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ABSTRACT Under ergodic per-user quality-of-service and per-remote antenna unit (RAU) transmit power
constraints, we investigate the problem of maximizing energy efficiency (EE) of distributed massive
MIMO systems, which is known to be non-convex. To solve this challenging problem efficiently, we first
derive closed-form expressions for the spectral efficiency and the power control parameters (related to
per-RAU transmit power constraint) with zero-forcing (ZF) and maximum ratio transmission (MRT)
beamforming, and then develop a computationally feasible power allocation algorithm using the tools of
fractional programming and sequential convex approximation. The derived closed-form expressions are
functions of only slowly changing large-scale fading which enables us to solve the optimization problem
over a longer time interval. The proposed power allocation algorithm is guaranteed to converge to the
Karush–Kuhn–Tucker points of the original non-convex EE maximization problem. The simulation results
demonstrate the accuracy of the derived expressions and the effectiveness of the proposed algorithm. More-
over, some insightful conclusions are arrived at from the EE comparisons between different beamforming
schemes (ZF and MRT) and different antenna deployments (distributed and co-located).

INDEX TERMS Energy efficiency, distributed massive MIMO systems, power allocation, fractional
programming, sequential convex approximation.

I. INTRODUCTION
With the exponential growth of energy consumption in wire-
less networks, energy efficiency (EE) receives more and
more attention due to economical and societal reasons [1].
Distributed massive multiple-input multiple-output (MIMO),
also known as cell-free massive MIMO, large-scale dis-
tributed antenna systems (DAS) or massive DAS, combines
the advantages of massive MIMO and DAS by dispersing the
massive antenna array geographically, thus has great potential
to achieve higher EE and spectral efficiency (SE) [2]–[8].

In distributed massive MIMO systems, antennas are dis-
persed at different remote antenna units (RAUs). The chan-
nels have independent yet non-identically distributed entries
since the distances from each user to RAUs are different, and
thus are typically modeled as composite channels including
both small-scale and large-scale fading. It is the key dif-
ference compared to co-located antenna systems and brings

huge challenges to analyze the system performance and opti-
mize the resource allocation [9]–[13]. Most of the previous
works optimized the resource allocation of distributed mas-
sive MIMO systems under instantaneous (i.e., with respect
to small-scale Rayleigh fading) quality of service (QoS) and
transmit power constraints [14]–[17]. Since the small-scale
fading coefficients change quickly, it is extremely computa-
tionally expensive. Considering that users care more about
average QoS and small-scale fading has negligible impact
on massive MIMO systems due to the effect of channel
hardening [18], we can optimize the resource allocation based
on only the slowly changing large-scale fading (i.e., under
ergodic constraints), which is more computationally feasible.
With linear beamforming (e.g., MRT and ZF), the closed-
form expressions for SE can be derivedwhich are functions of
only large-scale fading coefficients. Based on these analytical
expressions, resource allocation optimization problems with
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the objectives of SE or EE maximization were investigated
and computationally efficient resource allocation algorithms
were proposed in [19]–[23]. The drawbacks of the studies
by [19] and [20] are that no QoS constraint and practical
transmit power constraint are considered. Reference [21]
investigated the EE maximization problem subject to
per-user SE and per-RAU power constraint. However, only
non-coherent transmission with conjugate beamforming at
single-antenna RAUs are considered where there is no
coordination between RAUs and thus the power control
parameters related to per-RAU power constraint can be cal-
culated straightforwardly. When coherent transmission with
MRT and ZF beamforming (i.e., the beamforming vectors
are computed through multiple RAUs) are considered, the
power control parameters are related to the norms of the
beamforming coefficients at each RAUs. Thus, it is more
challenging to obtain ergodic per-RAU power constraints.
Reference [22], [23] considered ergodic per-RAU power
constraint with ZF beamforming, however, no closed-form
expressions for the power control parameters are provided.
To the best of our knowledge, under ergodic QoS and per-
RAU power constraints given in closed-form, no works have
investigated the problem of maximizing the EE of distributed
massive MIMO systems with ZF and MRT beamforming.

Moreover, it is important to evaluate the EE based on an
appropriate power consumption model. Compared with MRT
beamforming, ZF beamforming can provide a higher SE [10].
However, it has a higher complexity and will consume more
energy [24]. Meanwhile, different from co-located massive
MIMO system, more backhaul links are required to connect
RAUs to their baseband processing units (BPU) in distributed
massive MIMO systems. Thus, although a higher SE can be
achieved in distributed massive MIMO systems, the back-
haul energy consumption might overwhelm the SE gains
and result in a lower EE. Thus, the power consumption of
different beamforming schemes and different antenna deploy-
ments (co-located or geographically distributed) should be
embodied in the adopted power consumption model. Based
on the previous works [19], [21], [24], we model the power
consumption as the sum of transmit power, the power
consumption of transceiver chains, linear processing, and
load-dependent backhaul links, which enable the accurate
EE comparison between different beamforming schemes and
different antenna deployments.

Motivated by the aspects mentioned above, under
ergodic per-user QoS and per-RAU power constraints, we
investigate the problem of maximizing the EE of distributed
massiveMIMO systems based on a practical power consump-
tion model with ZF and MRT beamforming. Although cell-
free scenarios are considered in this paper, as illustrated in
Remark 3, our results can be straightforwardly generalized to
multi-cell pilot contamination scenarios. Specially, the main
contributions of this paper are:
• The EE of distributed massive MIMO systems is for-
mulated based on an appropriate power consumption
model, which enables the accurate EE comparison

between different beamforming schemes and different
antenna deployments.

• The SE and the power control parameters are given in
closed-form with ZF and MRT beamforming, which are
functions of only large-scale fading coefficients and thus
enables us to solve the EE maximization problem over a
longer time interval.

• To tackle the non-convexity of the considered EE max-
imization problem, we first present feasibility condi-
tions in closed-form, and then develop a computationally
feasible power allocation algorithm using the tools of
fractional programming and sequential convex approx-
imation (SCA), which is guaranteed to converge to
Karush-Kuhn-Tucker (KKT) points of the optimization
problem.

• We corroborate the analytical analysis by simulation
results and arrive at some insightful conclusions from
the analysis and comparison of EE.

The remainder of the paper is organized as fol-
lows. In Section II, we describe the distributed massive
MIMO system model and formulate the EE maximization
problem under ergodic per-user QoS and per-RAU transmit
power constraints. Section III studies the EE maximization
problem where we derive accurate analytical expressions for
the SE and power control parameters, provide the feasible
conditions of the optimization problem and propose a com-
putationally feasible power allocation algorithm. Numerical
results and discussions are given in Section IV and the main
results and insights are summarized in Section V.
Notation : Vectors (matrices) are denoted by lower (upper)

boldface letters. (·)T, (·)H, tr (·) and E [·] stand for the trans-
pose, Hermitian transpose, trace and expectation operators,
respectively. Euclidean norm of a matrix is denoted by ‖ · ‖.
CN (0, σ 2) represents a circularly symmetric complex Gaus-
sian distribution with mean zero and variance σ 2. IN denotes
an N × N identity matrix. 0(·, ·) and Nakagami(·, ·) denote
Gamma distribution and Nakagami distribution with corre-
sponding parameters, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we first describe the system model and then
formulate the considered EE maximization problem.

A. SYSTEM MODEL
Consider a distributed massive MIMO system which is
designed from scratch to uniformly cover a given area with
maximal EE. It consists of a BPU, M RAUs and K single-
antenna users. Each RAU is equipped with N antennas. The
RAUs are connected to BPU through backhaul links and
jointly serve the users in the same time-frequency resource.
All signal processing and resource management are imple-
mented at BPU.

In this paper, we focus on the downlink. Similar to [19],
we assume that users transmit mutually orthogonal pilot
sequences with length τp in the phase of uplink channel esti-
mation. Then, BPU acquires channel state information (CSI)
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of users by using the minimum mean-square error (MMSE)
estimator, which can be given by [25]

ĝk =
[
ĝT1,k , · · · , ĝ

T
M ,k

]T
, (1)

where ĝm,k =
√
βm,k ĥm,k , βm,k ,

λ2m,k

λm,k+σ
2
k /(p

u
kτp)

, ĥm,k ∼
CN (0, IN ), λm,k represents the large-scale fading includ-
ing path loss and shadowing which changes slowly and is
assumed to be known at the BPU, and puk is the pilot transmit
power of user k . Due to the orthogonality property of MMSE
estimate, the channel estimation error g̃k = gk − ĝk ∼
CN

(
0, diag

( [
η1,k , · · · , ηM ,k

]T )
⊗IN

)
is independent of ĝk ,

where ηm,k , λm,k − βm,k .
After acquiring the CSI from the uplink channel estima-

tion, the M RAUs user linear beamforming to cooperatively
transmit signals to users. The received signal of user k can be
written as

yk =
K∑
j=1

√
pjgHk Ewjsj + zk , (2)

where gk = [g1,k , · · · , gM ,k ] is the channel vector from user
k to all of the RAUs, gm,k =

√
λm,khm,k is the channel vector

from user k to RAU m, hm,k ∼ CN (0, IN ) is the Rayleigh
small-scale fading, pj is the transmitted power assigned for
the j-th user, Ewj is the normalized beamforming direction,
sj ∼ CN (0, 1) is the transmitted signal, and zk ∼ CN (0, σ 2

k )
indicates the additive noise.

Beamforming direction Ewj is a function of the
estimated CSI. In this paper, we focus on MRT and ZF
beamforming schemes, which gives

Ewj =


ĝj
‖ĝj‖

, for MRT,

vj∥∥vj∥∥ , for ZF.
(3)

where vj is the j-th column of Ĝ
(
ĜHĜ

)−1 and Ĝ ,[
ĝ1, · · · , ĝK

]
.

B. PROBLEM FORMULATION
The EE is defined as the ratio of the ergodic sum throughput
(bit/s) to the total power consumption (Watt) [19], [22], i.e.,

φ(p) =
B
∑K

k=1 Sk (p)
PTotal(p)

, (4)

where B is the systems bandwidth, p = [p1, · · · , pK ]T is
the optimization variable, Sk (p) and PTotal(p) are the spectral
efficiency of user k and the total power consumption, respec-
tively, which are both functions of power allocation p.
Based on the [19], [21], [24], the total power consumption

is modeled as

PTotal(p) = PTC + PLP + PT + PBH, (5)

where PTC is the power consumed for transceiver chains,
PLP for linear processing at the BPU, PT is the downlink

transmit power and PBH accounts for the backhaul-inducing
power. The detail definitions of the terms in (5) are given as
follows.

1) In distributed massive MIMO systems, we assume that
different RAUs have different oscillators and all the antennas
at each RAU are connected to a single oscillator. Thus,

PTC = MNPTR +MPSYN + KPUE, (6)

where PTR and PUE denote the consumed power per antenna
at the transmitter and users, respectively, and PSYN denotes
the power consumption of the local oscillator. If single oscil-
lator is used, e.g., in co-located massive MIMO systems,
we can easily set the coefficient of PSYN to one.
2) As seen from (3), only the normalization of ĝk is needed

if MRT is used. However, if ZF is userd, we need to calculate
channel matrix inversions. From [24], the power consumption
PLP can be approximated as

PLP =



PM+
B
T
3MNK
LTR

, for MRT

(7a)

PM+
B
T

(
K 3

3LTR
+
MNK (3K+1)

LTR

)
, for ZF

(7b)

where PM = BT−τuT
2MNK
LTR

is the power consumption of one
matrix-vector multiplication per data symbol, B denotes the
system bandwidth and LTR is the computational efficiency at
transmitter quantified in terms of the number of arithmetic
complex-valued operations per joule.

3) The transmit power can be given by

PT =
T − τu
T

1
ζ

K∑
k=1

pk , (8)

where ζ is the amplifier efficiency.
4) In distributed massive MIMO systems, the backhaul-

inducing power is modeled as [19]

PBH = M
(
P0 + BPBT

∑K

k=1
Sk (p)

)
, (9)

where P0 is the traffic-independent power consumption of
each backhaul link and PBT is the traffic-dependent power.

In this paper, we aim at optimizing the the power alloca-
tion (p) to maximize the EE φ(p) under ergodic per-user QoS
and per-RAU transmit power constraints. The optimization
problem with variable p can be formulated as

(P0) :


max
p
φ(p)

s.t. Sk (p) ≥ Smin, ∀ k,∑K
k=1 ωm,kpk ≤ Pmax, ∀ m,

pk ≥ 0, ∀ k,

(10)

where Smin is theminimum spectral efficiency (QoS) required
by each user, Pmax represents the maximal power constraint
at the m-th RAU, the power control parameter

ωm,k = E
[
‖[ Ewm,k‖

2
]
, (11)
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and Ewm,k is the (m − 1)N + 1 : mN elements of the
beamforming vectors Ewk .
Remark 1: It is extremely computationally expensive to

maximizes the EE under instantaneous QoS and transmit
power constraints, since the small-scale fading coefficients
change quickly. In optimization problem (P0), we consider
ergodic (long-term) QoS and transmit power constraints
which depend on channel statistics (not the instantaneous
fading realizations) due to the channel hardening effects
in massive MIMO systems. Thus, (P0) is more practically
appealing since the EE maximization problem can be solved
over a longer time period.

The challenge of solving the optimization problem (P0) is
twofold. First, the closed-form expressions for the SE Sk (p)
and power control parameters ωm,k with ZF and MRT beam-
forming in distributed massive MIMO systems are unknown.
Second, P0 is non-convex because of the non-convexity of
Sk (p) with respect to p. To overcome this dilemma, in the next
section, we will first derive accurate closed-form expressions
for Sk (p) and ωm,k , and then using the tools of fractional
programming and SCA, we will transform the non-convex
optimization problem (P0) into an equivalent concave opti-
mization problem which can be efficiently solved.

III. POWER ALLOCATION FOR EE MAXIMIZATION
As a necessary basis, accurate closed-form expressions for
the SE and the power control parameters with ZF and
MRT beamforming are derived firstly in the first and sec-
ond parts of this section. The third part provides the feasi-
ble conditions of the considered EE maximization problem.
In the fourth part, with the aid of the fractional programming
and SCA techniques, we propose a computationally feasible
power allocation algorithm by solving an efficiently solvable
concave optimization problem which is equivalent to the
original non-convex EE maximization problem.

A. SPECTRAL EFFICIENCY
The downlink signal to user k is assigned a transmit power pk
and a normalized beamforming direction Ewk . Assuming that
users detect the desired signals with the knowledge of channel
statistics (i.e.,E[gHk wk ]), the downlink SE of the k-th user can
be expressed as [26, Th. 1]

Sk (p)=
T − τp
T

log2

(
1+

pkUk
pkVk+

∑K
j 6=k pjIj + σ 2

k

)
, (12)

where T is the length of channel coherence interval, and

Uk , |E[gHk Ewk ]|2, (13)

Vk , var[gHk Ewk ], (14)

Ij , E
[
|gHk Ewj|

2], (15)

are the useful signal power, the beamforming uncertainty and
inter-user interference, respectively. The following theorems
present the derivations of the closed-form expressions for Uk ,
Vk and Ik with ZF and MRT beamforming.

Theorem 1: When MRT beamforming is employed, Uk ,
Vk and Ik can be given in closed-form by

UMRT
k = ξ (µ̂k,a)θ̂k,a, (16)

VMRT
k = µ̂k,aθ̂k,a − ξ (µ̂k,a)θ̂k,a +

1
MN

µ̃k,aθ̃k,a, (17)

IMRT
j =

1
MN

µk,aθk,a, (18)

where ξ (x) , 0(x+1/2)
0(x) , and

µk,a =
N (
∑M

m=1 λm,k )
2∑M

m=1 λ
2
m,k

, θk,a =

∑M
m=1 λ

2
m,k∑M

m=1 λm,k
,

µ̂k,a =
N (
∑M

m=1 βm,k )
2∑M

m=1 β
2
m,k

, θ̂k,a =

∑M
m=1 β

2
m,k∑M

m=1 βm,k
,

µ̃k,a =
N (
∑M

m=1 ηm,k )
2∑M

m=1 η
2
m,k

, θ̃k,a =

∑M
m=1 η

2
m,k∑M

m=1 ηm,k
.

Proof: See Appendix A.
Theorem 2: When ZF beamforming is employed, Uk , Vk

and Ik can be given in closed-form by

UZF
k = ξ (

χ

MN
µ̂k,a)θ̂k,a, (19)

VZF
k =

χ

MN
µ̂k,aθ̂k,a − ξ (

χ

MN
µ̂k,a)θ̂k,a +

1
MN

µ̃k,aθ̃k,a,

(20)

IZF
j =

1
MN

µ̃k,aθ̃k,a, (21)

where χ , MN − K + 1.
Proof: See Appendix B.

B. POWER CONTROL PARAMETERS
In this paper, beamforming vectors are computed through all
RAUs since users are served by all RAUs in a coherent way.
Thus, when transmitting signals to user k with power pk ,
the transmitted power from RAU m is ωm,kpk . In the fol-
lowing theorems, we derive closed-form expressions for the
power control parameters ωm,k with ZF and MRT beamform-
ing, which have, to the best of authors’ knowledge, never been
given before.
Theorem 3: With MRT beamforming, for the power con-

trol parameters ωm,k , we have

ωMRT
m,k =

cNm,kN

N + ρm,k
2F1(N + ρm,k ,N + 1;N + ρm,k + 1;

1− cm,k ), (22)

where ρm,k =
N (
∑M

i 6=m βi,k )
2∑M

i 6=m β
2
i,k

, cm,k =
∑M

i6=m β
2
i,k

βm,k
∑M

i6=m βi,k
, and 2F1 is

the Gauss hypergeometric function.
Proof: See Appendix C.

Theorem 4: With ZF beamforming, for the power control
parameters ωm,k , the following limit holds almost surely

lim
K→∞

ωZF
m,k =

N
K
Kβm,k + �̇m,k

ϑk

1(
1+

∑K
k=1

βm,k
ϑk

)2 , (23)
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where ϑk = MN−K+1
M

∑M
m=1 βm,k , �̇m,k is the solution

to the linear system (I− NQ) �̇m = NKQbm, �̇m =

diag(�̇m,1, · · · , �̇m,K ), bm =
(
βm,1, · · · , βm,K

)T, and Q =∑M
m=1

1(
1+

∑K
j=1

βm,j
ϑj

)2 bmbTmdiag
(

1

ϑ2
1

, · · · ,
1

ϑ2
K

)
.

Proof: See Appendix D.
Remark 2: For user k , ωm,k equals to zero for some values

ofm. It means that user k is not associated with RAUm. Thus,
the RAU-user association problem is solved implicitly.

Now, the per-user QoS and per-RAU transmit power con-
straints are both given in closed-form and related to only
the large-scale fading coefficients. Thus, we need to solve
the EE optimization problem (P0) only when the large-scale
fading coefficients change. In the following, we present fea-
sibility conditions of (P0).

C. FEASIBILITY OF THE EE MAXIMIZATION PROBLEM
The feasibility of the EEmaximization problem (P0) amounts
to providing conditions ensuring that the feasible set is not
empty. Given Uk , Vk and Ik , the necessary and sufficient
conditions for (P0) to be feasible are given in the following
proposition.
Proposition 1: The EE maximization problem (P0) is fea-

sible if and only if

ρT < 1 and ω(I− T)−1s ≤ PmaxIM , (24)

where ρT denotes the spectral radius of matrix T,

[T]k,j =


0, j = k,

Ikγ k
Uk − Vkγ k

, j 6= k,
(25)

ω = [ω1, · · · ,ωM ], ωm = [ωm,1, · · · , ωm,K ], γ k =

2Smin
T

T−τu − 1, and s is a K × 1 vector with the k−th element

given by [s]k =
γ
k
σ 2k

Uk−γ kVk
Proof: See Appendix E.

From Proposition 1, we can check whether the EE maxi-
mization problem (P0) is feasible. If (P0) is feasible, we pro-
pose a computationally feasible power allocation algorithm
to solve (P0) in the following subsection.

D. POWER ALLOCATION ALGORITHM
Dividing the numerator and the denominator of φ(p) by
B
∑K

k=1 Sk (p), it can be found that maximizing φ(p) is equiv-
alent to maximize

φ̄(p) =
B
∑K

k=1 Sk (p)

PIND +
T−τu
ζT

∑K
k=1 pk

, (26)

where PIND = PTC + PLP +MP0 is the power consumption
independent of p. Thus, the optimization problem (P0) is

equivalent to

(P1) :



max
p

φ̄(p) (27a)

s.t. Sk (p) ≥ Smin, ∀ k, (27b)
K∑
k=1

ωm,kpk ≤ Pmax, ∀ m, (27c)

pk ≥ 0, ∀ k, (27d)

The objective function φ̄(p) of optimization problem (P1)
is in fraction form. If the numerator of φ̄(p) is concave,
the denominator of φ̄(p) is convex, and the constraint set
of (P1) is convex, the fractional programming theory can be
used to solve the optimization problem (P1) efficiently [27].
Otherwise, no low-complexity optimization methods are
available. Unfortunately, the numerator of φ̄(p) is not con-
cave and the constraint (27b) is not convex due to the non-
convexity of Sk (p). To address this difficult, we transform
the non-convex optimization problem (P1) into an efficiently
solvable concave optimization problem by integrating frac-
tional programming and SCA theories. The key issue is
to find a suitable convex approximation for Sk (p) which
can be addressed by using the following lower bound for
log2(1+ γk ) [28]

log2(1+ γk ) ≥ ak log2(γk )+ bk , ∀γk , γ̃k ≥ 0, (28)

where

ak =
γ̃k

1+ γ̃k
, (29)

bk = log2(1+ γ̃k )−
γ̃k

1+ γ̃k
log2 γ̃k . (30)

The lower bound in (28) is tight since both the two sides
of (28) and their derivatives with respect to γk are equal
at γk = γ̃k .

By applying the lower bound in (28) to Sk (p) in (12) and
letting p̃k = log2 pk , the objective function (27a) of (P1)
becomes

φ̃(p̃) =
B
∑K

k=1 S̃k (p̃)

PIND +
T−τu
ζT

∑K
k=1 2p̃k

, (31)

where p̃ = [p̃1, · · · , p̃K ], and S̃k (p̃) = T−τu
T

(
ak log2(Uk ) +

ak p̃k+bk−ak log2
(
2p̃kVk+

∑K
j 6=k 2

p̃jIj+σ 2
k

))
. Observe now

that the numerator and denominator of φ̃(p̃) are respectivelt
concave and convex in p̃ for any given ak and bk .

For the non-convex QoS constraint (27b), we rewrite it as

2p̃k
(
Uk − γ kVk

)
≥ γ

k

(∑K

j6=k
2p̃jIj + σ 2

k

)
, (32)

Taking the logarithm of both sides yields

p̃k + log2

(
Uk − γ kVk

γ
k

)
− log2

( K∑
j 6=k

2p̃jIj + σ 2
k

)
≥ 0,

(33)

which turns out to be convex in p̃.
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Using the above results, we obtain the following optimiza-
tion problem for given coefficients ak and bk

(P̃1) :



max
p̃

φ̃(p̃) (34a)

s.t. (33), ∀ k, (34b)
K∑
k=1

ωm,k2p̃k ≤ Pmax, ∀ m, (34c)

which is a concave fractional programming problem and
thus can be efficiently solved, e.g., by Dinkelbach’s algo-
rithm [29], with affordable polynomial complexity [27].
However, the maximum of (P̃1) is obtained for given coef-
ficients ak and bk . Thus, we need to update ak and bk further
to tighten the lower bound of Sk (p). The overall iterative
procedure is summarized in Algorithm 1.

Algorithm 1 Power Allocation for EE Maximization
1: Test feasibility by Proposition 1;
2: if Feasible then
3: Set the maximum number of iterations Nmax, and the

convergence tolerance ε > 0;
4: Set i = 0 and select a feasible p(0);
5: Set γ̃k (0) = γk (p(0)) and compute ak (0), bk (0) for all

k;
6: repeat
7: i = i+ 1;
8: Solve (P̃1), and call the solution p̃(i);
9: p(i) = 2p̃(i), γ̃k (i) = γk (p(i)) and update ak (i), bk (i)

for all k;
10: until convergence

(
max
k
|
γ̃k (i)−γ̃k (i−1)
γ̃k (i−1)

| < ε or i =

Nmax
)

11: end if

For completeness, we provide the method of solving (P̃1)
by Dinkelbach’s algorithm in the following. After converting
(P̃1) into a sequence of convex problems

(P2) :


max
p̃

F(λ) = f (p̃)− λg(p̃) (35a)

s.t. (33), ∀ k, (35b)
K∑
k=1

ωm,k2p̃k ≤ Pmax, ∀ m, (35c)

where f (p̃) = B
∑K

k=1 S̃k (p̃) and g(p̃) = PIND +
T − τu
ζT
×∑K

k=1 2
p̃k , Dinkelbach’s algorithmworks by finding the solu-

tions of (P̃2) in each iteration and then updating the param-
eter λ. This method is summarized in Algorithm 2, which is
guaranteed to converge to the global maximum of (P̃1) after
a few iterations [29], [30].
Proposition 2: After each iteration, the lower bound of

Sk (p) is tightened, the EE value φ̃(p̃) is increased, and
Algorithm 1 converges to KKT points of the optimization
problem (P1).

Proof: See Appendix F.

Algorithm 2 Solve (P̃1) Based on Dinkelbach’s Algorithm
1: Set ε > 0; j = 0; λ(j) = 0;
2: repeat
3: Solve (P2) and obtain p̃∗(j);
4: F(λ(j)) = f (p̃∗(j))− λ(j)g(p̃∗(j));
5: λ(j+ 1) = f (p̃∗(j))

/
g(p̃∗(j));

6: j = j+ 1;
7: until F(λ(j)) < ε

Remark 3 (Multi-cell extension): In multi-cell with pilot
contamination [10] scenarios, the SE of the user k in cell l
can be written as

Sl,k (p) =
T − τu
T

log2

×

(
1+

pl,kUl,k
pl,kVl,k+

∑
(i,j)6=(l,k) pi,jIl,k+σ 2

l,k

)
, (36)

where Ul,k , |E[gHl,l,k Ewl,k ]|2, Vl,k , var
[
gHl,l,k Ewl,k

]
,

Il,k , E
[
|gHi,l,k Ewi,j|

2
]
, and the power allocation needs to

be optimized among L cells by solving the following global
EE maximization problem

(Pmul) :



max
p

B
∑L

l=1
∑K

k=1 Sl,k (p)
PTotal(p)

s.t. Sl,k (p) ≥ Smin, ∀ l, k,
K∑
k=1

ωl,m,kpl,k ≤ Pmax, ∀ l,m,

pl,k ≥ 0, ∀ l, k,

(37)

where p = [pT1 , · · · ,p
T
L]

T, pl = [pl,1, · · · , pl,K ]T,
PTotal(p) = LPIND +

T−τu
ζT

∑L
l=1

∑K
k=1 pl,k + PBTMB×∑L

l=1
∑K

k=1 Sl,k (p) is the total power consumption of L cells.
Based on the method used in this paper, we can obtain
the closed-form expressions for Sl,k (p) and ωl,m,k where
pilot contamination [31] makes the derivation process more
difficult (similar derivation for Sl,k (p) please refer to [10]).
Moreover, the method of solving the optimization
problem (P0) can also be used to solve the (Pmul). Thus,
the analytic framework and the power allocation algorithm
can be applied in multi-cell scenarios.

In conclusion of this section, after deriving the ana-
lytical expressions for the SE Sk (p) and power control
parameters ωm,k , we solved the EE maximization problem
under ergodic per-user QoS and per-RAU power constraints
by integrating fractional programming and SCA theories and
proposed a computationally feasible power allocation algo-
rithm with guaranteed convergence to the KKT points of the
original non-convex EE maximization problem.

IV. NUMERICAL RESULTS
In this section, the theoretical analysis presented in previous
sections are verified by numerical results.
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FIGURE 1. The convergence procedure of Algorithm 1, N = 8, K = 10.
(a) EE versus the number of iterations.

A. SIMULATION SETUP
Consider a circular coverage area with a radius 1 km where
there are seven RAUs jointly serving K users. To ensure the
reproducibility, we assume that one RAU is deployed in the
center and the other six RAUs are uniformly deployed on
the circle of radius (3 −

√
3)/2. The K users are distributed

uniformly. The distance between RAUs and users is not less
than 50m. The large-scale fading coefficient between RAUm
and user k is modeled using the COST Hata model [23]
as λm,k = 10−13.6−3.5 log10(dm,k )+sm,k/10, where dm,k is the
corresponding distance and sm,k represents the independent
log-normal shadowing with a standard deviation of 8 dB.
We choose system bandwidth B = 20MHz, minimal spectral
efficiency Smin = 1 bit/s/Hz, coherence interval in sym-
bols T = 196, power of pilot sequences pul,k = 0.2 W,
length of pilot sequences τp = K , and a noise figure equals
to 9 dB [19], [21]. The maximum transmitted power of each

TABLE 1. Power Consumption Parameters.

FIGURE 2. Energy efficiency obtained by simulations and analytical
expressions against the number of antennas at each RAU, K = 4, and
M = 7.

antenna is set to 0.2 W, and thus the maximal transmit power
of each RAU Pmax = 0.2 × N W. Unless otherwise stated,
the other parameters are chosen as in Table 1 [19], [24].

B. RESULTS AND DISCUSSIONS
1) PERFORMANCE OF CONVERGENCE
We first provide insight on the convergence procedure of
Algorithm 1. The flag value max

k
|
γ̃k (i)−γ̃k (i−1)
γ̃k (i−1)

| reflects the

accuracy of the convex approximation (28) for spectral effi-
ciency. The smaller flag value, the higher approximate accu-
racy. Fig. 1(a) presents the flag value versus the number of
iterations. When the flag value turns into zero, the obtained
power allocation (by Dinkelbach’s algorithm) stays the
same for every iteration, which indicates the convergence
of Algorithm 1. From Fig. 1(a), it can be seen that
Algorithm 1 converges rapidly (about 7 iterations for both
beamforming), and MRT has a faster rate of convergence.
Fig. 1(b) shows the EE versus the number of iterations.
It can be observed that the EE remains nearly constant after
3 iterations, which means that the convex approximation (28)
is accurate enough for our EE maximization problem after
3 iterations.

2) ACCURACY OF THE ANALYTICAL RESULTS
In Fig. 2, we verify the accuracy of the analytical results
obtained with the closed-form expressions for the SE and
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FIGURE 3. SE and EE comparisons between distributed massive MIMO
and co-located massive MIMO systems as a function of the total number
of transmit antennas, K = 5. (a) SE comparison.
(b) EE comparison.

the power control parameters derived in Theorems 1, 2, 3, 4.
First, it is clearly seen that the analytical results are very tight
in all cases despite the number of antennas at each RAU.
Second, the energy efficiency increases and then turns to
decrease as the number of antennas at each RAU N increases.
This is because that as N increase, the spectral efficiency
first increases largely and then tends to be constant while
the energy consumption increases always. The optimal N
is observed, e.g., N = 8 and N = 6 for ZF and
MRT beamforming, respectively. Third, ZF achieves a
larger EE than MRT since the spectral efficiency of
ZF is much larger than MRT [10]. However, the improve-
ment decreases as N increases since ZF consumes more
power as shown in (7a) and (7b). The improvement
equals to about 47.5% at N = 2 and about 22.9% at
N = 64.

3) DISTRIBUTED MASSIVE MIMO VERSUS CO-LOCATED
MASSIVE MIMO
Fig. 3 shows the SE and EE comparisons between the
distributed massive MIMO system and co-located massive
MIMO system (MN antennas are co-located at the center).
From this figure, we get the following findings. First, com-
pared to the co-located systems, distributed massive MIMO
systems improve the SE significantly due to the decreased
average access distance of the users and the multiplexing
and diversity gain offered by coordination among RAUs. The
SE improvement is 36.4% with ZF beamforming and 20.9%
with MRT beamforming at MN = 700. Second, under the
setting as in Table 1, distributed massive MIMO systems
are more energy efficient than co-located systems. However,
distributedmassiveMIMO systems consumemore power due
to more oscillators and backhaul-inducing power as defined
in Section II.B. Thus, the EE improvement is only 28.4%
with ZF beamforming and 13.8% with MRT beamforming
at MN = 700. Moreover, in the simulations, the traffic-
dependent backhaul power PBT = 0.25W/(Gbits/s). If the
backhaul link is less power efficient which means more
backhauling power consumed, the EE of distributed massive
MIMO systems will decrease and even less than that of co-
located systems [19]. These motivate the works consider-
ing RAU selection schemes to reduce the backhaul-induced
power, which can improve the EE [15].

V. CONCLUSIONS
In this paper, we have investigated power allocation opti-
mization for EE maximization in distributed massive MIMO
systems under ergodic per-user QoS and per-RAU transmit
power constraints, which is more practically appealing since
it is related to only large-scale fading and can be solved
over a longer time period. We first derived accurate closed-
form expressions for the SE and power control parameters
with ZF and MRT beamforming. Based on these expressions,
we formulated the EE maximization problem based on a
practical power consumptionmodel. By integrating fractional
programming and SCA theories, we developed a compu-
tationally feasible power allocation algorithm to solve the
non-convex optimization problem, which is guaranteed to
converge to the KKT points of the original problem. Based
on these analytical results, we analyzed and compared the
performance of different beamforming schemes and different
antenna deployments. From the numerical results, it was
observed that ZF achieves a larger EE than MRT, however,
the improvement decrease as the number of transmit antennas
increases since ZF has a higher complexity and consumes
more power. Moreover, distributed massive MIMO systems
have great potential to improve the SE and EE.

APPENDIX A
PROOF OF THEOREM 1
The closed-form expressions for (13)-(15) can be obtained by
characterizing the distribution of the powers of non-isotropic
vector gk = [

√
λ1,kh1,k , · · · ,

√
λM ,khM ,k ] projected onto
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an s-dimensional beamforming subspace. The beamforming
vector EwMRT

k is a function of channel estimation ĝk and
independent of ĝj for j 6= k and the estimation error g̃j
for ∀j. The projection power of ĝj onto the beamforming
subspace obtained by EwMRT

k is distributed as 0( s
MN µ̂k,a, θ̂k,a)

where s = MN for j = k and s = 1 for j 6= k , and the
projection power of g̃j is distributed as 0( 1

MN µ̃k,a, θ̃k,a) for
∀j [10, Lemma 3].

For the term Uk , we have |E[gHk Ew
MRT
k ]|2 = |E[‖ĝk‖]|2 due

to the independence of channel estimation error g̃k and chan-
nel estimate ĝk . Since ‖ĝk‖2 = |ĝHk Ew

MRT
k |

2
∼ 0(µ̂k,a, θ̂k,a),

we have ‖ĝk‖ ∼ Nakagami(µ̂k,a, µ̂k,aθ̂k,a) and |E[‖ĝk‖]|2 =
ξ (µ̂k,a)θ̂k,a based on the relationship between Nakagami dis-
tribution and Gamma distribution.

Considering the term Vk , due to the independence of
ĝk and g̃k , we have var[gHk Ewk ] = E[|ĝHk Ew

MRT
k |

2] +
E[|g̃Hk Ew

MRT
k |

2] − |E[ĝHk Ew
MRT
k ]|2. From the above analysis,

|ĝHk Ew
MRT
k |

2 and |g̃Hk Ew
MRT
k |

2 are distributed as 0(µ̂k,a, θ̂k,a)
and 0( 1

MN µ̃k,a, θ̃k,a), respectively. Thus, we have E[|ĝHk
EwMRT
k |

2] = µ̂k,aθ̂k,a andE[|g̃Hk Ew
MRT
k |

2] = 1
MN µ̃k,aθ̃k,a. com-

bined with |E[ĝHk Ew
MRT
k ]|2 = Uk = ξ (µ̂k,a)θ̂k,a, we obtain the

expression for Vk as in (17).
Similarly, for the term Ij, we have E

[
|gHk Ewj|

2
]
=

1
MN µk,aθk,a since |g

H
k Ewj|

2
∼ 0( 1

MN µk,a, θk,a).

APPENDIX B
PROOF OF THEOREM 2
For the term Uk , we have

|E[gHk Ew
ZF
k ]|2

(a)
= |E [1/‖vk‖] |2

(b)
=
∣∣E[([(ĜHĜ)−1]k,k

)−1/2]∣∣2, (B.1)

where (a) is obtained because g̃k is independent of EwZF
k

and ĝHk Ew
ZF
k = 1/‖vk‖, (b) results from ‖vk‖2 =

[(ĜHĜ)−1]k,k . When the channel vectors are isotropic,
[(ĜHĜ)−1]k,k ∼ 0(χ, θ̂k,a) [32]. Based on the lemma for
the distribution of the projection power of non-isotropic
channel [10, Lemma 3], we can approximate the distribu-
tion of [(ĜHĜ)−1]k,k as 0(

χ

MN
µ̂k,a, θ̂k,a). Thus, we have

|E[gHk Ew
ZF
k ]|2 = ξ (

χ

MN
µ̂k,a)θ̂k,a. Moreover, the closed-form

expressions forVk and Ik can be obtained based on the similar
analysis in proof of Theorem 1 and the main difference is that
the dimension of projection is changed from MN to χ with
ZF beamforming when the channel and beamforming vectors
are correlated.

APPENDIX C
PROOF OF THEOREM 3
Substituting Ewk =

ĝk
‖ĝk‖

into (11), we have

ωm,k = E
[
‖ĝm,k‖2

‖ĝk‖2

]
(a)
= E

[
‖ĝm,k‖2

‖ĝm,k‖2 +
∑

i 6=m ‖ĝi,k‖2

]
, (C.2)

where (a) results from (1). From [10, Lemma 2], we have
‖ĝm,k‖2 ∼ 0(N , βm,k ) and

∑
i 6=m ‖ĝi,k‖

2
∼ 0(ρm,k , κm,k )

where ρm,k =
N
(∑

i 6=m βi,k

)2∑
i 6=m β

2
i,k

, κm,k =
∑

i 6=m β
2
i,k∑

i 6=m βi,k
. Defining

X ∼ 0(N , 1), Y ∼ 0(ρm,k , 1), (C.2) can be rewritten as

ωm,k = E
[

βm,kX
βm,kX + κm,kY

]
(C.3)

(a)
= E

[
Z

Z + cm,k

]
, (C.4)

where (a) is obtained by dividing the numerator and the
denominator of (C.3) by βm,kY , cm,k =

κm,k
βm,k

and Z = X
Y ∼

B2(N , ρm,k ), where B2(·, ·) is the beta type 2 distribution. The
probability density function (p.d.f) of Z is

f (z) =
zN−1(z+ 1)−(N+ρm,k )

B(N , ρm,k )
, x ∈ [0,∞), (C.5)

where B(·, ·) denotes the Beta function. Defining W =
Z

Z+cm,k
, we can obtain the p.d.f ofW from the p.d.f. of Z with

the change of variables theorem

f (w)=
cNm,k

B(N , ρm,k )
wN−1(1− w)ρm,k−1

(1+ (cm,k − 1)w)N+ρm,k
, w ∈ (0, 1),

(C.6)

Thus, (C.4) can be calculated by

ωm,k =

∫ 1

0
wf (w)dw

=
cNm,k

B(N , ρm,k )

∫ 1

0

wN (1− w)ρm,k−1

(1+ (cm,k − 1)w)N+ρm,k
dw

(a)
=

cNm,k
B(N , ρm,k )

0(N + 1)0(ρm,k )
0(N + ρm,k + 1)

×

× 2F1(N + ρm,k ,N + 1; N + ρm,k + 1; 1− cm,k )
(b)
= cNm,k

N
N + ρm,k

×

× 2F1(N + ρm,k ,N + 1; N + ρm,k + 1; 1− cm,k ),

(C.7)

where (a) is obtained by expressing the integration
with hypergeometric function 2F1, and (b) results from
B(N , ρm,k ) =

0(N )0(ρm,k )
0(N+ρm,k )

.

APPENDIX D
PROOF OF THEOREM 4
Based on the random matrix theory (see [33] and [34]) and
the approximation method for the projection of non-isotropic
channel vectors (see [10]), we give the following proof.

With ZF beamforming Ewk =
vk
‖vk‖

, for the power control
parameters defined in (11), we have

ωm,k = E
[
‖vm,k‖2

‖vk‖2

]
= E

[
tr
(
3m(Ĝ+)H2

1
21k2

1
2 Ĝ+3m

)]
, (D.8)
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where 3m is an all-zeros diagonal matrix except that the
elements from (m−1)N+1 tomN on the main diagonal equal
to one, corresponding to the m-th RAU, Ĝ+ = (ĜHĜ)−1ĜH,
2 = diag(ϑ1, · · · , ϑK ), ϑk = 1/‖vk‖2 = 1

/
[(ĜHĜ)−1]k,k ,

1k denotes aK -dimensional all-zeros diagonal matrix except
that the k-th main diagonal element equals to one, corre-
sponding to the k-th user.

Defining 8m , 1
√
K

[
ĥm,1, · · · , ĥm,K

]
∼ CN (0, 1

K IN )

and Dm , diag
(
β
1/2
m,1, · · · , β

1/2
m,K

)
, the non-zero submatrix of

3mĜ which corresponds to the channel from the m-th RAU
to all of the users can be given by[

ĝm,1, · · · , ĝm,K
]
=
√
K8mDm, (D.9)

and thus,

ĜHĜ =
M∑
m=1

Dm8
H
m8mDm. (D.10)

With the definition of A , 1
K Ĝ

HĜ, (D.8) can be rewritten
as

ωm,k = E
[
1
K
tr
(
8mDmA−12

1
21k2

1
2A−1Dm8

H
m

)]
= E

[
1
K

N∑
n=1

φm,nDmA−12
1
21k2

1
2A−1Dmφ

H
m,n

]
(a)
→

N
K
ψ(DmA−1CkA−1Dm)(
1+ ψ(DmA−1Dm)

)2 , (D.11)

where φm,n is the n-th row of 8m, (a) results from

[33, Lemma 3], Ck , 2
1
21k2

1
2 , and ψ(·) ,

limK→∞
1
K tr(·).

In (D.11), there are two limiting traces that need to be
computed. For the term in the denominator, we have

ψ(DmA−1Dm) = lim
K→∞

1
K
tr(DmA−1Dm)

(a)
= lim

K→∞

1
K
tr
(
K (ĜHĜ)−1D2

m

)
(b)
= lim

K→∞

K∑
k=1

βm,k

ϑk
, (D.12)

where (a) is obtained by substituting A =
1
K Ĝ

HĜ,
(b) results from ϑk = 1

/
[(ĜHĜ)−1]k,k and Dm =

diag
(
β
1/2
m,1, · · · , β

1/2
m,K

)
.

For the numerator of (D.11), we have

ψ(DmA−1CkA−1Dm)
(a)
= lim

t↓0

−d
dt
ψ
(
(tD2

m + A)−1Ck

)
(D.13)

= lim
t↓0

−d
dt
ψ
(
(tI+D−1m AD−1m )−1D−1m CkD−1m

)
, (D.14)

where (a) is obtained from the identity −d
dt tr((tD

2
m +

A)−1Ck ) = tr(Dm(tD2
m + A)−1Ck (tD2

m + A)−1Dm). For the

term (tI+ D−1m AD−1m )−1, we have

(tI+ D−1m AD−1m )−1

=
1
t

(
I+

1
t
D−1m AD−1m

)−1

=
1
t

(
I+

1
t
D−1m

1
K
ĜHĜD−1m

)−1

=
1
t

(
I+

1
t

(
1
√
K
ĜD−1m

)H ( 1
√
K
ĜD−1m

))−1
.

(D.15)

From (D.9), we have

ĜH
=

[
D1WH

1 , · · · ,DMWH
M

]T
, (D.16)

and thus,

D−1m ĜH
=

[
D−1m D1WH

1 , · · · ,D
−1
m DMWH

M

]
. (D.17)

The variance profile function [34] of
1
√
K
D−1m ĜH can be

given by

vm(x, y) =
βi,k

βm,k
, (x, y) ∈

[
k − 1
K

,
k
K

)
×

[
i− 1
M

,
i
M

)
,

(D.18)

then, letting s = 1/t and using [34, Lemma 2.51], we
obtain

1
K

[(
I+ s

( 1
√
K
ĜD−1m

)H( 1
√
K
ĜD−1m

))−1]
k,k

→

∫ k
K

k−1
K

9m(x, s)dx, (D.19)

where

9m(x, s) =
1

1+ MN
K sE [vm(x,Y )ϒm(Y , s)]

, (D.20)

ϒm(y, s) =
1

1+ sE [vm(X , y)9m(X , s)]
. (D.21)

Both 9m(x, s) and ϒm(y, s) are piecewise constant functions
since vm(x, y) is piecewise constant as seen from (D.18).
Denoting the q-th value of of 9m(x, s) by 9m,q(s) for
q = 1, · · · ,K and the i-th value of ϒm(y, s) by ϒm,i(s) for
i = 1, · · · ,M , we have

9m,q(s) =
1

1+ N
K s
∑M

i=1
βi,k
βm,k

ϒm,i(s)
, (D.22)

ϒm,i(s) =
1

1+ 1
K s
∑K

q=1
βi,q
βm,k

9m,q(s)
. (D.23)
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Moreover, the nonzero diagonal elements of D−1m CkD−1m
equals to ϑkβ

−1
m,k . Combined with (D.14), (D.15) and (D.19),

we arrive at

ψ
(
DmA−1CkA−1Dm

)
= lim

K→∞

1
K

1
t

∫ k
K

k−1
K

9m(x, 1/t)dxϑkβ
−1
m,k )

= lim
K→∞

1
K

1
t
9m,k (1/t)ϑkβ

−1
m,k . (D.24)

Defining Sm,q(t) , 1
tβm,q

9m,q(1/t), Gm,i(t) , ϒm,i(1/t), we
can rewrite (D.22), (D.23) as

Sm,q(t) =
1

tβm,q + N
K

∑M
i=1 βi,qGm,i(t)

, (D.25)

Gm,i(t) =
1

1+ 1
K

∑K
q=1 βi,qSm,q(t)

, (D.26)

respectively, and (D.24) as

ψ
(
DmA−1CkA−1Dm

)
= lim

K→∞

1
K
Sm,k (t)ϑk . (D.27)

Taking the derivative of (D.27), we obtain

lim
t↓0

−d
dt
ψ
(
(tD2

m + A)−1Ck

)
= lim

K→∞

1
K
Ṡm,k (0)ϑk ,

(D.28)

where

Ṡm,k (0) ,
−d
dt

Sm,k (t)|t=0

=
βm,k +

N
K

∑M
i=1 βi,k Ġm,i(0)(

N
K

∑M
i=1 βi,qGm,i(0)

)2 , (D.29)

Ġm,i(0) ,
−d
dt

Gm,l(t)|t=0

=

1
K

∑K
q=1 βi,qṠm,q(0)(

1+ 1
K

∑K
q=1 βi,qSm,q(0)

)2 . (D.30)

The expressions for Sm,q(0) and Gm,i(0) can be obtained
directly by bringing t = 0 into (D.25) and (D.26) as

Sm,q(0) =
1

N
K

∑M
i=1 βi,qGm,i(0)

, (D.31)

Gm,i(0) =
1

1+ 1
K

∑K
q=1 βi,qSm,q(0)

. (D.32)

Define Um,q = N
∑M

i=1 βi,qGm,i(0). By substituting (D.31)
and (D.32) into the definition, we obtain the fixed point of
Um,q as

Um,q = N
M∑
i=1

βi,q

1+
∑K

k=1
βi,k
Um,k

. (D.33)

Since the variance profile function of 1
N Ĝ

HĜ can be given by

v(x, y) = βm,k , (x, y) ∈
[
m− 1
M

,
m
M

)
×

[
k − 1
K

,
k
K

)
,

(D.34)

from [33, Th. 4, Corollary 1], we obtain the fixed point of ϑk

ϑk =
1[(

ĜHĜ
)−1]

k,k

= N
M∑
m=1

βm,k

1+
∑K

q=1
βm,q
ϑq

. (D.35)

From (D.33) and (D.35), it can be found that Um,q = ϑq.
Thus, (D.31) can be rewritten as

Sm,q(0) =
1

N
K

∑M
i=1 βi,qGm,i(0)

=
K
ϑq
, (D.36)

and (D.29) becomes

Ṡm,k (0) =
K 2βm,q + K �̇m,q

(ϑq)2
, (D.37)

where

�̇m,q = N
M∑
i=1

βi,qĠm,i(0)

(a)
= N

M∑
i=1

βi,q

1
K

∑K
q=1 βi,qṠm,q(0)(

1+ 1
K

∑K
q=1 βi,qSm,q(0)

)2
(b)
= N

M∑
i=1

βi,q

1
K

∑K
q′=1 βi,q′

K2βm,q′+K �̇m,q′
(ϑq′ )2

(1+ 1
K

∑K
q′=1 βi,q′

K
ϑq′

)2

= KN
K∑

q′=1

( M∑
i=1

βi,qβi,q′

(1+
∑K

q′=1 βi,q′/ϑq′ )2

)
×

1
(ϑq′ )2

(
βm,q′ +

�̇m,q′

K

)
(D.38)

where (a) and (b) are obtained by substituting (D.30) and
(D.37), respectively. It can be found that (D.38) is a system of
K linear equations in the K unknow {�̇m,q : q = 1, · · · ,K }
which can be solved explicitly by

[I− NQ]�̇m = NKQbm. (D.39)

After obtaining the solutions to the system (D.39) and substi-
tuting (D.37) into (D.28), we obtain

lim
t↓0

−d
dt
ψ
(
(tD2

m + A)−1Ck

)
=
Kβm,k + �̇m,k

ϑk
. (D.40)

Combing (D.40), (D.12) and (D.11), we obtain the results
shown in (23). The parameter ϑk was calculated by the fixed
point (D.35). However, it needs iterations. In the following,
we derive the closed-form expression for ϑk

ϑk =
1[(

ĜHĜ
)−1]

k,k
(a)
∼ 0(

MN − K + 1
MN

µ̂k,a, θ̂k,a)

(b)
= X

( 1
X

∑X

i=1
γi

)
(c)
→ XE[γi]

(d)
=

MN − K + 1
M

M∑
m=1

βm,k (D.41)
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where (a) results from [10, Lemma 3], (b) is obtained by

defining γi ∼ 0(1, θ̂k,a) and X =
MN − K + 1

MN
µ̂k,a,

(c) results from central limiting theorem since µ̂k,a → ∞
asMN →∞ and (d) is because E[γi] = θ̂k,a and µ̂k,aθ̂k,a =
N
∑M

m=1 βm,k .
Combining all results concludes the proof.

APPENDIX E
PROOF OF PROPOSITION 1
First, we prove the sufficiency of (24). From the spectral
efficiency constraint, we have

pkUk
pkVk +

∑
j 6=k pjIk + σ 2

k

≥ γ
k
, (E.42)

which leads to

pk −
∑
j 6=k

γ
k
Ik

Uk − γ kVk
pj ≥

γ
k
σ 2
k

Uk − γ kVk
. (E.43)

From (E.43), we obtain

(I− T)p ≥ s. (E.44)

Since T is irreducible and non-negative, from [15, Th. 2.1],
it follows that a solution p ≥ 0 to (E.44) exists for any
s ≥ 0 if and only if ρT < 1. Thus, ρT < 1 ensures that
there are feasible solutions meeting the ergodic per-user QoS
constraint. Moreover, the solutions need to meet the ergodic
per-RAU transmit power constraints further. From the second
constraint of (P0), we have

ωp ≤ PmaxIM . (E.45)

Substituting p ≥ (I−T)−1s obtained from (E.44) into (E.45),
we have

ω(I− T)−1s ≤ PmaxIM . (E.46)

This proves the sufficiency of (24).
For the necessity, assume that there is a vector p̃ =

[p̃1, · · · , p̃K ] satisfying

γk (p̃) = γ̃k ≥ γ k , (E.47)

and
K∑
k=1

ωm,k p̃k ≤ Pmax. (E.48)

From (E.47), we obtain

ρT̃ < 1, (E.49)

where

[T̃]k,j =

0, j = k,
Ik γ̃k

Uk − Vk γ̃k
, j 6= k.

(E.50)

Since γ̃k ≥ γ k , we have T ≤ T̃, and thus, ρT ≤ ρT̃ < 1 [35].
From (E.48), we have

ω(I− T̃)−1s̃ ≤ PmaxIM , (E.51)

where [s̃]k =
γ̃kσ

2
k

Uk−γ̃kVk . Since γ̃k ≥ γ
k
, we have s ≤ s̃.

Combined with ω ≥ 0, s ≥ 0, it is easy to obtain

ω(I− T)−1s ≤ ω(I− T̃)−1s̃ ≤ PmaxIM . (E.52)

This proves the necessary of (24).

APPENDIX F
PROOF OF PROPOSITION 2
Motivated by [27] and [36], we provide the following proof
which is divided into two steps.

First, we prove the convergence of Algorithm 1. Recall that
p̃k = log2 pk , we have the following chain inequalities after
the i-th iteration of Algorithm 1,

φ̄
(
p(i)
) (a)
= φ̃

(
p̃(i)
) (b)
≤ φ̃

(
p̃(i+1)

) (c)
≤ φ̄

(
p(i+1)

)
, (F.53)

where (a) is because the both sides of (28) are equal with
given γ̃ (

k i), (b) results from that p̃(i+1)k is the global maximizer
of φ̃ since the problem (P̃1) is convex, (c) is because φ̃ is the
lower bound of φ̄ from (28). Consequently, Algorithm 1 must
converge since the value of φ̄ increases after each iteration
and is upper-bounded by the constraints of the problem (P̃1).
Second, we prove that Algorithm 1 converges to the KKT

points of (P1). Denoting by p̃∗ the power allocation vector
at convergence which fulfills the KKT conditions of (P̃1),
we have φ̃(p̃∗) = φ̄(p∗) and ∇φ̃(p̃∗) = ∇φ̄(p∗) which results
from (28). Moreover, the optimization problem (P1) has the
same constraints as (P̃1). Hence, p∗ must fulfills the KKT
conditions of (P1).
This completes the proof.
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