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ABSTRACT With the development of speech signal processing, universality, easy collection and personal
speech signal uniqueness, many researchers are attracted to the field of speech verification. Most of the
current speech verifications are based on long training data sets in order to achieve good results, and there are
no good verification schemes in case of inadequate training data sets. This paper proposes a novel architecture
for speech verification using a multilevel method, which extracts feature parameters through a multiple
wavelet transform for mobile phone voice. The experiments show that the multilevel wavelet authentication
architecture improves performance in speech verification. The recognition rate of the mobile phone system

is more robust and superior to other methods.

INDEX TERMS Biometric, speech verification, wavelet transform, mobile computing.

I. INTRODUCTION
In recent years, more and more researchers have been
interested in the application of biometric technology to
identification and verification. Studies of biometric tech-
nology include face recognition [1]-[3], fingerprint recog-
nition [4], iris recognition, palm-print recognition [5] and
speech recognition [6]. There are some problems associated
with the use of each biometric; for example, facial features
will change greatly with increasing age and with cosmet-
ics. These traditional biometric technologies require special
equipment or supporting hardware, and therefore are not
conducive to popular application. In addition, the cost is high.
This paper proposes a speech-based verification system on
a mobile device which has several advantages compared to
the previously-mentioned systems: (1) speech is a common
and easily-obtained communication signal and (2) we need
only a simple mobile device such as a mobile phone to collect
original speech.

With the rapid development and popularity of mobile
phone, the combination of biometric technology with such
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devices not only increases convenience for users, but also
promotes the popularity of biometric technology. Although
speech-based verification technology has a number of advan-
tages, it also has some problems, such as: (1) noise interfer-
ence and (2) the use of different types of mobile phones.

We propose a novel architecture for multilevel speech
verification with DTW in this paper. This architecture is a
new method of multilevel verification which can make use
of various feature parameters in order to achieve a higher
verification rate than single feature parameter methods. The-
oretically, with enough complementary feature parameters,
the recognition rate will be close to unity. We show experi-
mentally that a variety of features for multilevel verification
does indeed result in an improvement for the verification
system, to some degree.

Our experiments show that the speech signal after the
process of effective components extraction algorithm, not
only can ensure the recognition rate of existing, the most
important is to reduce consumption of system and database
storage. Then, our architecture can make full use of the details
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of various feature extraction algorithm to achieve a better
verification.

This paper also put forward three contents, from different
angles of speech verification to improve the overall recogni-
tion performance. The system implementation also proves the
feasibility of the system at last. The whole framework based
on the mobile speech verification system has higher reference
value for the subsequent research.

In a summary, these research works include the following
aspects:

(1) Fully studied the related work, and proposed a new
architecture and application on the speech verification for
mobile terminals.

(2) Aiming at each specific content, this paper builds
a speech database based on mobile terminal authentica-
tion which meets the requirements of the experiment. The
database covers a wide range of contents, and the speech
signal acquisition follows the experimental rules. It is fully
fitted to the experimental needs.

(3) Through the self-built speech database experiment,
it has proved the superiority of the speech effective compo-
nent extraction algorithm based on short time energy. It can
effectively extract the effective voice segment in the speech
signal segment, remove the invalid noise segment, reduce
the error rate. It fully proves the reliability and excellent
performance of the algorithm.

(4) A multilevel speech verification architecture is pro-
posed, which effectively combines the speech features of each
layer of the wavelet feature extraction algorithm to improve
the overall recognition rate of speech data based on small
data. Through experiments, the experimental results also con-
firm this improvement.

The remaining parts of this paper are organized as follows.
In the second section, we introduce related work. The third
section proposes a novel multilevel architecture for speech
verification and describes in detail the endpoint detection
algorithm. The fourth section, compares the algorithms and
gives the experimental results. The final section summarizes
the whole paper.

Il. RELATED WORK

Related algorithms for speech verification are mainly con-
centrated in three areas: pre-processing for speech signals,
feature extraction from the original speech signal and pattern
matching. There are now many sophisticated algorithms relat-
ing to each aspect. From a large number of research papers
on speech verification, we obtained taxonomy for related
algorithms as shown in Figure 1.

In a speech verification system, pre-processing can be
divided into two parts: speech denoising and endpoint detec-
tion. Wavelet analysis is a significant technology for denois-
ing. Wang and Li [7] offer a comparison of the performance
for denoising between the traditional discrete Fourier trans-
form (DFT) approach and a discrete wavelet packet trans-
form. Their experiments show that the denoising performance
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FIGURE 1. Taxonomy of speech verification.

of the discrete wavelet packet transform is much better than
that of traditional DFT methods.

Speech endpoint detection is an important step in speech
verification systems which correctly and effectively identifies
the start and end of a given speech signal, thus greatly reduc-
ing the amount of calculation necessary and shortening the
processing time. It also eliminates interference and silences
noise. Many studies have shown that in a quiet environment,
inaccuracy in endpoint detection can directly reduce the oper-
ating performance of speech verification systems. A number
of different speech endpoint detection algorithms have been
proposed. These improve the anti-noise performance mainly
through a variety of new parameters such as cepstral-based
measures [8], band variance [9], autocorrelation similarity
distance [10] and information entropy [11], and are gradu-
ally being applied to endpoint detection. However, in many
cases, an endpoint detection algorithm is mainly based on
the time-domain characteristics of the speech signal. The
main parameters are the short-term energy and short-term
average zero-crossing rate. The method based on short-term
energy and zero-crossing rate is called the double-threshold
comparison method.

Feature extraction algorithms play a significant role in
speech verification systems. In this paper, we list some of
the more common and practical feature extraction algorithms
such as MFCC, LPCC and some extraction algorithms based
on wavelet or wavelet packet transforms. Algorithms based
on wavelet analysis have an improved robustness for environ-
mental noise. Sarikaya et al. [12] propose a subband based
cepstral (SBC) using a wavelet packet transform which
achieves a higher performance. The principle of SBC is to
apply a wavelet packet transform to the windowed speech
signal and then calculate the energy of each sub-band to give
the feature parameters. Experiments show that this method
does indeed have a better performance and environmen-
tal robustness.

Pattern recognition technology has been in existence for
some time. Many pattern matching algorithms are equally
applicable to speech verification, e.g., DTW, GMM, VQ,
SVM, ANN and HMM. DTW is one of the pattern match-
ing techniques, which uses dynamic programming ideas to
successfully resolve the problem that speech signal feature
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parameter sequences do not all have the same length. DTW
can achieve good performance in isolated-word speech recog-
nition. Furthermore, DTW is quick and easy to calculate,
and is a very efficient choice for specific short utterance
verification in this study. In 1994, Reynolds [13] began
applying the Gaussian mixture model to speaker recog-
nition and verification, and achieved a high recognition
performance. Subsequently, in 2000, Reynolds et al. [14]
proposed an adaptive Gaussian mixture model. Vector quan-
tization (VQ) is also a common pattern matching algorithm in
speech verification. The basic principle of VQ is that for each
specific person, an eigenvalues training codebook is used
to provide pattern matching for later reference. The process
of verification is simple and fast, but cannot achieve a high
recognition rate. Therefore, Chunbao er al. [15] propose an
improved VQ algorithm with a new weighted measure, which
takes into account the correlations between the interspaces
and intraspaces of vectors, and the experimental results show
that the new VQ algorithm enhances the differences between
speakers and boosts the rate of speaker recognition. At the
same time, many researchers have begun to try to achieve
a higher performance using a combination of two pattern
matching algorithms. For example, Kruger et al. propose a
method using a combination of SVM and HMM. They use
parallel mixtures of SVMs for classification by integrating
this method into an HMM-based speech recognition system.

After much related literature study and compared algo-
rithm experiment, we found that for a specific person and a
specific sentence, the dynamic time warping (DTW) algo-
rithm is an efficient and lightweight matching algorithm.
This algorithm can effectively solve the problem of inconsis-
tent speech length by dynamically finding the best-matching
path, to derive the similarity of two short speech signals.
We found that the existed approaches are applied to speech
verification with good quality speech data or a large training
data set. However, a small training data set for the mobile
phone verification system, no efficient speech verification is
observed.

Recently, the research and development trend of this aspect
is to optimize the algorithm of front end device [17], inte-
grate the two algorithms of GMM and CNN (Convolutional
Neural Network) [18], and consider the research of the Multi-
scenario scene [19], but at present there is not a proper
combination of a variety of special certificates, and the inte-
gration framework suitable for the mobile terminal has been
proposed. In this paper, we propose a new method based on a
multilevel architecture, has not been used previously for this
purpose.

Ill. BACKGROUND STUDY

In this section, we will study three important algorithms in
more detail that are used in the later proposed architecture.
They are Endpoint Detection (Double-Threshold Compari-
son Method), Feature Parameters Based on Wavelet Decom-
position Dynamic Time Warping (DTW), and Multilevel
Dynamic Time Warping (DTW) algorithms.
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A. ENDPOINT DETECTION (DOUBLE-THRESHOLD
COMPARISON METHOD)

This method integrates short-term energy and zero-crossing
rate and uses the energy and zero-crossing rate as endpoint
detection features. In cases where the SNR is not too low, it is
assumed that the energy of the speech signal is greater than
the noise energy. By comparing the energy of the input signal
with the speech energy threshold, we can distinguish between
speech segments and non-speech segments. The signal {x
(n)} of the short-term energy is defined as:

e ¢]

E,= Y [x(m win—m] ey

m=—0Q

where w (n) is the window function. The short-term zero-
crossing rate formula can be expressed as:

1 oo
Zy=5 Y lsgnlx m] = sgnlx(m— D]l -w(n—m)
m=—0oQ0
@)
In the above formula, sgn is the sign function, given by:
-1, x<0
= = ’ 3
sgn[x(n)] = f (x) :]’ £>0 3

In general, the characteristics of the zero-crossing rate are
as follows. Dullness has a clear cycle, so the zero-crossing
rate of ambient noise and voiceless volume is greater than
that of dullness; ambient noise is very similar to the voiceless
volume, and therefore it is difficult to distinguish between
them by their zero-crossing rate, and because the voiceless
volume is generally greater than the ambient noise, it is
possible to combine the zero-crossing rate and the volume
to detect the endpoints.

Several other endpoint detection methods require relatively
extensive calculations which are more complex than those
of the double-threshold method, so these are not suitable
for endpoint detection in mobile end devices. For example,
although the detection method based on the wavelet trans-
form has a high detection accuracy, the speed of detection
is very slow. For 50kB of voice data, even on a CPU with a
speed of 2GHz, it takes about five seconds to complete the
detection. Therefore, this kind of computation is completely
outside the scope of application in this study.

B. FEATURE PARAMETERS BASED ON WAVELET
DECOMPOSITION

Wavelet transforms can also be understood as a filtering
process for the original speech signal. The results of the
decomposition will be different for different base func-
tions. However, no matter what type of base function is
selected, different decomposition scales use the fixed propor-
tion between the filter center frequency and the bandwidth.
This is also called the ‘“‘constant Q” feature. Meanwhile,
the smoothed signal and the detailed signal of each scale
space can provide the local frequency and time information

VOLUME 7, 2019



K.-K. Tseng et al.: Robust Multilevel Speech Verification With Wavelet Decomposition for Inadequate Training Data Sets

IEEE Access

of the original signal, in particular reflecting the composition
information of the signals of different frequency bands. If we
calculate the signal energy using different decomposition
scales, we obtain the speech feature parameters.

The wavelet function is defined as follows: If we let p(¢) €
LR, then its Fourier transform is ¢(w), when ¢(w) satisfies
the condition

¢
Cy = / ————dw < © (©Y]
2]
Then ¢(t)is the base function or mother function. Equa-
tion (1) gives tolerable conditions for the wavelet function.
Scaling ¢(t) and translating gives @, 5(?):

0= — <ﬂ) beR; 5)
Pa,b —ﬁ¢ a a,beRja>

where a is the scale factor, b is the translation factor and
©q,p(t) is a wavelet function dependent on a and b.

For each basic wavelet, the continuous wavelet transform
of f(t) is

1 [f0.¢" t—p
WTs (a,b) =< (1), (Pa,b(t)>_/ (—d (0
\/5 R a

In practical applications, the continuous wavelet must
be discrete, therefore letting a = a{), b= kaé)bo, € Z, and
assuming ag > 0, the corresponding discrete wavelet trans-
form function is:

-
ik (1) = ag @(ay’t — kbo) )

The discrete wavelet coefficients can be expressed as

+00
Cix = / FO¢ Odt=<f gy > ()
—00

and the reconstruction formula is:

FO=3"3" Cup ©)

However, here we do not need to reconstruct the signal, but
only to extract the energy characteristics of each decomposi-
tion scale:

end "2 .
energy = Zmn |coef (i)|” start < i < end (10)

where, coef is the discrete wavelet coefficient, and start and
end are the coordinates for starting and ending in the cor-
responding scale. The implementation process is as shown
in Figure 2.

C. DYNAMIC TIME WARPING (DTW)
Dynamic time warping (DTW) is a typical optimization prob-
lem which describes the time correspondence based on the
Euclidean distance between input templates and the reference
template with the time warping function W (n).

Suppose we have two speech time series Q and C, with
lengths n and m, respectively.

QZ‘N,‘]Z---,Qi,--an
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C=c1,¢,...,C,...,Cy

If n is equal to m, we can calculate the distance between
the two sequences directly. If n is not equal to m, they must
be aligned.

First, we construct a matrix n % m, where the matrix ele-
ment (i, j) represents the distance between g; and cj, with
the general Euclidean distance, d(q;, ¢;) = (gi — cj)z. Each
matrix element (i, j) represents the alignment between points
qi and Cj.

We define the best path as the warping path with the
minimum distance, represented by W. The kth element of W
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FIGURE 5. The architecture of the multilevel algorithm.
is defined as wix = (i, j)i. Thus, we have:
W=wi,wy,...,Wg,...,wgmax(mn) <K <m+n-—1

The selection of the path must meet the following con-
straints:

Boundary conditions: w; = (1, 1), wg = (m, n). Speech
pronunciation speed is likely to change, but the order of the
various parts cannot be changed, so the path we choose must
be from the lower left corner to the upper right corner.

Continuity: wg—1 = (a, b), then the next point in the path
with wy = (a, b), must satisfy (a —a) < land (b —b) < 1.
This is unlikely to match with another point, and each point
can only align with adjacent dots. This ensures that both Q
and C are present in W.

Monotonicity: wg—1 = (a, b), then the path for the next
point wy = (a, b) must satisfy 0 < (a — a) and 0 < (b — b).

For continuity and monotonicity, the path of each grid point
has only three possible directions. For example, if the path has
passed the grid point (i, j), the next grid point must be one of
the following three: (i + 1,), (i,j+ Dor i+ 1,7+ 1).

Starting from point (0, 0), we begin to match the two
sequences Q and C. For each point, all the distances calcu-
lated previously will be accumulated to calculate the total
distance. The cumulative distance y (i, j) can be expressed as
in equation (11).

11
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After reaching the endpoint (n, m), the cumulative distance
represents the similarity between Q and C.

IV. MULTILEVEL-BASED ARCHITECTURE FOR SPEECH
VERIFICATION

The multi-feature fusion is our research direction, the pro-
posed multilevel concept as Figure 5 shows, after the endpoint
detection and feature extraction; we compute the distance
using DTW algorithm in multiple iteration. Only when the
distance is less than a given threshold will the sample enter the
next level. After performing the entire process, we obtain an
optimized threshold and corresponding level where the best
verification rate is achieved.

The detailed algorithm of our proposed multilevel archi-
tecture for speech verification is shown in Figure 6.

The second step is using featureExtraction() to extract
feature. For speech denoising, due to the complexity and
diversity of environmental noise, it is difficult to achieve a
perfect method which can handle all types of noise. There-
fore, in this paper we extract feature parameters based on a
wavelet transform with robustness for the ambient noise.

In this algorithm, the first step is using epd() for end-
point detection. The device is susceptible to ambient noise
while obtaining speech signals. The tone, the device used
and the speech rate of the speaker will affect the quality
of original speech. Another concern is that useless speech
signals commonly exist at the beginning or the end of original
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Multilevel Architecture for Speech Verification
INPUT: original train data and test data
OUTPUT: optimized threshold, rate and level-number
1. train data—epd(original train data)
2. test data—epd(original test data)
3. feature_of train—featureExtraction(train data)
4. feature of test—featureExtraction(test data)
5. threshold<0
6. level nume1I
7. Rate<0
8. Foreachifrom I to N
9. dist—=DTW(feature_of train[i], feature of test[i])
10.  temp thr—max(dist)
11.  temp rate—compuRate(dist,Temp_thr)
12.  Iftemp_rate>rate then
13. rate«<temp_rate
14. threshold—temp_thr
15. level num«i
16. end
17. end

FIGURE 6. The pseudocode for a multilevel architecture for speech
verification.

speech. Therefore, endpoint detection is necessary before
the feature parameters are extracted, in order to reduce the
amount of calculation required. In this paper, we included
endpoint detection for the architecture proposed. Our archi-
tecture selects the double-threshold comparison with short-
term energy and zero-crossing rate. This method combines
the advantages of the both; this method is simple and efficient.

We make use of the wavelet transform for its good localiza-
tion properties in the time domain and the frequency domain,
and we proceed via a multilayer wavelet decomposition of
each frame of the speech signal, to obtain multiple sets of
characteristic parameters for later pattern matching. That the
feature extraction parameters based on wavelet decomposi-
tion are used to extract multi-layer wavelet parameters of
speech signals as characteristic parameters for later DTW
matching algorithm.

In this algorithm, we need to use multilayer wavelet
decomposition to extract a seven-dimensional feature param-
eter. One of the seven dimensions is the SBC parameter
mentioned above. The others are the energy feature param-
eters of the third-, fourth-, fifth-, sixth-, seventh- and eighth-
order wavelet decomposition. These feature parameters are
assigned to each level of the architecture in order to seek
the best results. At each level, we can remove some samples
which have larger differences compared with the training
data. We must also record the recognition rate and threshold
in this level of the system. Following this, the rest of the test
samples enter a later stage up to the final level.

The third step is using DTW() for similarity match-
ing, DTW can meet the requirements of specific speech
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verification. However, using simple DTW does not result
in a better performance than before, and therefore we pro-
pose a multilevel speech verification architecture based on
DTW. At each level, we calculate the distance between test
samples and train samples with DTW for multiple level N.
Using this novel architecture based on DTW to obtain a
better performance. Two optimized parameters used in this
algorithm which are rate and threshold. They are obtain from
computRate().

V. COMPARED ALGORITHMS AND

EXPERIMENTAL RESULTS

In this section, we will briefly introduce some compared
algorithms and our personal speech database. In this paper,
we also give some experimental results for related feature
extraction algorithms based on our personal speech database.
The experimental results demonstrate that the architecture for
multilevel speech verification using wavelet transforms on
mobile devices does indeed improve speech verification.

A. COMPARED ALGORITHMS

In this subsection, we compare various algorithms related
to this study. These algorithms can be divided into two
types: feature extraction algorithms and pattern matching
algorithms.

1) FEATURE EXTRACTION ALGORITHMS

a: Mel-Frequency Cepstral Coefficients (MFCC)

MEFCC is a feature parameter that focuses on the auditory per-
ception of the human ear; the process of extraction involves
the concept of the critical band. According to the divisions of
the critical band, the speech frequency can be divided into
a series of triangles in the domain filter sequence. This is
often called a mel filter bank. It is necessary to extract all
the weighted sums of the signal amplitude as the output of a
critical band filter for each critical band, and then construct
a logarithmic arithmetic for all filter outputs, by drawing
a vector. Finally, we obtain the MFCC parameters using a
discrete cosine transform (DCT).

MFCC parameters are commonly calculated according to
the following processes:

Step 1:Confirming the number of points in each frame of
the speech sample. This paper selects N = 256 and then
through the discrete FFT (fast Fourier transform) transforms
each frame sequence S(n) to obtain the power spectrum S(n)
which is squared for the modulus.

Step 2: Calculating the sum of the products of S(n) and M
filters H,,(n) on each discrete frequency point, we can obtain
Pmsm=0,1,....,. M — 1.

Step 3: By calculating the natural logarithm of p,,, we
obtain L,,, m=0,1,..., M — 1.

Step 4: Finally, we construct a DCT for L,,m =
0,1,...,M — 1, and obtain D,;,, m =0,1, ..., M — 1.

We must delete the DC component Dy; other components
can be used as MFCC parameters. Finally, we calculate the
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first-order differential for MFCC to obtain a new set of MFCC
difference coefficients, to use as the final feature parameters.

b: LPCC
Here, we will briefly introduce the linear predictive cepstral
coefficient (LPCC). LPCC is a speech feature belonging
to the frequency domain. It uses a homomorphic process-
ing algorithm to extract the impulse response of the speech
channel. LPCC parameters can be obtained by recursion for
the linear prediction coefficient (LPC), using the following
recursive formula:

cir=am=1

m—1
Cm = am + Z %Ckamfk1 <m=p

k=1 12)
m—1 k
Cm =) m CkAm—kM > p
k=1

In equation (12), a1, az, as, .. . a,, is a p-order LPC feature
vector and ¢,,,m = 1,2,3,...m are the first p values of
the cepstral. When 7 is less than or equal to p, we use
the second equation. If n is greater than p, we use the third
equation to compute the LPCC. Therefore, formula 12 can be
used to obtain LPCC from LPC. The required LPCC feature
parameters can thus be obtained.

2) PATTERN MATCHING ALGORITHMS
a: Hidden Markov Model(HMM)
A hidden Markov model is a kind of Markov chain, whose
state cannot be observed directly. However, we can observe
the observation vector sequence, and each observation vec-
tor is generated by a state sequence with a corresponding
probability density distribution. Therefore, HMM is a double
random process. Firstly, it is a hidden Markov chain with a
certain number of states, and secondly, it has random function
sets for display.

There are three basic types of problems with regard to
HMM:

Learning problems:

o The HMM model parameters are A = (A, B, ), but how
to adjust these parameters to make the probability of the
observation sequence O = 01, 02, 03, ..., O as large as
possible is not known.

o Assessing problems: Given the observation sequence
O = 01, 02,03, ...,0; and the model parameters A =
(A, B, ), how can the probability of a particular obser-
vation sequence be effectively calculated?

e Decoding problems: Given the observation sequence
O = 01,02,03, ...,0; and the model parameters A =
(A, B, ), how can the best state sequence be found?

For speech verification based on HMM, we only need to
solve the first two problems, i.e., the learning problem and
the assessing problem for the final testing set and the training
model. However, after much research, we found that large
training data sets are needed to train an effective model.
Therefore, this approach is not suitable for mobile devices.
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TABLE 1. Details of the first group database.

SI S22 S3 sS4 S5 S6 ST S8 89
Positive 10 10 10 7 10 10 10 10 10
Negative 9 9 9 9 9 8 8 8 9

b: Gaussian Mixture Model(GMM)

A probability density function in the Gaussian mixture model
is obtained through calculating the weighted sum of a number
of Gaussian probability density functions, as shown in the
following formula:

M
pxly) =) p@)N (x; s Z) (13)

i=1 i

Here, p (x | ) is the probability density function for observa-
tion x of a GMM model, X is a random vector of dimension
d,p(w)(i = 1,2,...M) are the weights of the GMM

functions to be summed. N | X; ui; Y ), i = 1,2,...M is

1
the probability density function of the ith single Gaussian
distribution. It is necessary to calculate y from p(w;), w;

and ) .

Th!e algorithm steps can be described as follows:

Given speech training data, we need to estimate the param-
eter y using EM (estimate maximization) to ensure that
p (X | y) is maximized. We then calculate p (X | y) as follows.

T
rXiy)=[]rly) (14)
t=1

When assessing a new p(X|y), make p(X|y) >
p (X |y). Then the new model parameters emerge as the
initial model parameters are trained by iteration until the
model converges.

However, when using the GMM model, some problems
should be considered. Firstly, the order M of the model must
be moderate but large enough to fully express the distribution
space. However, the order cannot be too large, otherwise
there is insufficient data to accurately describe the distri-
bution space, and furthermore, it may have a non-singular
correlation matrix. Therefore, we cannot make an effective
model with limited training data for a mobile phone.

In summary, the experiments in the latter part of the paper
are all based on dynamic time warping (DTW).

B. SPEECH DATABASE

According to needs of the research, we collected the speech
information around us in order to establish the experimental
database. The following tables show the details of the speech
database collected, including 20 speakers which are assigned
to one of three groups. The first group in the speech database
was collected in a variety of noisy environments, and the
recording environment for the second group of voices was
relatively quiet, for later comparison experiments.
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TABLE 2. Details of the second group database.

S1 S2 S3 S4 S5 Se6 S7 S8 S9 SI0
Positive 12 11 13 10 12 12 11 10 13 12
Negative 12 12 12 9 12 12 9 12 12 12

TABLE 3. Details of the third group database.

Positive/
. S2 S3 S4 S5 S6 S7 S8 S9 S10

Negative
Note2 12/9 12/9 12/9 12/9 12/9 12/9 12/9 12/9 12/9 12/9
Ss 12/9 12/9 12/9 12/9 12/9 12/9 12/9 12/9 12/9 12/9
M4 12/9 12/9 12/9 12/9 12/9 12/9 12/9 12/9 12/9 12/9

The third group in the speech database was collected from
different types of mobile phones with some environmental
noise. Each speech signal was collected by three mobile
phones at the same time. From Table 3, it can be seen
that in this speech collection, 3 types of mobile phones,
10 experimental S subjects collected 12 positive examples
and 9 negative examples respectively, which were used for
later experiment. First, three positive speech signals are taken
from each individual speech data for training use, and the
rest is used as positive example of test data. At the same
time, each individual also has 9 counterexample of test data,
so that the positive and negative test data in this experiment
are approximately equal, and the evaluation of experimental
results is more scientific and credible.

C. EXPERIMENTAL RESULTS

1) EXPERIMENT ON PROCESSING

In the previous section, we pointed out that the preliminary
design of endpoint detection in this topic is mainly based
on the short-term energy and the zero-crossing rate, and we
discussed previous research and our own work showing the
specific results achieved by the basic algorithms. Details are
given in Figure 3.

Figure 7 shows the endpoint detection based on the same
speech data, and the two horizontal lines that we refer to as
the double threshold. The direct impact of the relative values
of these can be seen. We now consider the importance of
endpoint detection in the verification rate of our entire speech
database.

We can clearly see that there is an approximately five per-
cent difference in recognition rate arising from the differences
in threshold rate (volRatio). Therefore, the endpoint detection
results directly affect the performance of the entire speech
verification system. Following many experiments with vol-
Ratio = 3.5, we found that we could achieve the best perfor-
mance based on our database. Here, the principle of threshold
selection is:

volTh = (volMax — volMin)/volRatio + volMin  (15)

2) EXPERIMENTS ON FEATURE EXTRACTION
This paper is mainly focused on the study of LPCC,
MEFCC, an algorithm based on the wavelet transform and
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FIGURE 7. The performance of different threshold rates (volRatios).
(a) Non-ideal endpoint detection. (b) Ideal endpoint detection.
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FIGURE 8. The performance of the whole database under different
volRatios.

the similarity-matching algorithm of dynamic time warping
(DTW). Related algorithms have been developed and verified
in MATLAB. The illustrations below show the performances
of the main feature extraction algorithms in different situa-
tions.

From a large number of experiments, and in conjunction
with Figures 6 and 7, it can be concluded that feature extrac-
tion based on wavelet analysis has strong robustness in a
noisy environment, and that the performances of LPCC and
MECC still have some deficiencies compared with SBC in
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TABLE 4. Results of multi-feature combination.
Set MFCC SBC LPCC MFCC+SBC
Testl 77.4 100 78.2 100
Test2 96.1 98.2 88.9 98.2
Test3 73.4 84.0 66. 7 88.2
Test4 100 100 97.9 100
Test5 83.3 83.3 72.9 85.5
Test6 89.6 87.5 87.5 87.5
Test7 77.8 100 77.8 100
Test8 69.3 71.1 73.1 69.2
Test9 69.0 85.7 70. 4 83.6

noisy environments. However, we cannot ignore the fact that
if the SNR is relatively large, then LPCC and MFCC perform
better than SBC. This is an issue for further study.

At the same time, our approach via a variety of types
of feature fusion and increasing the eigenvalue dimensions,
attempts to integrate the advantages of a variety of feature
extraction algorithms. Details are shown in Table 4.

This experiment combined MFCC with SBC as a sin-
gle group of two-dimensional characteristic parameters for
voice authentication, though the results did not meet our
expectations.

3) EXPERIMENTS ON A MULTILEVEL ARCHITECTURE FOR
SPEECH VERIFICATION

In order to better evaluate the performance of this verification
architecture. The differences in the voice collection quality
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FIGURE 12. The results of the multilevel architecture for speech
verification in the second group.

of different mobile handheld devices are taken into account
in the study of this experiment. At the same time, it also
makes a comprehensive consideration of multi-level verifi-
cation architecture.

First of all, for the robust research, we selected three more
representative brand mobile phone, including Iphone 58S,
Samsung Note2 and Xiaomi mobile phone M4, and used the
these mobile device to collect the same speech for the differ-
ent devices. Moreover, in order to make the experimental data
more persuasive, this speech acquisition is to comply with the
same collection environment, to ensure the fair experiment,
excluding other external factors in the experimental data
collection.

As Figure 11 shown, the experimental results based
on multi-level speech authentication architecture in real
databases, the verification results of the first group of voice
databases. From the overall recognition rate, the verification
architecture has achieved a 1.5% improvement in the first
set of database experiments without processing of noise; a
speech verification system based on small training sets can
achieve a recognition rate of more than 90%, which is already
an expected result.

Figure 12 shows the results of the verification based on
the second group of voice databases. It can be seen that the
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FIGURE 14. Architecture of third-party certification with speech
verification.

overall recognition rate has been greatly improved and the
improvement has exceeded 3%. From this, it can be seen that
in a relatively quiet situation, multi-level voice authentication
architecture will have better performance.

Figure 13 shows the results of speech authentication based
on three mobile phone platforms. The third speech group
is used here. First of all, it can be seen that regardless of
which type of mobile device is based on, this architecture
can achieve a certain degree of improvement, with an average
increase of nearly 5 percentages. Especially on the Xiaomi
M4 mobile phone, it has achieved an astonishing 6 percentage
improvement.

At the same time, we can see from Figure 13 that a mul-
tilevel architecture can improve the recognition rate regard-
less of the type of mobile device used. According to this
architecture, if we can obtain enough complementary feature
parameters, the recognition rate will be close to unity.

VI. APPLICATION ARCHITECTURE
Today, many biometric technologies are used to make
people’s lives more convenient. There are also some real-
life application scenarios for speech verification technology.
In this section, a brief introduction is given to the actual
application architecture of speech verification, as shown
in Figure 14.

From Figure 14, it is clear that we can divide the verifi-
cation system into two parts. The first is the training period.
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In this period, speech originals must be collected and trans-
mitted to the server. The server is the most important part
of this system because the process of speech verification
is performed by the server. The second part is the veri-
fication. Users can log in to applications through mobile
phones or computers, but the speech originals for verification
must be sent through a mobile phone due to the inconvenience
of collection from computers. If the result of the verification
is success, the user will enter the application. For further
promotion of speech verification technology, we can package
the certification process on the server side into an SDK for
other applications, and these applications can easily access
speech verification.

VIl. CONCLUSION

In this paper, we proposed a novel multilevel architecture for
speech verification on mobile devices. For limited training
data, the architecture was shown to have a better performance
using our personal database than the method with single
feature extraction. We can obtain improved performance from
different five least three percentage points improvement com-
pared with the SBC approach. This paper makes a large num-
ber of experiments directed to the difference on the sensitivity
of verification between the different speech groups.

According to the results of the experiment, this topic make
a optimization and improvement for the speech verification
system based on the Android client and server side which is
developed. It is possible that speech verification can achieve
practical implementation on mobile phones with the proposed
architecture.

Because of this paper, there are unique views on several
aspects of speech verification system. Therefore, there are
still some challenges, including the following two aspects:

(1) The noise in the speech signal is complicated because of
the diversity of the acquisition equipment and the variability
of the environment. This research does not address the de-
noising of speech signals, if we can effectively remove all
kinds of unpredictable noise, the recognition rate can be
improved to certain amount.

(2) The problem of speech feature extraction algorithm,
this paper uses the wavelet based feature extraction algorithm,
although it can extract the special components in the short
speech signal as much as possible, but the wavelet computa-
tion is more complex than other feature extraction algorithms.
Therefore, the time efficiency is low, based on our multi-
level architecture, the more the number of wavelets will be
extracted, the slower the time will be. Therefore, we need
to find out another way to balance the contradiction between
efficiency and recognition rate.
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