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ABSTRACT In general, a detailed modeling and evaluation of computer architectures make a cycle-
accurate simulator necessary. As the architectures become increasingly complex for parallel, cloud, and
neural computing, nowadays, the complexity of the simulator grows rapidly, and thus its execution is
too slow or infeasible for practical use. In order to alleviate the problem, many previous studies have
focused on reducing the simulation time in a variety of ways such as using sampling methods, adding
hardware accelerators, and so on. In this paper, we propose a new parallel simulation framework, called
Epoch-based Parallel SIMulator, to obtain scalable speedup with large number of cores. The framework is
based on a well-known cycle-accurate full-system simulator, MARSSx86. From the simulator, we build an
epoch, that is an execution interval, where the architectural simulation by PTLSim does not involve any
interaction with QEMU. Therefore, we can simulate epochs independently, i.e., execute multiple epochs
completely in parallel by PTLSim with their live-in data. Our performance evaluation shows that we achieve
12.8× speed on average with 16-core parallel simulation from the SPEC CPU2006 benchmarks and the
PARSEC benchmarks, providing the performance scalability.

INDEX TERMS Architectural simulation, epoch-based execution, parallel simulation.

I. INTRODUCTION
Currently, parallel, cloud, and neural computing for big data
analysis are ubiquitously emerging technologies around us.
For providing fast processing in the analysis, the computing
platforms consist of the various state-of-the-art components
such as multiple CPUs and GPUs, data and computing
accelerators, deep memory hierarchies, large scale mem-
ory and I/Os, fast interconnects, and so on. For example,
2∼8 cores and even more than 60 cores per chip [1]–[3]
and GPUs with 640 Tensor cores [4] are commercially
available, and the data analysis accelerators are widely
adopted [5]–[8]. In thememory system, eDRAMand stacked-
DRAM based L4 cache [9]–[11] and large-scale 3D-stacked
DRAMs [12]–[14] are used. Also, multiple nodes are con-
nected through high-speed links with remote direct memory
access (RDMA) [4], [15]–[18].

These platforms becomemore andmore complicatedwhile
big data is being generated every day and everyone is con-
nected to each other through internet [19], [20]. The devel-
opment of the platforms needs to model and evaluate their

performance in detail, thus makes a cycle-accurate simula-
tor necessary [21]–[25]. However, the detailed modeling is
very costly in development and, what is worse, the cycle-
accurate simulation is too time-consuming and infeasible
for practical use. Currently, the problem becomes worse
since the data size to be simulated grows tremendously
everyday [26].

There have been many promising studies for reduc-
ing the simulation time by various ways. For example,
SimPoints [27] simulates only representative code sections
by analyzing frequently executed sequences of basic blocks.
FAST [28] is a hardware-assisted scheme that runs a func-
tional model in software while running a timing model
using field programmable gate arrays (FPGAs) together.
Sniper [29] and IntervalSim [30] use an abstraction model
to simulate core performance without the detailed tracking of
individual instructions [31], allowing for trading off simula-
tion speed for accuracy. Transformer [32] and P-Mambo [33]
use multiple threads and assign them onto multiple cores
for the simulation acceleration. Some of the threads perform
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functional emulation, and the others do cycle-accurate simu-
lation with their interactions and synchronizations.

In this paper, we propose the MARSSx86-based parallel
simulation framework, called EPSim (Epoch-based Parallel
SIMulator), to exploit large-scale parallelism. We carry out
a comprehensive study about MARSSx86, and we find that
its two major components, QEMU for emulation and PTL-
Sim for simulation, are tightly integrated like Simics+Gems
[32], [34]. We identify their interactions in detail, and sepa-
rate them for an independent PTLSim simulation by provid-
ing necessary data, i.e., live-in data to each PTLSim execution
either online or offline. We call the independent simulation
interval as an epoch where there is no interaction between
these two components, thus we can execute each epoch
independently, i.e., perform epoch-by-epoch simulation com-
pletely in parallel. The live-in data is provided by our Epoch
Snapshot Creator (ESC) inside QEMU.

By characterizing the SPEC CPU2006 benchmarks [35],
we show that the epoch length is large enough, thus we can
obtain the scalable performance with large number of cores
by alleviating the parallelization overhead such as the live-
in data handling and epoch execution management. Also, for
the independent simulation with guaranteeing its accuracy,
we apply techniques to warm architectural states in cache,
branch predictor and TLB. We verify the correctness against
the existing MARSSx86 and measure the performance by
executing single and multi-threaded workload onto single
and multicore target environments. From the measurement,
we show that we achieve up to 13.9× speedup and 12.8×
speedup on average with 16 cores, and demonstrate the
performance scalability. To the best of our knowledge, our
simulation framework, EPSim, is the first completely parallel
simulator to provide the large performance scalability.

The remainder of this paper is organized as follows:
Section II explains MARSSx86 that is the basis for the
proposed framework, and Section III describes our research
motivation. Section IV describes the implementation of the
proposed framework in detail with optimization techniques,
and Section V evaluates its performance. Section VI dis-
cusses related work, before our conclusions are presented in
Section VII.

II. MARSSx86
Fig. 1 shows an overall architecture of MARSSx86 that is
a base framework of our EPSim. MARSSx86 is a micro-
architectural and system simulator for evaluating and devel-
oping ×86 ISA-based platforms, which consists of tightly
coupled two components: One is QEMU for full system
emulation and the other is PTLSim for cycle-accurate sim-
ulation [23], [32], [34], [37].

QEMU can emulate a variety of guest applications on
guest operating systems by adopting various types of devices
from CPUs to network interface cards (NIC) [38]. QEMU
translates the guest’s instructions into host’s instructions
using a code generator and executes the translated code on
the host machine at near native speed. The cycle-accurate

FIGURE 1. MARSSx86 simulator framework [23], [36].

FIGURE 2. Simulation interactions and epochs in EPSim based on
interrupt and exception instructions.

simulator PTLSim models out-of-order ×86-based comput-
ing platforms in detail [24], and it supports various hard-
ware configurations such as single/multicore, deep memory
hierarchy, cache coherence protocols, hardware TLB, branch
predictors, peripherals and so on.

Fig. 2 presents simulation interactions betweenQEMU and
PTLSim in MARSSx86. The instructions in a basic block of
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TABLE 1. A list of epoch boundary instructions.

FIGURE 3. Profile of epoch boundary instructions in the SPEC CPU2006 benchmarks.

the guest binary are translated into ×86-like microcodes in
another form of a basic block, called a translation block (TB)
by QEMU, and the microcodes are simulated by PTLSim.
Some instructions, however, cannot be handled only by
PTLSim and they are shown in Table 1. We call them as
epoch boundary instructions. Once PTLSim encounters such
instructions during the simulation, an internal exception is
triggered for switching from simulation mode to emulation
one, emulated by QEMU’s helper functions, and switched
back to the simulation mode. For example, in Fig. 2, when
PTLSim commits an interrupt instruction of TB 0, it calls a
related QEMU helper function and provides its CPU state
to QEMU so that QEMU can perform the interrupt handling
routine. After QEMU handles the interrupt, PTLSim receives
the updated CPU state from QEMU and continues the sim-
ulation from the next TB, i.e., TB 1. QEMU and PTLSim
share architectural states for correct execution, and the related
overhead accounts for up to 35% of the total simulation
time [32]. As a result, such a tightly coupled design for

supporting full system simulation slows down the simulation
speed [22], [32].

III. MOTIVATION FOR PARALLELIZING MARSSx86
In this section, we present our research motivation for devel-
oping EPSim by characterizing an epoch as a parallel simula-
tion unit and calculating the ideal speedup by epoch-by-epoch
parallel execution.

We define an epoch as a sequence of instructions that does
not involve any interaction between QEMU and PTLSim.
Therefore, we can execute each epoch in parallel by PTLSim.
For example, in Fig. 2, epoch 0 is defined as the same as
TB 0, and epoch 1 is comprised of multiple translation blocks,
i.e., from TB 1 to TB M-1.
In order to characterize the epoch, we profiled the epoch

boundary instructions and the epoch length from the SPEC
CPU2006 benchmarks [35], and they are shown in Fig. 3
and Fig. 4, respectively. The cli and rdtsc instruc-
tions account for more than three quarters of the epoch
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FIGURE 4. Breakdown of the epoch lengths in the SPEC CPU2006 benchmarks.

FIGURE 5. Upperbound speedup derived from Fig. 4.

boundary instructions in all benchmarks, i.e., 43% and 42%,
respectively. The interrupt and sti instructions approx-
imately occupies 6% and 6%, repectively, and the others do
negligibly.

At the epoch-by-epoch parallel execution, the epoch
length should be large enough in order to minimize the
parallelization overhead. We broke down the epoch length
in ranges of 50,000, 250,000, and 1,250,000 instructions
by assuming that we can ignore the overhead when the
epoch length is more than 50,000. The epochs whose
sizes are more than 50,000 occupy 97.1% of the total
instructions on average, and the epochs whose sizes are
even more than 250,000 do 76.8%. More specifically,
in the case of 444.namd, 98.2% of instructions are in
epochs whose lengths are greater than 250,000 instructions.
In 459.GemsFDTD, 14.3% and 84.2% of instructions belong
to epochs with 50,000∼250,000 instructions and greater than
250,000 instructions, respectively. In 483.xalancbmk, 96.2%
of the total instructions are contained within epochs with
more than 50,000 instructions. We can conclude that the
epoch sizes are large enough for the epoch-based parallel
execution.

Fig. 5 shows the ideal speedup that is derived from Fig. 4
by assigning one epoch to one core and ignoring the paral-
lelization overheads with 1, 4, 8 and 16 cores. We obtained
the ideal speedup of 1.0× with 1 core, 3.6× with 4 cores,
7.1× with 8 cores, and 14.3× with 16 cores, thus we argue
again that the epoch-based parallel execution provides great
potential for the simulation acceleration.

IV. EPSim: PARALLEL AND SCALABLE
SIMULATION FRAMEWORK
In this section, we describe our proposed simulation frame-
work. We briefly introduce the overall architecture and
present major components with performance optimization
techniques in detail.

A. OVERALL ARCHITECTURE
Fig. 6 depicts an overall architecture of EPSim where we
replace the tightly coupled interaction between QEMU and
PTLSim in Fig. 1 with epoch snapshots, generated by Epoch
Snapshot Creator. The snapshots are necessary live-in data
for the epochs’ independent execution by PTLSim. The
epoch-based parallel execution is scheduled for minimizing
load imbalance on multicore and their results are combined
at the end of the whole simulation.

B. EPOCH SNAPSHOT AND ITS CREATOR
The Epoch Snapshot Creator (ESC) separates an epoch that
consists of one or multiple translation blocks (TBs) from the
sequential execution by identifying epoch boundary instruc-
tions in Table 1 and generates its snapshot. The structure
of the epoch snapshot is shown in Fig. 7, which consists
of several live-in components for the epoch’s independent
execution such as CPU state and data, memory state and data,
and additional epoch information.

The CPU state and data, i.e., CPUX86States contain pro-
cessor features, registers, segments, internal flags, and so on
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FIGURE 6. Overall architecture of EPSim.

FIGURE 7. A structure of an epoch snapshot generated by ESC.

that are defined in [23]. The memory state are the internal
information about memory management in QEMU such as
physical page descriptions and their related tables. Also,
the memory data consists of codes and data of applications
and operating systems such as pc.ram, pc.rom, pc.bios, and
so on. These data are stored in the snapshots at the start of

an epoch emulation by ESC. Finally, the additional epoch
information involves the number of executed instructions in
an epoch, the number of cores, memory capacity, and the
number of threads per core to deliver simulation environment
and to determine the number of instructions to be simulated in
PTLSim. These information are stored at the end of the epoch
emulation.

C. PARALLEL SIMULATION FRAMEWORK
1) EPOCH’S INDEPENDENT EXECUTION AND CORRECTNESS
We implemented a wrapper that allows PTLSim to read the
epoch snapshot instead of communicating with QEMU. The
snapshot provides configuration-independent states as shown
in Fig. 7 to the PTLSim simulator. However, some hardware
states like in cache, branch predictor, and TLB cannot be
provided statically. For example, if the hardware configura-
tion is changed or the previous epoch is still being executed,
the hardware states can be unknown at the start of the current
epoch’s independent execution.

In order to reduce the inaccuracy, we adopted hit-on-
cold technique [39] in cache that assumes all cold misses
are hit. We also applied assume-hit [40]–[42] technique that
all misses caused by cold state are hit during the first few
thousand cycles in cases of branch predictor and TLB. After
all the epoch simulations complete, their results are combined
into one.

2) MEMORY OPTIMIZATION FOR MANAGING
EPOCH SNAPSHOTS
It is severely time and space consuming to store all the data
to be used by PTLSim for every epoch. For example, if the
simulated targetmachine ismodeled to have 4GBmainmem-
ory and 1,000 epochs are simulated, we require 4,000 GB
of storage for all the epoch snapshots. Therefore, we applied
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FIGURE 8. Two parallel execution modes of EPSim. (a) Online. (b) Offline.

several optimization techniques for reducing epoch snapshot
sizes.

First, we only stored the used pages during the emulation to
diminish storage usage. We made ESC configure a simulated
target memory as a protected mode using mprotect command
and register a handler for violation of the protected mem-
ory. The handler only records the access violated memory
regions.

Second, we further reduced the memory usage by storing
only dirty data instead of the whole used page. We observed
that many recorded data are the same between different
epochs, thus the shared data between epochs is stored only
once. From the simulation, we found that the target machine
with 4 GB memory needs only 17 MB storage on average for
the simulation.

Finally, we used shared memory space instead of files for
fast sharing epoch snapshots by the PTLSim simulators.

3) SIMULATION MODE: ONLINE VS. OFFLINE
Fig. 8 illustrates two execution modes of our simulation,
i.e., online and offline. The online method is designed that
epoch snapshot generation and its simulation are performed
in parallel. For instance, as shown in Fig. 8 (a), as soon as
core 0 generates epoch snapshot for epoch 0, core 1 starts to
simulate epoch 0. Similarly epoch 1 and epoch 2 are simulated
on core 2 and core 3 with the generated snapshots by core 0,
respectively. If core 0finishes to generate all epoch snapshots,
it simulate epochs like other cores.

The offline method assumes that all snapshots are available
before the PTLSim simulation. The epoch snapshots can be
reused regardless of alterations to architecture configuration
such as target cores, cache hierarchy, and memory timing
parameters. Therefore, we can eliminate the overhead of
creating the epoch snapshots at every simulation and the
idle time of waiting for the epoch to be simulated as shown
in Fig. 8 (b).

4) EPOCH-BY-EPOCH SCHEDULING
It is very important to minimize the load imbalance in epoch-
based parallel execution since each epoch’s simulation by
PTLSim takes very long. At the online simulation, we assign
and start to simulate an epoch whenever an idle processor
becomes available. At the offline simulation, we assign some
epochs to be simulated onto one core in one group, and the
sum of the epoch lengths in one group is the possibly same as
those in other groups by usingMax-Min algorithm [43], [44].
By using the algorithm, we can minimize the load imbalance.

V. PERFORMANCE RESULT
To evaluate the simulation accuracy and speedup of
EPSim against existing MARSSx86, we used the SPEC
CPU2006 benchmarks for single simulation and the PARSEC
benchmarks [45]–[47] for multicore simulation with 1 billion
instructions on 16 2.6 GHz Intel Xeon CPUs without hyper-
threading. We also simulated a target machine that contains 4
out-of-order cores with 256 KB L1 D/I private cache, unified
2MB shared L2 cache, 4GBofmainmemory and a combined
hybrid bimodal and history based branch predictor.

A. EPOCH CHARACTERISTICS
Fig. 9 depicts the average, maximum, and minimum of the
epoch lengths in the SPEC CPU2006 benchmarks. The aver-
age epoch length was 0.9 million instructions, and their
maximum was 5.5 million instructions in 459.GemsFDTD
benchmark.

As discussed in Section IV-C2, for storing all epoch snap-
shots we need a storage whose size is 4 GB × # of epochs
without our storage optimization techniques, and the size is
impractical for use. Fig. 10 shows the total sizes of epoch
snapshots acceptable for use by applying our techniques:
storing only used pages (FB) and only data differentiation
(DIFF). The DIFF technique reduces the sizes significantly
from FB, and the reduction ratio was 77.4% on average,
especially 83.7% in 483.xalancbmk and 90.5% in 458.sjeng.
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FIGURE 9. The average, maximum, and minimum of the epoch lengths in the SPEC
CPU2006 benchmarks.

FIGURE 10. The total sizes of epoch snapshots by FB and DIFF in the SPEC CPU2006 benchmarks.
FB: Store only used pages. DIFF: Store only data differentiation.

FIGURE 11. Difference of the committed instructions by instruction types between MARSSx86
(left bar) and EPSim (right bar) in the SPEC CPU2006 benchmarks.

The storage reduction is related to the performance improve-
ment and it will be shown in Section V-C.

B. SIMULATION ACCURACY IN SINGLE-CORE
SIMULATION
To validate EPSim’s accuracy for single-core simulation,
we measured committed instructions and architectural statis-
tics. Fig. 11 shows the difference of the committed instruc-
tions by instruction types from EPSim and MARSSx86, and
we found that the difference is negligible in all the simulated
benchmarks.

More in detail, Table 2 compares the committed instruc-
tions in 400.perlbench using the instruction classifica-
tion of uops in MARSSx86, and the difference was less
than or equal to 0.02%. The differences of the committed
instructions were up to 2.40% and 0.02% on average in
the SPEC CPU2006 benchmarks. The difference was not
exactly zero because MARSSx86 obtains non-deterministic
results by carrying out a full system simulation of OS and
applications.

Fig. 12 compares such important architectural statistics
from EPSim with MARSSx86 as IPC, L1 cache miss ratio,
branch misprediction ratio, and data TLB miss ratio. Again,
there was no noticeable difference in the performance. The
average IPC difference was 1.93% with maximum of 5.57%
in 434.zeusmp benchmark, the average L1 miss ratio dif-
ference was 0.06% with maximum of 1.20% in 450.soplex
benchmark, the average branchmisprediction ratio difference
was 0.10%, and the average DTLB miss ratio difference
was 0.03%.

Table 3 shows more detailed architectural statistics of
400.perlbench, including the total number of cycles, total
number of committed ×86 instructions, IPC, L1 cache miss
ratio, branch misprediction ratio of conditional branches, and
data TLB (DTLB) miss ratio. The differences of cycles, IPC
and L1 cache miss ratio were 2.11%, 2.15% and 0.05%,
respectively. The total number of the committed branch
instructions showed small difference of 1.49%, and its mis-
prediction ratios were measured as 5.70% and 6.04% for
MARSSx86 and EPSim, respectively. Also, The DTLB miss
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TABLE 2. Comparison of the committed instructions in 400.perlbench.

TABLE 3. Comparison of architectural performance statistics
in 400.perlbench.

ratios were 1.86% and 2.08%, respectively. The differences
were definitely acceptable since the simulation results cannot
be precisely identical due to the non-deterministic behavior of
OS and applications.

C. SIMULATION SPEEDUP IN SINGLE-CORE SIMULATION
Fig. 13 shows the speedup of online and offline method
using 1, 4, 8, and 16 cores by averaging three runs of the
simulation. On the online simulation, we obtained an average
speedup of 0.9× with 1 core, 3.6× with 4 cores, 6.7× with
8 cores, and 12.6× with 16 cores. On the offline simulation,
we achieved a little higher speedup than the online, such as
1.0× with 1 core, 3.7× with 4 cores, 6.9× with 8 cores,
and 13.0× with 16 cores since the offline method simulates
epochs in parallel using the generated epoch snapshots in
advance. From the measurement, we assure that our approach
shows large performance scalability.

Fig. 14 exhibits the speedup variants from different opti-
mization schemes with the offline method, which were

discussed in Section IV-C. FB and DIFF achieved on
average 11.6× and 12.3× of speedups and it indicates
0.7× performance improvement by storing only the dif-
ferences between the epoch snapshots. In particular, DIFF
remarkably improved the performance of 483.xalancbmk and
458.sjeng benchmarks since the total sizes of their epoch
snapshots were significantly reduced from 131 to 21 GB
and from 71 to 7 GB, respectively, as shown in Fig. 10.
DIFF+SHM obtained 12.9× speedup on average by adopt-
ing a shared memory that is 0.6× the speedup improve-
ment. DIFF+SHM+SCHE increased the average speedup to
13.0× by enhancing load balance with Max-Min scheduling
algorithm. The speedup improvement by SCHE is 0.1×
compared with DIFF+SHM in our experiments, but if there
will be more cores or simulating longer intervals, SCHE will
contribute higher speedup.

D. SIMULATION ACCURACY AND SPEEDUP FOR
MULTICORE SIMULATION
Fig. 15 presents the number of committed instructions and
the architectural statistics from multicore simulation to prove
its accuracy by using some representative benchmarks from
PARSEC. The difference of the committed instructions was
0.08% on average. The average IPC difference was 5.36%,
and it is greater than the single-core results by higher non-
determinism of OS due to multicore scheduling.

Fig. 16 shows the speedup of multicore simulation using
the offline method on 1, 4, 8, and 16 cores. We obtained an
average speedup of 1.0×with 1 core, 3.6×with 4 cores, 6.5×
with 8 cores, and 11.1× with 16 cores. Therefore, EPSim
provides performance scalability for the multicore simulation
as well as the single-core simulation.

VI. RELATED WORK
In this section, we introduce conventional methods to
perform an detailed architectural simulations, i.e., timing
model. We also compare and discuss about the research and
development to reduce simulation time in the architectural
simulations.

A. CONVENTIONAL ARCHITECTURAL SIMULATION
Several architectural simulators with timing model have been
popularly used, and their representatives are GEMS [48],
GEM5 [22], PTLSim, and MARSS.

GEMS is a detailed multiprocessor simulator that supports
many ISAs with various CPU models. The GEMS includes
two components: Opal, a detailed model of an out-of-order
processor, and Ruby, a detailed model of memory system.
In order to support more detailed CPU models and support
more ISAs, the GEM5 simulator that combined GEMS and
M5 [49] has emerged. GEMS is responsible for the detailed
modeling of the memory system, and M5 is for the detailed
modeling of the CPU. GEM5 also supports a full system
simulator with timing model.

As mentioned in II, PTLSim is a cycle-accurate simulator
that models out-of-order ×86-based computing platforms in
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FIGURE 12. Architectural statistics comparison in the SPEC CPU2006 benchmarks. (a) IPC.
(b) L1 cache miss ratio. (c) Branch misprediction ratio. (d) DTLB miss ratio.

detail. Also MARSS is a full system cycle-accurate simulator
that is integrated with QEMU for emulation for full system
support and PTLSim for simulation.

However, simulating 464.h264ref benchmarks for SPEC
CPU2006 takes more than 5 months for GEM5+Ruby and
MARSS [50]. Therefore, researches to reduce the vast simu-
lation time of the architectural simulations have been carried
out. In the following sections, we introduce the researches to
reduce simulation time.

B. HARDWARE ACCELERATION
Many previous schemes use dedicated hardware resources
to accelerate cycle-accurate simulations. FAST partitions the
simulation into functional model in software and timing

model in hardware FPGA, and executes the models in par-
allel. ProtoFlex [51], [52] is a hybrid functional simulator
where common operations like ALU instructions are simu-
lated on FPGAs whereas complex behaviors like disk I/Os
are simulated in software.

Although these schemes achieve remarkable speedup due
to the hardware acceleration, they require extra special-
purpose hardware, i.e., FPGAs and great effort for the hard-
ware implementation. However, our work does not require
hardware resource and implementation.

C. HIGH-ABSTRACTION-LEVEL MODELING
High-abstraction-level modeling simulators attempt to find
the midpoint of detailed cycle-accurate simulators and
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FIGURE 13. Speedup of online and offline methods on different numbers of cores in the SPEC
CPU2006 benchmarks. (a) Online. (b) Offline.

FIGURE 14. Speedup variants from different optimization schemes with the offline method in the SPEC
CPU2006 benchmarks. FB: Store only used pages. DIFF: Store only data differentiation. : Use shared
memory instead of files. SCHE: Use Max-Min scheduling.

FIGURE 15. Difference of the committed instructions by instruction types and architectural statistics in the multicore
simulation between MARSSx86 (left bar) and EPSim (right bar) in the PARSEC benchmarks. (a) Committed instructions.
(b) Architectural statistics.

one-IPC simulators that simulate only cores’ IPC by trading
off accuracy and speed. Sniper [29] and IntervalSim [30]
are high-abstraction-level modeling simulators that use

interval simulation to balance this trade-off point. These sim-
ulators usemiss events (branchmisprediction, cache and TLB
misses) to define the intervals, and adopt an analytical model
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FIGURE 16. Performance of the multicore simulation on 1, 4, 8, and
16 cores in the PARSEC benchmarks.

to predict the core performance without any detailed simula-
tion of the core’s pipeline stages. Our scheme parallelizes a
detailed cycle-accurate simulator that simulates each core’s
pipeline stage in detail with epoch-by-epoch simulation, thus
we obtain various and accurate performance metrics.

D. SAMPLING-BASED SIMULATION
Sampling-based simulators conduct detailed cycle-accurate
simulations about only a few simulation points in order
to reduce the simulation time. SMARTS [53] selects the
simulation points periodically using a systematic sampling
technique that utilizes several sampling variables such as
size, mean, coefficient of variation, confidence level, con-
fidence interval, systematic-sampling interval, and so on.
SimPoints [27] uses Basic Block Vectors (BBVs) represent-
ing the frequencies of executed sequences of basic blocks
during a certain interval to identify the same phases of a
running application. If two BBVs are similar, then SimPoints
assumes that the performance between those two intervals is
similar, thus skips the cycle accurate simulation.

DAPs [54] dynamically performs multithreaded simula-
tions at runtime by adjusting the sample length and sampling
frequency. If a synchronization event changes the behavior
of a multithreaded application, the simulator adjusts the sam-
pling parameters to increase the accuracy of the simulation
and reduce time.

Although these simulators offer significant reductions in
simulation time, their results are less accurate because of
the statistical sampling about a few simulation points. Our
simulator simulates all the epochs cycle-accurately, thus it
does not lose any accuracy.

E. PARALLELIZING FUNCTIONAL AND TIMING
SIMULATIONS
Many simulators have a tightly coupled design between
the functional and timing models like MARSSx86 [23].
However, the back and forth execution from their interac-
tion results in significant overhead in the simulation time.
Transformer proposes a loosely coupled functional-driven

full-system simulator where the interaction is postponed as
late as possible for hiding the interaction latency.

However, in our scheme, the functional model and timing
model are completely separated by the epochs, i.e. eliminates
the interactions, thus the highly performance scalability can
be achieved.

F. MULTICORE AND MULTITHREADING SIMULATION
There are active researches to adapt multithreading to archi-
tectural simulators on multicore platforms.

P-Mambo [33] is a multi-threaded implementation of
Mambo [55] that is the IBM’s full system simulator to model
PowerPC systems. SlackSim [56] assigns each core of target
chip multiprocessors (CMP) onto one thread across several
machines and parallelizes the execution by providing some
simulation time slack to reduce the synchronization overhead.
Graphite [57] is a distributed parallel simulator infrastructure
that is designed for many-core processors containing dozens
to thousands of cores. It assigns each core tile of the target
architecture onto one thread and spreads the threads across
multiple machines for parallel execution. BigSim [58] uses a
performance prediction model of a target machine and MPI
to use large-scale parallel machines.

These simulators parallelize the simulation by assigning
target cores onto running platforms, thus the synchronization
overhead becomes significant when the number of cores
on the platforms increase. The overhead may significantly
reduce the performance scalability.

ZSim [59] leverages dynamic binary translation to speed
up the sequential simulation and uses two steps of paralleliza-
tion adaptation for simulating thousands of cores system.
First, the simulation is performed in intervals of a few thou-
sand cycles to examine whether there is an interference or not.
After that, the simulation continues to be proceeded in paral-
lel with assuming no interference at all. Thus, the interference
limits the performance of ZSim.

Prophet [60] is a parallel instruction-oriented simulator
that divides a target program into instruction-based inter-
vals for their parallel execution on multicores. They adopt a
speculative simulation model to avoid unnecessary interac-
tion between private and shared resources (e.g., private and
shared caches). Therefore, they need to update the archi-
tectural states after the execution of the intervals. However,
the simulator does not have any handler to compensate for
the accuracy loss at a miss-speculation.

VII. CONCLUSION
In this paper, we proposed a scalable and parallel
cycle-accurate full-system simulator that is derived from
MARSSx86. We removed the interaction between QEMU
and PTLSim, and defined an epoch to be simulated indepen-
dently by PTLSim. For the correct simulation, we developed
the Epoch Snapshot Creator to provide necessary data to each
independent execution of the epochs, and we optimized the
data storage size and its management. By minimizing the
overhead and executing the epochs completely in parallel,
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we could achieve the performance scalability. From the com-
prehensive performance study, we showed that we obtained
12.8× speedup on 16-core execution.
Currently, we perform two researches as future work: One

is to reduce the simulation time and the other is to migrate our
simulator to the Hadoop infrastructure [61]. The first research
is the similar to SimPoint [27]. If some epochs show the
similar architectural behavior, we may simulate only one of
them, instead of executing all of them. By sampling epochs,
we expect that we can significantly reduce the simulation
time. Also, we believe that the Hadoop migration will be able
to conduct more simulations in shorter time and help archi-
tecture researchers and developers to model more aggressive
architectures, thus make the cycle accurate simulators practi-
cal for use.
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