipeline. The TM can be seen
as an external accelerator attached through an extern control
interface [39], [40].

In a programmable pipeline, P4 programs can request the
operation implemented by the extern object/function (for
example the TM) as depicted in Fig. 6. The functionality of
the TM is not specified in P4, but only the interface is. The
interface of the extern object/function can be used to describe
the operation it provides, as well as its parameters and return
types. This interface is generally exposed to the data plane.
It should be noted that the P4 program can store and manip-
ulate data pertaining to each packet as user-defined metadata

FIGURE 6. Block diagram representing a P4 program and its extern
object/function interface.

directly with the interface to the TM, without using the intrin-
sic metadata (control/signals) as defined in the P4 language
specification [39].

C. GENERAL PACKET SCHEDULING SCHEMES
Packet scheduling schemes can be categorized in two
classes: timestamp-based that achieve good fairness and
delay bounds, but that suffer from high computational com-
plexity, and round-robin based that are simpler, but that suffer
from large delay bounds. Further, another classification is
according to the work conserving nature of the scheduler,
i.e., the link is never idle whenever a packet remains in the
queue. On the other hand, a non-work conserving scheduler
will not service a packet even though the link is idle due to a
scheduling policy, or whenever the scheduling time is not yet
met [35].

Our proposed scheduler is timestamp-based, non-work
conserving, as packets will be served only when their sched-
ule time is reached (dequeued fromQM). To be able to service
packets at idle link, an external dequeue from the TM should
be issued if the link is idle, to service the top packet in the
queue as detailed in Section III-B.5.

1) EXAMPLES OF SUPPORTED SCHEDULING SCHEMES
Our proposed scheduler/shaper can support different existing
scheduling schemes like Round-Robin (RR) and Weighted
Round-Robin (WRR), while supporting strict priority
scheduling by default as the QM is built around a PQ.

Let us consider the examples depicted in Fig. 7a with RR,
Fig. 7b with WRR offering bulk service, and Fig. 7c with
WRR offering smooth service scheduling schemes.

In RR-based scheduling, each queue is served once during
the scheduler iteration or round. This is one of the simplest
example of scheduling to implement as timestamps of dif-
ferent packets received from each queue are incremented by
the number of existing queues. In the example of Fig. 7a,
the four-queue system from top to bottom A, B, C, and D,
queue A packets would have Ts as 0, 4, . . . etc., 2nd queue
B would have Ts as 1, 5, . . . etc., and so forth for each
received packet. Hence, to schedule packets according to RR,
we should simply initialize the four first Ts flows of our
scheduler to 0, 1, 2, 3 and increment the upcoming packets
Ts’s by the number of queues (4).

In the same way,WRR can be implemented through proper
Ts initialization and weight adjustment, especially for the
bulk service. For the example of Fig. 7b, packets are trans-
mitted as AABCDD as queues A and D are each served
two times over six (33%), while queues B and C are served
one time over six (17%). So, we should initialize the four
first Ts flows to 0, 2, 3, 4. For the first and fourth flows
(queue A and D), the upcoming packets Ts’s increment factor
should alternate between 1 then 5, while packets of the second
and third flows are incremented by a constant 6. With these
increment factors, the scheduler is able to offer the sequence
AABCDD. It should be noted that supporting this alternation
may require extra logic during implementation for the bulk

VOLUME 7, 2019 2237

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

FIGURE 7. RR and WRR scheduling schemes. (a) Round-Robin.
(b) Weighted Round-Robin: bulk service. (c) Weighted Round-Robin:
smooth service.

service scheduler. For fairness reasons, smooth service is
desirable with the ABDACD sequence. The latter sequence
can be implemented through Ts’s initialization to 0, 1, 4, and 2
while the increment factor is 3 for A and D, it remains 6
for B and C. For the above schedulers, the external dequeue
is sufficient with no need to use the system time to issue a
dequeue in the QM (see Section III-B.5).

One of themost popular scheduling scheme is the weighted
fair queuing (WFQ), as it approximates the ideal General-
ized Processor Sharing (GPS) scheduler. However, due to
its O(n) complexity, where n is the maximum number of
nonempty queues, the required calculations at each packet
arrival or departure in the WFQ are very expensive. Other
packet fair queueing (PFQ) algorithms have been developed
in order to reduce this complexity, as detailed in [38]. A good
approximation to WFQ is Start-Time Fair Queueing (STFQ).
The following shows how we can support this scheduler in a
way that differs from [37]. The STFQ requires a virtual start
time before a packet is enqueued. The virtual start time is
computed as the maximum between the virtual finish time
for flow i and the virtual time. The virtual finish time is the
timestamp read from the FMT for the packet of flow i in our
case, and the virtual time is the last dequeued packet Ts across
all flows, that is the last dequeued Ts packet from the QM. So,
STFQ requires only an additional comparator for selecting
the maximum Ts. This comparator will not impact the per-
formance during implementation as the required information
is already available from the FMT and QM.

For hierarchical scheduling, we can support hierarchical
(H-PFQ) with rate limitation guaranteed, as our QM does not

allow modification of already enqueued packet timestamps
upon arrival of future packets. Let us consider the example
depicted in Fig. 8. If all queues A, B, C, D are nonempty,
the service rate is 33% for A, 17 % for B and 25 % for C
and D. If queue A is empty or inactive, B would be served
50 % of the time according to the left node bandwidth.
In Sivaraman work [37], hierarchical scheduling is done by
using a tree of Push-In First-Out (PIFO) queues. However,
in our case, with a single queue model, our assigned weights
are programmable (through flows bandwidths). So, it only
requires updating the flow bandwidth of queue B according
to the traffic conditions, as a solution to use the unexploited
bandwidth of queue A packets. On the other hand, when the
packets of queue A arrive, they can start a bit earlier than
the current time of B packets to re-balance the portions of
bandwidth usage between A and B.

FIGURE 8. Hierarchical packet fair queueing.

2) DISCUSSION
Sivaraman [37] proposed a programmable packet schedul-
ing architecture using Atoms processing units representing
a programmable switch’s instruction set. In Sivaraman work,
the scheduling model is composed of two components: 1) a
tree of PIFO queues. A PIFO is a PQ that allows elements to
be enqueued into an arbitrary position based on the element’s
rank, but dequeues elements from the head. 2) the computa-
tion of an element’s rank is done before it is enqueued into the
PIFO, this computation is called a packet transaction [36].

In comparison to Sivaraman scheduler, our scheduler
behave in the same way as to tag each received packet with
a timestamp prior entry to the QM. However, in Sivaraman
work, the rank computation is done through Atoms process-
ing units running the scheduling code. In this work, we tar-
get an FPGA platform from which each flow has an initial
timestamp and an inverse allocated bandwidth that can be
updated at run time. More details about scheduling schemes
support can be found in Section 3 of Sivaraman paper [37] as
our schedulers are comparable. It should be noted that in this
work we focus on traffic management and not specifically on
scheduling.

IV. HANDLING TIMESTAMP WRAP AROUND
In general, the range of priority key values used in the PQ is
much smaller or comparable to the actual range of stamps

2238 VOLUME 7, 2019

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

used in the scheduling module. Therefore, priority values
may wrap around (overflow). For example, timestamps that
handle packet transmission times with 1GHz rate will wrap
around every 4 seconds for 32-bit keys. Having both pre-
and post-wrap around timestamps present in the PQ would
result in order errors, i.e., post-wrap around timestamps will
be regarded as smaller. We propose to mitigate this issue by
considering the following solutions.

A. USE OF A WIDER KEY
The configuration of the data type for the timestamp can be
changed to a variable length type in the TM code through the
arbitrary precision package fromXilinx. Awrap around every
year would happen with 55-bit variable length, two years
with 56 bits, etc., with the above clocking frequency (1GHz).
With 64-bit priority keys, the wrap around would happen
every 585 years. It is a fair assumption that the circuit will
not be operated without interruption for a period that long,
and 64-bit might even look exaggerated, but this solution is
taken as a reference to estimate maximum resource usage and
lowest design performance. Wider keys require more storage
capacity and wider comparators that eventually impact the
critical path of the design.

B. USE OF A 32-BIT KEY
The use of 32 bit key length has the advantage of halving
the total length of the Ts in the PDI field. This impacts
directly the memory usage in the FMT. Also, the complexity
of the hardware used in the QM is reduced, especially the
multiplexers and comparators. However, the use of 32-bit key
requires adequate recalculation of the flow timestamp records
in the FMT, before each wrap around.

This wrap around calculation is done as follows. Prior
each system time wrap around, the FMT Ts records are
recalculated when the system time exceeds the wrap around
threshold (Twa) according to (1), where Bmax is the maximum
burst threshold of all flows, and # FMT_flows is the total
number of flows supported by the FMT.

Twa = (232 − 1) − (Bmax + # FMT_flows) (1)

Each FMT Ts record exceeding the Twa is recalculated by
subtracting from it the current system time, while the other
flows Ts’s under the threshold have their records initialized
to zero. In the present case, during FMT Ts records recalcula-
tion, the incoming PDI’s are stored temporarily inside a buffer
(the length of this buffer corresponds to the total number of
supported flows in the FMT), to prevent order errors in the
QM between already recalculated Ts and the other waiting
flows, while the other packets in QM are served normally.
The TM resumes its normal operation as soon as all records
are recalculated. Assuming a FMT supporting 1024 flows,
the TM would take 1024 cycles to recalculate the new times-
tamps prior resuming its normal operation after a time wrap
around. If the TM is running at 100MHz, a wrap around
would happen every 42 seconds, and during the recalculation
phase an incoming PDI has to wait in the temporary buffer

10µs to be processed in theworst case scenario. Also, theQM
should be empty to resume the TM normal operation.

V. HLS DESIGN METHODOLOGY AND CONSIDERATIONS
In this section, we first present the analysis of operations
required by the proposed TMdesign. Then, we detail the steps
we apply in HLS to obtain the desired throughput and latency.

A. ANALYSIS OF TRAFFIC MANAGER OPERATIONS
The timing diagram demonstrating correct operation of the
proposed TM is shown in Fig. 9. The required operations for
the TM to process any incoming PDI (representing concise
packet information) are to check the FMT record for the spe-
cific incoming flow Ts and queue occupancy status, make a
decision to drop or forward it, update the FMT flow’s record,
and finally send it to the QMwith a Ts tag. Therefore, the TM
operations consist in reading Ts memory (steps C0-C1),
calculating the new schedule time (step C1), and writing
it back to the same memory location (step C2). Moreover,
a FMT bandwidth (Alloc. BW) access is required with a read
and/or write (update) during steps C0-C1. Finally, the PDI
is forwarded to the QM according to policer’s decision in
step C2. These are the specific tasks done by the proposed
TM for each incoming PDI at any given clock cycle.

B. DESIGN METHODOLOGY
The HLS process is initiated by specifying the C++ design
files, a target FPGA device, and appropriate directives and
constraints to apply to the design (that are specific to the HLS
tool). The HLS process can be described in three steps:

1) Extraction of data and control paths from the high-level
design files.

2) Scheduling and binding of the RTL in the hardware,
targeting a specific device library.

3) During the above step, optimizations are dictated by
the designer to guide the HLS process, through specific
directives and constraints.

From Fig. 9, it can be seen that the minimum latency that
can be achieved from our design operation is two cycles, with
an initiation interval (II) of 1 clock cycle, i.e., every clock
cycle an output PDI is ready. Thus, to target this optimal per-
formance through HLS, the three directives that we focused
on are: 1) a latency directive targeting 2 clock cycles, 2) a
pipeline directive targeting an II of 1 cycle, and 3) a memory

FIGURE 9. Proposed TM pipeline operations timing diagram.

VOLUME 7, 2019 2239

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

TABLE 2. Resource utilization and achieved performance of the proposed traffic manager with 64 and 32 priority key bits on different platforms.

dependency directive asking for two separate true dual port
memories for accessing the Ts and flow bandwidth records
in the FMT. As HLS constraint, we target the lowest feasible
clock period without violating the desired design latency and
IImentioned above. It should be noted that an adequate access
memory bypass is required if back-to-back similar PDIs of
the same flow are received cycle after cycle, at minimum
initiation interval. The reason is that Alloc. BW and Ts are
required in the first stage, while they are updated in the sec-
ond and third stages of previous PDI (see inter-dependences
in Fig. 9). Hence, we designed a two-stage bypass for the
Ts memory and one-stage bypass for the flow bandwidth
memory, respectively. The achieved implementation results
are detailed in Section VI.

VI. IMPLEMENTATION RESULTS
In this section, we detail the hardware implementation of
our proposed TM architecture, resource usage and achieved
performance, for different configurations (64-bit and 32-bit
priority key with 40-bit metadata). Then, comparisons to
existing works in the literature are discussed. Finally,
the hardware validation environment is presented.

A. PLACEMENT AND ROUTING RESULTS
The proposed TMwas implemented on a Xilinx ZC706 board
(based on the xc7z045ffg900-2 FPGA), and a complete
design was also produced for a XCVU440 Virtex UltraScale
device (xcvu440-flgb2377-3-e FPGA). Resource utilization
of the entire TM architecture for different QM capacities was
characterized in terms of the number of supported PDIs and
the obtained performances. Results are shown in Table 2 for
designs with 64 and 32-bit priorities, N = 2 (the number of
PDIs in each group of the queue), and a FMT supporting up
to 1024 distinct concurrent active flows. It should be noted
that we can support up to 1024 flows in all implementations.
Supporting up to 1024 flows is a design decision and is not
imposed by a limitation of FPGA BRAM resources. This
number of flows was deemed sufficient based on the analysis
reported in [14], while flows are identified from the 5-tuple

information. More flows can be supported if that parame-
ter is suitably set prior to the design HLS, placement and
routing.

In the reported TM implementation, only flip-flops (FFs)
and look-up tables (LUTs) were used in the QM module to
obtain a fast and pipelined architecture. On-chip memory
(Block RAM_18K) is used only in the FMT module. The
achieved clock is less than 8.40 ns on the ZC706 platform,
for 512 deep queue capacity, with both 64-bit and 32-bit pri-
ority TMarchitectures.When targeting theXCVU440 FPGA,
the achieved clock is less than 6.72 ns for both TM architec-
tures, with the latter queue capacity. The 32 bit architecture
consumes 34% fewer LUTs and 31% fewer FFs than the
64-bit TM architecture, for both the ZC706 platform and
XCVU440 FPGA device.

The achieved initiation interval (II) is one PDI per cycle,
while the TM throughput is 80Gb/s for both 64 and 32-bit
architectures under the ZC706, for 84 bytes minimum size
Ethernet packets (includingminimum size packet of 64 bytes,
preamble and interpacket gap of 20 bytes). Under the
XCVU440 UltraScale FPGA, the achieved TM throughput
is 100Gb/s for both 64 and 32-bit architectures. The design
latency is 2 clock cycles, i.e., the TM is fully pipelined and
each incoming PDI takes a constant 2-cycle to be processed.
It should be noted that accessing a memory location and
updating it in the FMT takes at least 2 clock cycles (as
explained in Section V-B and Fig. 9) on the target FPGA.
This constraint is critical as the core operation consists of a
read or read-modify, followed by a write to a memory. While
writing the result to thememory, theQM is activated to reduce
the design latency, explaining the necessity for 2 clock cycles,
which is achieved by HLS with minimum design efforts and
more flexibility, enabling faster design space exploration than
hand-written RTL designs.

The total dynamic power consumption when targeting the
ZC706 is estimated by the Vivado tool at 1.84 and 1.12W
respectively for the 64 and 32-bit architectures, which rep-
resents a 39% reduction for the latter. When targeting the
XCVU440 UltraScale device, the power usage is reduced
by 33% between the TM architectures (see Table 2) for

2240 VOLUME 7, 2019

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

TABLE 3. Memory, speed and throughput comparison with queue management systems.

a 512 queue capacity. The power consumption is dom-
inated by the QM array. For example, the 512×104 or
512×72 queue bits for 64 and 32-bit architectures represent
90% of the dynamic power usage, when minimum packets
sizes of 64 bytes are received at each cycle (back-to-back).
Let us recall that theQMcontains a PQ that is a highly parallel
regular array of registers and comparators. The total queue
capacity that can be supported by the XCVU440 FPGA is
around 13.2k PDIs with 64-bit and 18.1k PDIs with 32-bit
priority keys. From Table 1, comparing the reported results
with other traffic management solutions under different plat-
forms, the achieved TM performance can be compared to
those obtained with design expressed at lower level hardware
description languages (HDLs) [14], [15], [19], [22]–[27].

Table 3 summarizes results obtained with various queue
management architectures, knowing that the throughput of
the QMRD [17] system depends on the protocol data unit
(PDU) payload size, the reported OD-QM [13] results are
for 512 active queues, and 64 bytes per packet. To make
sure that our design is comparable, it was implemented with
a total of 512 PDIs queue capacity, 64/32 bit priority, and
the worst case egress port throughput is reported assuming
64-byte packets, supporting pipelined enqueue, dequeue and
replace operations in a single clock cycle, i.e., O(1).

Compared to existing NPU solutions like Broadcom [19],
and Mellanox NPS-400 [22], that can support up to 200 and
400Gb/s respectively with built-in queue management sys-
tems, our proposed TM architecture is scalable in terms
of performance for different queue capacities. Using the
single FPGA on a ZC706, we can support two 40Gb/s
links assuming minimum 64 byte sized packets, while with
XCVU440 UltraScale, we can support four 100Gb/s links
with a QM that could reach 4.5k PDIs capacity per link.
To scale up to 400Gb/s with ZC706 boards, we can use
several FPGAs in parallel like in a multicard ‘‘pizza box’’
system. Moreover, it should be noted that an FPGA is much
more flexible than a fixed and rigid ASIC chip.

B. HARDWARE VALIDATION ENVIRONMENT
To verify the correct functionality of the proposed TM
after FPGA placement and routing, we tested the proposed
64-bit architecture on a Zynq-7000 ZC706 FPGA board from
Xilinx. Fig. 10 depicts the organization of the testing plat-
form, it consists of four parts: the host computer user inter-
face, known as the Xilinx Software Development Kit (SDK)
tool, the processing system (PS-side), the PS-PL interconnect
(AXI-bus), and the programmable logic (PL-side).

1) HOST COMPUTER USER INTERFACE
The user interface manages the data to display on-screen.
This data is normally requested by a user from the PL-side.
It represents the outputs (valid and dropped PDIs) from the
TM at a given cycle. This data is read from the storage buffer
on the FPGA board through a C program that runs on the
PS-side. It is transferred to the processing system through a
built-in UART and handled by the SDK.

FIGURE 10. The TM hardware validation environment.

2) PROCESSING SYSTEM
The ZC706 board integrates a dual-core ARM. The ARM
processor is clocked at 667MHz and runs a native operating
system. The main objective of the PS-side is to ease the
process of data exchange between the user and the PL-side
through the PS-PL interconnect, i.e., by the built-in AXI-bus.
The ARM is used to manage data transfers from the FPGA
part to the user interface.

3) PS-PL INTERCONNECT
Communication between the PS-side and the PL-side is done
using AXI-bus interface. For testing, we used the AXI-Lite
bus interface known to offer low-throughput and low-latency
communication capabilities [32]. It allows transferring the
generated data obtained from the TM to the PS side. A slow
bus solution is sufficient in this case as data is requested from
the output buffers with one PDI each time.

4) PROGRAMMABLE LOGIC
We use the available logic resources in the FPGA chip to
implement the TM architecture. The TM can accept a PDI
every clock cycle, and can produce an output PDI in the same

VOLUME 7, 2019 2241

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

cycle. Transmitting such data flow to the host computer is
impractical. One solution is to store the output PDIs from the
TM in an output buffer, and then request them one by one
later. The generated PDIs are known a priori, and they are
displayed through the user interface. This allows analyzing
specific characteristics of the design under test. For example,
reports that could be generated can relate to back-to-back
ingress burst handling, flow bandwidth abuse and policer
dropping capability, over-exceeding the ingress port limit TM
behavior, etc. These tests confirmed the correct functionality
of the proposed TM and matched the co-simulation results
that were detailed in [29, Sec. IV].

C. FUTURE WORK AND RESEARCH DIRECTIONS
Statistics gathering is one of the complex operation to per-
form as it lays in the critical path of packet processing of
any network device. During development of the proposed
traffic manager, statistics gathering for different flows was
designed in a separate module external to the traffic manager
with no interaction. This was chosen to avoid degrading the
performance of the traffic manager, and have flow statis-
tics reported once per second. Statistics gathering could be
integrated in the traffic manager. Alternatively, we could use
dedicated metadata field for reporting flow state per received
packet. This enables to have information about network flows
in a cycle accurate manner, i.e., it can allow in-band network
telemetry [41].

Another future research direction is to integrate the clas-
sification stage within traffic management. This could lead
to faster creation/update of flow information from the con-
trol plane, classification and traffic manager stages. Also,
it could facilitate the control, management and synchroniza-
tion between different network equipment modules.

A recent trend in the literature led by the P4 language
consortium is to integrate the traffic management in the
programmable data plane [42]. In today’s P4 programmable
switches, traffic management is not supported directly in
the data plane. An effort and thrust toward programmable
traffic manager functionalities in today’s network data plane
is a near future target. This would be interesting to have
a complete view of the system from classification, traffic
management and packet buffering that are all programmable
while user custom in-line processing would be supported by
the P4 language directly in the network data plane.

VII. CONCLUSION
In this work, we proposed, implemented and evaluated a
high-speed, low-latency, programmable and scalable traffic
manager architecture intended for flow-based networking.
It is capable of providing all the functionality of typical
network traffic managers from policing, scheduling, shaping
and queuing. The proposed traffic manager architecture is
coded in C++ providing more flexibility, and easier imple-
mentation than the reported works in the literature that were
coded in VHDL, Verilog, etc. It is of interest to mention that
the queue manager supports 64 or 32 bit priority keys with

40-bit of metadata representing the size, flow ID, and packet
address, while the concise packet information tag is up to
104-bit.

The proposed traffic manager architecture was prototyped
in FPGA using HLS and implemented with Vivado from
Xilinx, targeting the ZC706 board and XCVU440 UltraScale
device. The resulting design is capable of handling high speed
network and links operating up to 100Gb/s with minimum
size Ethernet packets. Also, the flexibility of the architecture
and the adopted high-level coding style facilitate introduc-
ing modifications and enhancements. For example, adding a
congestion control mechanism like weighted random early
detection (WRED) or using different types of queue in the
queue manager, like binary heap, would be straightforward.

ACKNOWLEDGMENTS
The authors would like to thank N. Bélanger, researcher at
Polytechnique Montréal, for his suggestions and technical
guidance. Also, the authors would like to thank J. S. da Silva
and the anonymous reviewers for their valuable and enriching
comments.

REFERENCES
[1] A. Gupta and E. R. K. Jha, ‘‘A survey of 5G network: Architecture and

emerging technologies,’’ IEEE Access, vol. 3, pp. 1206–1232, Jul. 2015.
[2] N. Panwar, S. Sharma, and A. K. Singh, ‘‘A survey on 5G: The next

generation ofmobile communication,’’Phys. Commun., vol. 18, pp. 64–84,
Mar. 2016.

[3] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, ‘‘Scalable flow-based
networking with DIFANE,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 351–362, 2011.

[4] S.-W. Moon, J. Rexford, and K. G. Shin, ‘‘Scalable hardware priority
queue architectures for high-speed packet switches,’’ IEEE Trans. Com-
put., vol. 49, no. 11, pp. 1215–1227, Nov. 2000.

[5] M. Huang, K. Lim, and J. Cong, ‘‘A scalable, high-performance cus-
tomized priority queue,’’ in Proc. IEEE 24th Int. Conf. Field Program.
Logic Appl. (FPL), Sep. 2014, pp. 1–4.

[6] Y. Afek, A. Bremler-Barr, and L. Schiff, ‘‘Recursive design of hardware
priority queues,’’ Comput. Netw., vol. 66, pp. 52–67, Jun. 2014.

[7] X. Zhuang and S. Pande, ‘‘A scalable priority queue architecture for
high speed network processing,’’ in Proc. 25th IEEE Int. Conf. Comput.
Commun. (INFOCOM), Apr. 2006, pp. 1–12.

[8] I. Benacer, F.-R. Boyer, and Y. Savaria, ‘‘A fast, single-instruction–
multiple-data, scalable priority queue,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 10, pp. 1939–1952, Jun. 2018.

[9] I. Benacer, F.-R. Boyer, N. Bélanger, and Y. Savaria, ‘‘A fast systolic
priority queue architecture for a flow-based traffic manager,’’ in Proc. 14th
IEEE Int. New Circuits Syst. Conf. (NEWCAS), Jun. 2016, pp. 1–4.

[10] H. W. Poole, L. Lambert, C. Woodford, and C. J. Moschovitis, Eds.
The Internet: A Historical Encyclopedia, vol. 2. Santa Barbara, CA, USA:
Abc-Clio Inc., 2005.

[11] A. Lara, A. Kolasani, and B. Ramamurthy, ‘‘Network innovation using
OpenFlow: A survey,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1,
pp. 493–512, 1st Quart., 2014.

[12] N. Bastin and R. McGeer, ‘‘Programmable, Controllable Networks,’’ in
The GENI Book, R. McGeer, M. Berman, C. Elliott, and R. Ricci, Eds.
Cham, Switzerland: Springer, 2016, pp. 149–178.

[13] S. O’Neil, R. F. Woods, A. J. Marshall, and Q. Zhang, ‘‘A scalable and
programmable modular traffic manager architecture,’’ ACM Trans. Recon-
figurable Technol. Syst., vol. 4, no. 2, p. 14, 2011.

[14] Q. Zhang, R. Woods, and A. Marshall, ‘‘An on-demand queue man-
agement architecture for a programmable traffic manager,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 10, pp. 1849–1862,
Oct. 2012.

[15] ‘‘Enabling quality of service with customizable traffic managers,’’ Altera
Corp., San Jose, CA, USA, White Paper WP-STXIITRFC-1.0, 2005.

2242 VOLUME 7, 2019

I. Benacer et al.: High-Speed, Scalable, and Programmable TM Architecture for Flow-Based Networking

[16] F. M. Chiussi et al., ‘‘A family of ASIC devices for next generation dis-
tributed packet switches with QoS support for IP and ATM,’’ in Proc. IEEE
Hot Interconnects, Stanford, CA, USA, vol. 9, Aug. 2001, pp. 145–149.

[17] R. Krishnamurthy, S. Yalamanchili, K. Schwan, and R. West, ‘‘Share-
Streams: A scalable architecture and hardware support for high-speed
QoS packet schedulers,’’ in Proc. 12th Annu. IEEE Symp. Field-Program.
Custom Comput. Mach., Apr. 2004, pp. 115–124.

[18] K. McLaughlin, D. Burns, C. Toal, C. McKillen, and S. Sezer, ‘‘Fully
hardware basedWFQ architecture for high-speed QoS packet scheduling,’’
Integr., VLSI J., vol. 45, no. 1, pp. 99–109, 2012.

[19] 200G Integrated Packet Processor, Traffic Manager, and Fabric Interface
Single-Chip Device, document BCM88650, Broadcom, 2012.

[20] F. Fereydouni and A. M. Otmane, ‘‘A new 10 Gbps traffic management
algorithm for high-speed networks,’’ inProc. IEEE Int. Symp. Circuits Syst.
(ISCAS), New Orleans, LA, USA, May 2007, pp. 2510–2513.

[21] S. Stanley, ‘‘Traffic manager update,’’ Light Reading Report, 2004.
Accessed: Jan. 2018. [Online]. Available: Online Available: https://www.
lightreading.com/comms-chips/traffic-managers-update/d/d-id/602877

[22] NPS-400 400 Gbps NPU for Smart Networks, EZchip, San Jose, CA, USA,
2015.

[23] 10G Network Processor Chip Set (APP750NP and APP750TM),
Agere Syst., Allentown, PA, USA, 2002.

[24] N. Possley, ‘‘Traffic management in Xilinx FPGAs,’’ Xilinx, San Jose, CA,
USA, White Paper WP244, 2006.

[25] P. G. Paulin et al., ‘‘Parallel programmingmodels for a multiprocessor SoC
platform applied to networking and multimedia,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 14, no. 7, pp. 667–680, Jul. 2006.

[26] A. Khan et al., ‘‘Design and development of the first single-chip full-
duplex OC48 traffic manager and ATM SAR SoC,’’ in Proc. IEEE Conf.
Custom Integr. Circuits, Sep. 2003, pp. 35–38.

[27] B. Alleyne, ‘‘Chesapeake: A 50 Gbps network processor and traffic man-
ager,’’ in Proc. IEEE Hot Chips 19 Symp. (HCS), Stanford, CA, USA,
Aug. 2007, pp. 1–10.

[28] I. Benacer, F.-R. Boyer, and Y. Savaria, ‘‘A high-speed traffic manager
architecture for flow-based networking,’’ in Proc. 15th IEEE Int. New
Circuits Syst. Conf. (NEWCAS), Jun. 2017, pp. 161–164.

[29] I. Benacer, F.-R. Boyer, and Y. Savaria, ‘‘Design of a low latency 40 Gb/s
flow-based traffic manager using high-level synthesis,’’ in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[30] H. Fallside, ‘‘Queue manager reference design,’’ Xilinx Inc., San Jose, CA,
USA, Appl. Note 511, 2007.

[31] A. Nikologiannis, I. Papaefstathiou, G. Kornaros, and C. Kachris,
‘‘An FPGA-based queue management system for high speed network-
ing devices,’’ Microprocess. Microsyst., vol. 28, nos. 5–6, pp. 223–236,
Aug. 2004.

[32] Vivado Design Suite AXI Reference Guide, v4.0, document UG1037,
Xilinx, 2017.

[33] Barefoot. The World’s Fastest & Most Programmable Networks.
Accessed: Aug. 2018. [Online]. Available: https://www.barefootnetworks.
com/resources/worlds-fastest-most-programmable-networks/

[34] P. Bosshart et al., ‘‘P4: Programming protocol-independent packet proces-
sors,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95,
Jul. 2014.

[35] R. Giladi, Network Processors: Architecture, Programming, and Imple-
mentation (Series in Systems on Silicon). San Mateo, CA, USA:
Morgan Kaufmann, 2008.

[36] A. Sivaraman et al., ‘‘Packet transactions: High-level programming for
line-rate switches,’’ in Proc. SIGCOMM, 2016, pp. 15–28.

[37] A. Sivaraman et al., ‘‘Programmable packet scheduling at line rate,’’ in
Proc. SIGCOMM, 2016, pp. 44–57.

[38] J. C. R. Bennett and H. Zhang, ‘‘Hierarchical packet fair queueing algo-
rithms,’’ IEEE/ACM Trans. Netw., vol. 5, no. 5, pp. 675–689, Oct. 1997.

[39] P4 Language Specification, Version 1.1.0, P4.Org, P4 Language Consor-
tium, 2018. Accessed: Aug. 2018. [Online]. Available: https://p4.org/
specs/

[40] J. S. da Silva, F.-R. Boyer, L. Chiquette, and J. M. P. Langlois, ‘‘Extern
objects in P4: An ROHC header compression scheme case study,’’ in Proc.
4th IEEE Conf. Netw. Softwarization Workshops (NetSoft), Montréal, QC,
Canada, Jun. 2018, pp. 517–522.

[41] R. Mari, ‘‘In-band network telemetry—A powerful analytics framework
for your data center,’’ OCP Summit, Mar. 2018. [Online]. Available:
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-
Powerful-Analytics-Framework-for-your-Data-Center-OCP-Final3.pdf

[42] G. Brebner, ‘‘Extending the range of P4 programmability,’’ P4EUKeynote,
Cambridge, U.K., 2018. [Online]. Available: https://p4.org/assets/P4WE_
2018/Gordon_Brebner.pdf

IMAD BENACER received the B.E. degree in elec-
trical and electronic engineering from Boumerdès
University, Boumerdès, Algeria, in 2012, and the
M.E. degree in electrical engineering from École
Militaire Polytechnique, Algiers, Algeria, in 2014.
He is currently pursuing the Ph.D. degree with
Polytechnique Montréal, Montréal, QC, Canada.

His current research interests include the
embedded implementation of image and video
processing algorithms, network communication

systems, and high-level synthesis targeting FPGA designs and implemen-
tations.

FRANÇOIS-RAYMOND BOYER received the
B.Sc. and Ph.D. degrees in computer science
from the Université de Montréal, Montréal, QC,
Canada, in 1996 and 2001, respectively.

Since 2001, he has been with Polytechnique
Montréal, Montréal, where he is currently a Pro-
fessor with the Department of Computer and Soft-
ware Engineering. He has authored or co-authored
over 30 conference and journal papers. His current
research interests includemicroelectronics, perfor-

mance optimization, parallelizing compilers, digital audio, and body motion
capture.

Dr. Boyer is a member of the Regroupement Stratégique en Microélec-
tronique du Québec, the Groupe de Recherche en Microélectronique et
Microsystèmes, and the Observatoire Interdisciplinaire de Création et de
Recherche en Musique.

YVON SAVARIA (S’77–M’86–SM’97–F’08)
received the B.Ing. and M.Sc.A. degrees in elec-
trical engineering from Polytechnique Montréal,
Montréal, QC, Canada, in 1980 and 1982, respec-
tively, and the Ph.D. degree in electrical engineer-
ing from McGill University, Montréal, in 1985.

He has been a Consultant or was sponsored
for carrying research by Bombardier, CNRC,
Design Workshop, DREO, Ericsson, Genesis,
Gennum, Huawei, Hyperchip, ISR, Kaloom,

LTRIM, Miranda, MiroTech, Nortel, Octasic, PMC-Sierra, Technocap,
Thales, Tundra, and VXP. Since 1985, he has been with Polytechnique
Montréal, where he is currently a Professor with the Department of Electrical
Engineering. He has carried out work in several areas related to microelec-
tronic circuits and microsystems, such as testing, verification, validation,
clocking methods, defect and fault tolerance, the effects of radiation on
electronics, high-speed interconnects and circuit design techniques, CAD
methods, reconfigurable computing and applications of microelectronics
to telecommunications, aerospace, image processing, video processing,
radar signal processing, and digital signal processing acceleration. He has
authored or co-authored 145 journal papers and 450 conference papers, and
holds 16 patents, and was a Thesis Advisor of 160 graduate students who
completed their studies. He is currently involved in several projects that relate
to aircraft embedded systems, radiation effects on electronics, asynchronous
circuits design and test, green IT, wireless sensor networks, virtual networks,
computational efficiency, and application specific architecture design.

Dr. Savaria is a member of the Regroupement Stratégique en Microélec-
tronique du Québec and the Ordre des Ingénieurs du Québec, and has
been a member of the CMC Microsystems Board, since 1999, and was
the Chairman of the CMC Microsystems Board, from 2008 to 2010. He
was a recipient of the 2001 Tier 1 Canada Research Chair on the design
and architectures of advanced microelectronic systems that he held, until
2015, and the 2006 Synergy Award of the Natural Sciences and Engineering
Research Council of Canada. He was a Program Co-Chairman of ASAP
2006 and a General Co-Chair of ASAP 2007.

VOLUME 7, 2019 2243

	INTRODUCTION
	RELATED WORK
	FLOW-BASED NETWORKING
	PROGRAMMABLE SWITCHES
	TRAFFIC MANAGERS

	TRAFFIC MANAGER ARCHITECTURE
	TRAFFIC MANAGER OVERVIEW AND FUNCTIONALITIES
	TRAFFIC MANAGER STRUCTURAL DESIGN
	FLOW MANAGEMENT TABLE
	POLICER
	SCHEDULER
	SHAPER
	QUEUE MANAGER
	PROGRAMMABLE TRAFFIC MANAGER

	GENERAL PACKET SCHEDULING SCHEMES
	EXAMPLES OF SUPPORTED SCHEDULING SCHEMES
	DISCUSSION

	HANDLING TIMESTAMP WRAP AROUND
	USE OF A WIDER KEY
	USE OF A 32-BIT KEY

	HLS DESIGN METHODOLOGY AND CONSIDERATIONS
	ANALYSIS OF TRAFFIC MANAGER OPERATIONS
	DESIGN METHODOLOGY

	IMPLEMENTATION RESULTS
	PLACEMENT AND ROUTING RESULTS
	HARDWARE VALIDATION ENVIRONMENT
	HOST COMPUTER USER INTERFACE
	PROCESSING SYSTEM
	PS-PL INTERCONNECT
	PROGRAMMABLE LOGIC

	FUTURE WORK AND RESEARCH DIRECTIONS

	CONCLUSION
	REFERENCES
	Biographies
	IMAD BENACER
	FRAN ¸COIS-RAYMOND BOYER
	YVON SAVARIA

