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ABSTRACT X-ray angiography, used in the evaluation of coronary artery disease, presents difficulties in the
performance of quantitative coronary angiography analysis, by identifying major vessels. These difficulties
are due to problems such as non-uniform illumination, low contrast ratio, and the presence of other tissues.
Therefore, segmentation of the desired vessels in images containing multiple blood vessels is clinically
important. This paper proposes selective feature mapping as a method for segmenting the left anterior
descending artery main vessel in coronary angiography images. The proposed method consists of two steps
for generating a candidate area of an image and then segmenting it. To generate the candidate area, feature
maps that overlap significantly with the area of the ground truth are selected and combined. Segmentation
then is performed using a neural network that learns only the ground truth region of the input image. The
proposed method consists of eight modules: pre-processing of the angiogram, resizing of ground truth, pre-
processing for segmentation, post-processing for segmentation, network, and segmentation network. This
method has a precision of about 0.066, recall of 0.091, and an F1 score of 0.094, values which are higher
than those generated by the U-Net, one of the conventional techniques.

INDEX TERMS Angiogram, convolutional neural networks, deep learning, left anterior descending artery,

selective feature map, selective filter, vessel segmentation.

I. INTRODUCTION

Coronary artery disease (CAD) is one of the world’s lead-
ing causes of death, and its incidence is rapidly increasing
worldwide [1]-[3]. This disease is caused by the narrowing
of blood vessels due to blockage by a plaque consisting of
fat, cholesterol, and calcium [1], [2]. X-ray angiography is
the primary imaging method for evaluating CAD [1], [2], [4].
A cardiologist looks at an image, identifies the stenosis,
and determines the severity of the disease [1]-[3]. However,
X-ray angiography has a large inter-individual variation in
its analytical results due to problems such as non-uniform
illumination, low contrast ratios, low signal-to-noise ratios,
the presence of other tissues, and camera motion [2], [3].
To perform quantitative coronary angiography (QCA)
analysis with high accuracy, considerable experience is

required [1]-[3]. In particular, in clinical studies, QCA
requires the identification and analysis of major blood ves-
sels, and thus relies on the manual labor of experts. It is there-
fore important to consistently detect affected blood vessels
among the multiple blood vessels in an image. The purpose
of this study was to automatically segment the main vessels
of the left anterior descending (LAD) artery, which gener-
ally supplies the widest area of myocardium from coronary
angiography images (Fig. 1).

Considerable research has been conducted into the
segmentation of blood vessels automatically, or semi-
automatically, from an angiography image using traditional
methods. In one study [1] blood vessels were segmented from
images in three stages: Hessian filter enhancement; feature
extraction; and vessel region detection. Another study [2]
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(a) (b) (c)

FIGURE 1. LAD main vessel segmentation among vessels in an
angiography image (a: angiography image, b: overlapped ground truth
over LAD main vessel of angiography image, c: ground truth).

used three different super-pixel scales to segment blood ves-
sels by determining the probability of blood vessels for each
super-pixel. Another study determined vessel structure using
the multiscale probability of blood vessels in each super-
pixel. In addition, these authors used Gabor filters to segment
coronary arteries by binarizing the Gabor filter results using
a new thresholding technique [4].

Deep learning techniques have been used to detect or seg-
ment blood vessels in angiography images. The research
reported in [3] improved contrast via pre-processing, and
then used about 1,040,000 patches of pixels to distinguish
the vessel of interest from the background. In addition, noisy
low-level binary segmentation and optical flow based on U-
Net has been used to generate multiclass annotations, and
multistage segmentation was then used to distinguish blood
vessels [5]. There is a study reporting research into improving
the image quality of an input image by using a patch around
each pixel as input to a trained convolutional neural network
(CNN) to distinguish whether each pixel is part of a blood
vessel or is background [6]. These studies show fairly high
performance in vessel recognition, but aim to segment all
blood vessels from the image.

Studies on extracting blood vessels from retinal images and
classifying them as arteries or veins have also been reported.
The research reported in [7] detected blood vessels using
vessel profile-based feature vectors and vessel ROI-based
feature vectors, and performed classification using support
vector machines and neural networks. Classification has
also been performed using a convolutional neural network
architecture with three convolutional layers and three fully-
connected layers [8]. These techniques also produce data
for all vessels. With these approaches, it is important to use
accurate datasets, because their performance depends largely
on the accuracy of the dataset. However, it is time-consuming
and burdensome to generate ground truth data for all vessels
in angiography images.

In this paper, we propose selective feature mapping (SFM)
as a new method for segmenting the main blood vessels of
LAD in a coronary angiography image. As an extension of
the CNN, it selects several feature maps that best match a
label from among the feature maps produced by the CNN’s
last layer. We apply convolution, average pooling, and thresh-
olding to the last layer of the CNN to select some of the filters
that make up the last layer, and combine only the results from
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these filters to eliminate unnecessary feature maps. Unlike
the previous studies mentioned above, the proposed method
reduces the effort required for generating datasets because it
only requires the ground truth of the main vessel of the LAD.
The composition of this paper is as follows. Section 2
describes the proposed method which consists of two stages:
(1) SFM to find a candidate areas and (2) segmentation of
the main LAD vessel. Stage two is made up of eight mod-
ules: pre-processing of the angiogram; resizing ground truth;
preprocessing for segmentation; post-processing for segmen-
tation; network; segmentation of the network; and filtering.
Each is explained in turn. Section 3 presents the experimental
conditions, performance criteria and results, and Section 4
discusses our conclusions and outlines future work.

Il. METHODS

This section describes the proposed method in more detail.
It consists of two steps: (1) selective feature mapping to find
a candidate area; and (2) segmenting the main vessel from
the candidate area. Figures 2 and 3 summarize the training
and test structure of the proposed method.

The main aim of the first step, selective feature mapping,
is to automatically select filters that detect the main vessel in
the input image (the FS module), and then combine the cor-
responding feature maps to generate the candidate area (the
FM module). In order to train filter selection automatically
according to the characteristics of the image, we generate an
answer filter from a ground truth image (the FS_GT module)
as shown in Fig. 2 (a).

The second step is to segment the main vessel from the can-
didate area. Specifically, the main vessel is segmented from
the candidate area generated by the selective feature mapping
(Fig. 3 (b)). During training, we set the candidate area within
a certain range from the ground truth area and segment the
main vessel from this area through the segmentation network
(Fig. 2 (b)). In other words, the input image for training and
testing is different in the second stage, so pre-processing and
post-processing for segmentation are included in the testing
stage to compensate for this difference.

There are eight modules that make up the first and sec-
ond steps (the blue boxes in Fig. 2 and 3): pre-processing
of the angiogram; resizing of the ground truth; FS; FM;
pre-processing for segmentation; post-processing for seg-
mentation; the network; and the segmentation network.

This section describes these modules individually, except
for the network and segmentation network, and finally
describes the three losses (the orange boxes in Fig. 2).

The reason for not providing detailed descriptions of net-
works and segmentation networks is that they can use an
existing network algorithm. We used U-Net as the segmen-
tation network for performance comparison.

A. PRE-PROCESSING OF THE ANGIOGRAM

In Steps 1 and 2, the Frangi filter [9] is applied, to high-
light the vascular region in an angiography image. It is
based on the Hessian matrix. The Hessian matrix extracts
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(a)

(b)

FIGURE 2. Summary of training architecture of the proposed method (blue boxes: modules, orange boxes: loss functions,
gray boxes: processing, orange dotted arrow line: calculating loss function). (a) Selective Feature Mapping (Training) -
Aim: candidate area generation. (b) Segmentation (Training) - Aim: LAD main vessel segmentation within candidate area.

(a)

(b)

FIGURE 3. Summary of test architecture of the proposed method (blue boxes: modules, orange boxes: loss functions,
gray boxes: processing, orange dotted arrow line: calculating loss function). (a) Selective Feature Mapping (Test) — Aim:
candidate area generation. (b) Segmentation (Test) — Aim: LAD main vessel segmentation within candidate area.

eigenvectors and eigenvalues from each pixel of the input eigenvalue (A7) of the largest change in direction in each pixel
image via a second derivative. As shown in Fig. 4, and the eigenvalue (A1) perpendicular thereto. The eigenvalue
the blood vessel and the background are classified using the of a blood vessel has at least one non-zero component.
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FIGURE 4. Eigenvectors in blood vessel image (Orange arrow: direction
with the largest change in pixel value, Blue arrow: direction
perpendicular to the orange arrow).

However, there is no specific directionality in the back-
ground, so eigenvalues in all directions of the background
approach zero. Thus, the background can be removed from
the image using eq. 1.

S=IHlg= [} 4 M
j<D

S is the second order structureness, H is the Hessian matrix,
and D is the image dimension. The definition of the Frangi
filter of a two dimensional image is as follows.

0, if A0 >0
f(x) = R: 52
) exp|—=2 ) (1—exp(=— ), otherwise
2p2 2c2
2
Rp = |A1]/ |Az| describes deviations from blob-like struc-

tures. B and c are thresholds that control the sensitivity of
the line filter to the measured values Rp and S. Fig. 5 shows
the results of the Frangi filter when B and c¢ have a value

FIGURE 5. The result of Frangi filter with various values of 8 and c
(left top: angiography image).
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between 0 and 1. As c increases, the less directional part
gradually becomes the background. Conversely, the larger 8
is, the better the perception of thin sections of blood vessels
and the better the perception of blood vessels.

B. FILTER SELECTION AND RESIZING OF GROUND TRUTH
The general structure of a CNN consists of a convolutional
layer and a pooling layer. In the convolutional layer, each
filter detects a pattern of interest in the entire image area,
through convolution. The feature map is an output image
composed of the patterns detected from each filter. The
pooling layer reduces the size of the input feature map and
reduces the total number of parameters required for CNN
training. The CNN repeatedly performs this process to detect
aregion of interest (ROI). Thus, from the feature map, we can
observe the area of interest for each filter [10]. The heat map
depicted in Fig. 6 shows several representative feature maps
of the last convolutional layer after training on the network
in Step 1. Using the heat map, the ROI of each feature map
can be identified [11]. More specifically, in the heat map
red represents the region of interest for each filter, and blue
corresponds to the region of non-interest. Since each filter has
different regions of interest, we can select feature maps where
the ROI overlaps the main vessel of the LAD.

FIGURE 6. Heatmaps of several representative feature maps in last
convolutional layer in the network (The closer to red, the area of interest
for each filter, and the closer to blue, the less interesting area).

Filter selection involves choosing a filter that generates a
feature map of the ROI from the last convolution layer of
the network. This idea was inspired by filter pruning [20],
which is performed by estimating the importance of a fil-
ter at each convolutional layer, to detect drowsiness. This
method performs filter pruning using 11 normalization, fully
connected layer, ReLU, and a sigmoid activation function.
The proposed method performs filter selection through the
convolutional layer, global average pooling, batch normaliza-
tion, and thresholding (Fig. 2 and 3 (a)). Also, in our method,
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afilter is selected that produces a feature map of interest in the
ground truth area in the last convolution layer of the network.
For this purpose, the size of ground truth is reduced to be the
same as that of the feature maps of the last convolutional layer
in the network. The feature maps of the last convolutional
layer are then multiplied by the resized ground truth so that
each feature map has only the value corresponding to the
ground truth region. Feature maps are passed through the
global average pooling (GAP) layer [12] so that each filter
has one representative value. The range of the representative
value is then adjusted using batch normalization [13], and
a filter having a value equal to or higher than a certain
threshold value is selected. This process is shown in FS_GT
in Fig. 2 Through this process, the network can select a filter
that involves the ground truth area. However, FS_GT cannot
be used, since there is no ground truth in the test. To solve
this problem, FS is added after the convolutional layer of
the network, so that the filter can be selected automatically
during the training and test procedures. FS is designed to
have a structure parallel to that of FS_GT, and the result of
FS_GT is regarded as the ground truth of FS. The input to
FS_GT is the result of element-wise multiplication between
the resized ground truth and the feature maps of the last
convolutional layer. In order for FS to have the same structure,
one convolutional layer is added before the GAP layer. The
convolutional layer is always followed by an application of
an activation function. The structure of the remaining FS is
designed to be the same as FS_GT.

C. FEATURE MAPPING

In the selective feature mapping, feature maps corresponding
to the selected filter in the FS are obtained from the network’s
last convolutional layer. Specifically, filters selected via the
threshold layer, which is the last stage of the FS, have a value
of 1, and the remaining filters have a value of 0. By multiply-
ing this value by the feature maps of the last convolutional
layer, only the feature maps corresponding to the selected fil-
ter survive. Thereafter, the number of feature maps is reduced
through two convolutional layers with activation functions,
and one image is generated.

D. PRE-PROCESSING AND POST-PROCESSING

FOR SEGMENTATION

Fig. 2 (b) shows training using the ground truth to indicate
the position of the LAD main vessel. However, since there
is no ground truth in the test, we use the SFM result as an
indicator. Nonetheless, the size of the result of SFM is equal
to the size of the last convolutional layer, and is smaller than
the angiogram. Therefore, resizing is important. However,
this process results in pixels with values between O and 1,
unlike the ground truth. Therefore, we apply Otsu’s method
to generate binary masks from the results of the resized SFM
results. The generated binary mask has a wider white area
than the ground truth. To compensate for this difference,
we multiply the angiogram by the resized value. This makes
the pixels with values close to 1 in the resized image more
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likely to be part of the main vessel of the LAD. Through these
processes, the final mask plays a role corresponding to the
ground truth in Fig. 2 (b).

Unlike training, post-processing is used in testing. Since
training uses ground truth, there is no false detection area.
However, in testing, the false detection area exists because
the SFM result is used as ground truth. Therefore, in the
post-processing for the segmentation module, a small area is
removed from the output of the segmentation network. The
size of the small area is determined based on the average value
of the isolation area in the output image.

Fig. 7 shows the results corresponding to each step of
Fig. 3 (b). As shown in Fig. 7, the peripheral blood vessels
of Fig. 7 (c¢) were removed from the candidate images
(Fig. 7 (d)).

(a) (b)

(c) (d)

FIGURE 7. The results of each block in flowchart of preprocessing for
segmentation (a: angiogram, b: overlapped ground truth over LAD main
vessel of angiogram, c: the result of pre-processing of angiogram (Frangi
parameter : g is 1.0, c is 0.1), d: filtered angiogram, which is the input of
the segmentation network).

E. LOSSES

The proposed method calculates three losses: two in Step 1,
and one in Step 2. One of the losses used in Step 1 is the
SFM_Loss. This factor represents the loss between the result
of the FM module and the result of the resizing of the ground
truth through the mean square error, as follows.

1
SFM_Loss = Z Xp: (IP,FM - P»resizedjt)z 3)

In eq. 3, p is a pixel, n is the total number of pixels,
Iy, Fm s the output of the FM module, and I yesized_gr 1S the
resized ground truth image. In Step 1, the filter selection
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loss FS_Loss is also used. FS_Loss is calculated as the loss
between the results of FS_GT and FS as follows.

1
FS_Loss = ¥ > " |Frrs — Frrs_or “)
I

k is a filter, N is the total number of filters, F' represents
the output of the FS module and the FS_GT module. Since
the results of the FS_GT module and the FS module are
either O or 1 for both filters, the L1 loss function, which is
easier to calculate than the L2 loss function, is used. The
reason for using two loss functions in Step 1 is that using
only SFM_Loss cannot induce the network to select a desired
filter, causing in a similar result to that of the segmentation
network alone. The Seg_Loss used in Step 2 is calculated
by the mean square error between the segmentation network
result and the ground truth. This calculation is the same as
that of the SFM_Loss of Step 1, but it has a different size.

Ill. EXPERIMENTAL RESULTS

A. TEST CONDITIONS

We used Pytorch in Ubuntu 16.04, GPU NVIDIA GeForce
GTX 1080, CPU intel core i7-4770K and 16GB RAM. The
size of the image is 256 x 256. Two hundred images were used
for training, and 1787 images for testing. To achieve gener-
alization, more data were allocated to the test set and fewer
data were used for training. Other techniques were applied
to supplement the size of the training dataset. With elastic
deformation [14], the number of training images increased
from 200 to 2000. In addition, vertical flip, horizontal flip,
and 90°, 180°, and 270° rotation were randomly applied
to training data [14]. A dataset was prepared from X-ray
coronary angiography of 1180 patients who visited Asan
Medical Center between September 2003 and July 2017. Two
experts with more than five years of experience split the left
anterior descending artery from the ostium to the distal site
by using The CAAS QCA system (Pie Medical Imaging BV,
the Netherlands) [15].

B. PERFORMANCE EVALUATION METHODS

Five criteria—accuracy, precision, recall, specificity, and
F1 score—are employed to compare segmentation perfor-
mance. First of all, we calculate true positives (TP), false
positive (FP), true negatives (TN), and false negatives (FN)
for each image. The value of a pixel corresponding to the
blood vessel is 1 and the other value is O in the ground truth
image and the result image. TP and TN thus mean the number
of pixels, 1 or 0, respectively, both in the ground truth and in
the result. FP means the number of pixels where the ground
truth is O and the result is 1. FN means the number of pixels
with a ground truth of 1 and a result of 0. (Table 1.) The five
comparison criteria can be calculated using TP, FP, TN, and
FN as follows:

TP + TN
Accuracy(ACC) = %)
TP+ TN + FP + FN
TP
Precision(PRC) = — (6)
TP + FP
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TABLE 1. Definition of True positive (TP), True negative (TN), False
positive (FP), False negative (FN).

Ground truth
Vessel(1) Background(0)
Test result Vessel(1) TP FP
Background(0) FN N
TP
RecallRC) = — (7)
TP + FN
Specificity(SPC) = —¥ ®)
€CI1I1C1 = —
pectielly TN + FP
Flscore(F1) = 2 PRC - RC ©)
score = s
PRC 4+ RC

The five comparison reference values all range from O to 1,
with a higher value indicating better performance.

C. RESULTS

To demonstrate the effectiveness of SFM, we used the same
pre-processing method and original U-Net as a segmentation
network to compare the performance with the original U-Net.
Firstly, to decide upon the pre-processing method, we applied
three pre-processing methods: global histogram equaliza-
tion [21]; local histogram equalization [21]; and Frangi fil-
ter to the original U-Net, and compared their performances
(Table 2). Since the performance of the LAD main vessel
segmentation was the best when the Frangi filter was used,
the Frangi filter was applied to the proposed method and the
original U-Net.

TABLE 2. The results of LAD main vessel segmentation using original
U-Net with pre-processing methods.

Pre-processing e o
methods Sensitivity Specificity
None 0.403 0.972
Global I{_lstc_ogram 0.442 0973
Equalization
Local H}stogram 0.346 0.995
Equalization
Frangi Filter 0.495 0.993

In addition, as mentioned above, the proposed method
can use various existing networks as the network for SFM.
We compared the experimental results of three network struc-
tures for SFM. The three networks are the contracting path
of the U-Net [16], VGG16 [17] with batch normalization,
and DenseNetl121 [18] without transition layer three and
dense block four. The classification layer is not used in either
VGG16 or DenseNetl21; the detailed structure is shown
in Table 3. Prior to the comparison of performance, we briefly
introduce the U-Net, VGG and DenseNet algorithms.

U-Net uses a networking and training method with a
small amount of data. The CNN structure is divided into a
contracting path and an expanding path. The two paths are
symmetrical to each other and are connected by a bridge.
The contracting path is used for capturing the context, and the
expanding path is for accurate localization. Through the use
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TABLE 3. Three kinds of architecture used in the network of SFM.

Output U-Net
. Contracting VGGl6 DenseNet121
size
path
[3x3 conv] x2 [3x3 conv] x2 .
128x128 2x2 MaxPool 92 MaxPool 7x7 conv, stride 2
64x64 [3x3 conv] x2 [3x3 conv] x2 3x3 MaxPool,
2x2 MaxPool 2x2 MaxPool stride 2
[1x1 conv, 3x3
conv] x6
2x2 AvgPool,
stride 2
[1x1 conv, 3x3
[3x3 conv] x2 | [3x3 conv] x3 conv] x12
16x16 2x2 MaxPool 2x2 MaxPool IxI conv
2x2 AvgPool,
stride 2
[1x1 conv, 3x3
16x16 [3x3 conv] x2 [3x3 conv] x3 conv] x24
1x1 conv

of these paths, end-to-end training with very few images
shows better performance in neural tissue segmentation than
a sliding window convolutional network [19]. U-Net is well
known as being the most widely used and effective archi-
tecture for medical image segmentation [5]. Thus, U-Net
is used as a benchmark for performance comparison of the
segmentation networks in this paper.

VGG took first and second place in the localization and
classification tracks of ImageNet Challenge 2014. It was
designed to improve the accuracy of the depth of a convolu-
tion network, and to evaluate the depth of the network using a
very small (3 x 3) convolution filter. The network may consist
of 11, 13, 16, or 19 layers, of which 16 and 19 showed the best
performance. In this paper, we use VGG16, which has fewer
parameters than the 19 layer network, but still had one of the
best performances.

DenseNet is a method of connecting each layer to all
other layers in a feed-forward manner. The algorithm is
based on the observation that convolution networks are much
deeper, more accurate, and more efficient when the number
of connections between nearest input and near output layers
is small. The U-Net contracting path and VGG16 layer are
connected only to the previous layers, but DenseNet connects
each layer to all previous layers. In this work, we used a
DenseNet with 121 layers, which has a similar Top 5 error
rate to VGG16.

The performance of the SFM is evaluated based on recall,
which is the ratio of pixels included in the candidate area to
the pixels of the main vessel in the ground truth image, since
the purpose of SFM is to detect the area having the LAD main
vessel with a bounding box. As shown in Table 4, the recall
of SEFM with U-Net, VGG, and DenseNet is 0.847, 0.843 and
0.834, respectively, and the average is 0.841. In other words,
about 84% of the pixels of the main vessel are detected in
the SFM step. In addition, the detection ratio of SFM with
U-Net, VGG, and DenseNet is 96.36%, 95.97%, and 96.03%,
respectively, based on a recall of greater then or equal to 0.5.
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TABLE 4. The result of the SFM step.

SFM(U-Net) SFM(VGG) SFM(DenseNet)
Recall 0.847 0.843 0.834
Detection
ratio (%) 96.36 95.97 96.03

TABLE 5. Segmentation results of U-Net and the proposed methods with
various network according to frangi parameter. (a) original U-Net. (b) SFM
(U-Net). (c) SFM (VGG). (d) SFM (DenseNet). (e) SFM (Average).

(@)

Frangi parameter

B c PRC RC SPEC Fl1 ACC
0.5 15 0.719 | 0441 | 0.995 | 0.519 | 0.979
1.0 0.1 0.698 | 0.510 | 0.994 | 0.565 | 0.980

(b)
PRC | RC | SPEC | FI | ACC

Frangi parameter

B c
0.5 15 0.800 | 0.607 | 0.996 | 0.676 | 0.985
1.0 0.1 0.621 | 0.616 | 0.989 | 0.603 | 0.978

(©

Frangi parameter

PRC RC SPEC Fl1 ACC

B c
0.5 15 0.767 | 0.609 0.995 0.666 | 0.984
1.0 0.1 0.583 | 0.665 0.986 0.608 | 0.976

(d)

Frangi parameter

B c PRC RC SPEC Fl1 ACC
0.5 15 0.724 | 0.587 | 0.993 | 0.635 | 0.982
1.0 0.1 0.594 | 0.603 | 0.989 | 0.585 | 0.977

©

Frangi parameter

PRC RC SPEC Fl1 ACC

B c
0.5 15 0.764 | 0.601 0.995 0.659 | 0.984
1.0 0.1 0.599 | 0.628 0.988 0.599 | 0.977

Table 5 shows the performance of the original U-Net,
SEFM with three networks—U-Net, VGG, and DenseNet—
and the SFM average using Frangi parameters. The Frangi
parameters were determined experimentally, with appropriate
¢ values based on 8. Based on the F1 score, U-Net shows bet-
ter performance when f is high and c is low. That is, the more
clearly the blood vessels are detected in Fig. 5, the better the
performance. Conversely, the proposed method gives better
performance when § is low and c is high. In other words,
the more the surrounding background is filtered in Fig. 5,
the better the performance. Also, when comparing the results
of SFM with three different networks, the performance of
SFM with DenseNet121 is lower than those of U-Net’s con-
tracting path and VGG16. This is because all preceding layers
are directly connected to the last layer in DenseNet121, unlike
the other two networks. Similarly, experiments using SFM on
the bridge of the original U-Net did not improve performance.
This is because SFM is applied only to the last convolutional
layer, thus the effect of the preceding layers on the last
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layer is to reduce the effect of SFM. Comparing the average
highest performance of SFM (Table 5 (E)) and original U-Net
(Table 5 (A)), SEM shows higher performance—precision
0.066, recall 0.091, specificity 0.001, F1 score 0.094 and
accuracy 0.004—than the original U-Net.

For a more detailed performance comparison, F1 score
and accuracy were compared in several ways against the best
performance of the original U-Net and SFM. Table 6 shows
the mean and median values of the F1 score and accuracy
of the original U-Net and SFM. On average, the median of
the F1 score is 0.101 higher than the original U-Net, and
the accuracy is 0.005 higher. Fig. 8 shows the density plot
of F1 score and accuracy in the test data set. As shown in
the figure, the SFM graph shows that the F1 score and the
accuracy are both higher than that of the original U-Net. Also,
Similar to the results in Table 6, SFM with DenseNet shows
lower performance than the other two networks. We also
applied a Kruskal-Wallis test [22] to compare the F1 score
and accuracy between the original U-Net and SFM. Kruskal-
Wallis is a nonparametric method used to analyze data that
do not satisfy the normality and homogeneity assumptions
of variance, and has a value between 0 and 1. If the value
of the Kruskal-Wallis test is less than 0.05, it is judged that
there is a difference between the values of the comparison
objects. When comparing the Kruskal-Wallis value of the
F1 score and accuracy between the original U-Net and the
SFM average, both values are below 0.05, indicating that
there is an important difference between the performance of
the two algorithms. We also obtained Kruskal-Wallis values
between two of the four methods, the original U-Net and
SFM, with three networks. The Kruskal-Wallis value of the
F1 score between SFM with U-Net and SFM with VGG is
0.300, which is more than 0.05, so we assume that there is
no difference between the two algorithms. Since the Kruskal-
Wallis value is 0.05 or less between the other algorithms,
there appears to be a difference between their performances.

TABLE 6. Mean and median value of f1 score and accuracy of original
U-Net and sfm. (a) F1 score. (b) Accuracy.

(a
Original SFM SFM SFM SFM
U-Net (Avg) (U-Net) (VGG) (Dense)
Mean 0.565 0.659 0.676 0.666 0.635
Median 0.608 0.709 0.720 0.722 0.684

(b)

Original SFM SFM SFM SFM
U-Net (Avg) (U-Net) (VGG) (Dense)
Mean 0.980 0.984 0.985 0.984 0.982

Median 0.981 0.986 0.987 0.987 0.984

When we examine the analysis results of F1 score and
accuracy, it can be seen that there is little difference in
accuracy compared with the F1 score as a whole. We use
accuracy to mean the number of TPs and TNs in the total
pixels, as shown in eq. 5. Therefore, there is not a large
difference in the accuracy of the image when the number
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FIGURE 8. Density plot of F1 score (top) and accuracy (bottom) in test set.

of background pixels is too large compared to the number
of pixels of the target object. Thus, we only calculated the
correlation coefficient (r) of the F1 scores of the two methods
and found it to be 0.79 (eq. 10).

P Y (Fu — pur.uv) - (Fsem — WF.SFM)
\/Z (Fu — ur.u)? - Y. (Fsem — F.sem)*

Fy is the F1 score of the original U-Net, and Fsrys is the
F1 score of the average of SFM over test images ur y is the
mean value of the F1 scores of the original U-Net, and ir spm
represents the mean value of the F1 scores of the average of
SFM over the test images. Since the correlation coefficient is
greater than zero, the two have a positive correlation. Also,
the graph is located at the bottom of y = x, so SFM has
better overall performance than the original U-Net (Fig. 9).
At the bottom of the graph, images with a value of zero in the
original U-Net axis have higher values on the SFM axis. In
other words, images that do not have any pixels of the LAD
main vessel by original U-Net can be detected better by SFM.

Fig. 10 shows the result of segmentation of the original
U-Net and SFM with three networks: the contracting path of

(10)
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FIGURE 9. Correlation of F1 score between original U-Net and the
average of SFM (Blue dot: F1 score of each test image, red line: graph of
correlation based on blue dots).

U-Net, VGG16, and DenseNet121. The first column is the
angiogram, which is the original image, and the last column
is the segmentation (shown in red) of the main LAD vessel
area of ground truth onto the original image. As shown in the
figure, the proposed method, SFM, detects the position of the
LAD main vessel in an angiogram, but segmentation results
in some pixels being lost.

Fig. 11 shows a segmentation error. In the case of overlap-
ping blood vessels, the proposed method judges both vessels

as the main vessels of the LAD during segmentation, whereas
the original U-Net does not segment all of the vessels. That
is, if the judgment is ambiguous, the proposed method judges
all of them as part of the LAD main vessel, but the original
U-Net chooses to discard all of them. Also, if the image is too
blurry or there is a catheter, the main vessel may not be prop-
erly detected or the catheter may be misunderstood as part
of the main vessel. This phenomenon is similar to those seen
when using the original U-Net, and as a result segmentation
error increases. From these experimental results we conclude
that the proposed method detects the main blood vessel area
of LAD better than U-Net.

Therefore, rather than using the angiography image
directly as an input, the region of the LAD main vessel is first
detected from the angiography image and the result is used
as input to the segmentation network in order to better detect
the LAD main vessel. The reason for the poor performance
when using an angiography image as input to U-Net is shown
in Fig. 12. After the first epoch, even though there is some
noise, all blood vessels are well segmented. As training pro-
gresses, however, the thinner part of the main vessel gradually
disappears. From this it can be seen that the CNN is learned to
discard thin blood vessels, even when the CNN is trained for
segmentation using a ground truth consisting only of major
blood vessels.

To solve this problem, the proposed method adopts a
method of combining only filters with high detection rates of
major blood vessels. Unlike the original U-Net, the proposed

FIGURE 10. Segmentation results of SFM (with U-Net contracting path, VGG16, and DenseNet121) and original U-Net (each

row represents each image).
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FIGURE 11. Segmentation error results of SFM (with U-Net contracting path, VGG16, and DenseNet121) and original U-Net

(each row represents each image).

FIGURE 12. Training results of U-Net (top rows: after 1st epoch,
bottom rows: after finishing training, left: angiography image,
middle: pre-processed image, right: result image).

method uses the candidate area of the LAD main vessel for
training, so it can reduce the side effects caused by removing
the surrounding blood vessels.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a selective feature mapping method
for segmenting the main blood vessels of LAD in coronary
angiography. Our algorithm, SFM, automatically segments a
specific vessel, the LAD main vessel, from an image with
multiple vessels. For this purpose, the network automatically
selects feature maps that are concerned with main vessels.
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This algorithm can be applied to detect a specific object
in an image in which several different objects have been
classified into the same category. In addition, unlike previous
studies that require the creation of the ground truth of all
blood vessels for the detection of a particular blood vessel,
it requires less effort to generate the dataset because it uses
only the ground truth of the one vessel of interest.
According to the experimental results, the proposed
method showed higher performance than the original U-Net,
which is popular in medical image segmentation, in all five
comparison criteria. More specifically, the proposed method
has a precision of about 0.066, recall of 0.091, specificity of
0.001, F1 score of 0.094 and accuracy of 0.004 higher than
the original U-Net. These results come from comparing the
average of the three networks used in the proposed method
and the performance of the original U-Net. The reason for
the low performance of the original U-Net is that the original
U-Net is trained to discard the peripheral vessels in order to
segment the main vessel from an angiogram, resulting in a
side effect where part of the main vessel is discarded. In order
to compensate for this disadvantage of the original U-Net,
the proposed method first detects the area of the LAD main
vessel using SFM and uses it for training. For this purpose,
SFM was tested with three networks, and there is a slight
difference in performance depending on the network used.
Therefore, it is expected that better results will be obtained if
the results of the three networks are selected competitively.
Also, the performance of the proposed method depends on
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the detection accuracy of the candidate region in the first step.
Therefore, it is necessary to apply more diverse networks to
detect candidate areas.

The proposed method selects a specified number of feature
maps. If the network structure is redesigned so that the CNN
can select the appropriate parameters for filters, it will be able
to select only the optimal filters according to the characteris-
tics of each image, and so should perform better.

In addition, if a catheter is present, it is recognized as the
main blood vessel, and as a result, detection performance
deteriorates. Therefore, if a catheter is detected at the begin-
ning of the image analysis, and information about the catheter
is presented to the CNN, segmentation performance can be
improved by allowing the network to automatically remove
pixels representing the catheter. One way to achieve this
removal is to filter the feature maps that detect the catheter,
as well as those that detect the main vessel. However, in this
case, the need for ground truth regarding the catheter may
require the creation of additional data sets for filtering.

Finally, the proposed method shows higher performance
than the original U-Net, but it shows inadequate performance
compared to the ground truth produced by CAAS QCA.
To illustrate the process of segmenting the main vessel of
the LAD using CAAS QCA, an expert inputs a DICOM
image into CAAS and selects the image that best shows
the LAD main vessel among the input DICOM images. The
specialist then clicks on five or six points on the image, they
are connected to form a single line, and the CAAS system
automatically segments the blood vessel based on this line.
The expert then corrects any errors in the segmented blood
vessel. CAAS QCA has obvious advantages in that the vessel
segmentation is performed with fairly high accuracy in a short
time. However, it does not generate objective, uniform results,
as it requires expert input. There is also a limitation in that
the CAAS system can not locate the main vessel of the LAD.
In contrast, the proposed method can generate uniform results
and locate the LAD main vessel autonomously. Instead of
finding the approximate location of the LAD main vessel
through an expert’s click, a skeleton of the final result of
the proposed method or a candidate area can be used as
input to the CAAS. In this case, it is possible to overcome
the limitations of the CAAS system, which performs semi-
automatic segmentation.
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