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ABSTRACT This paper considers the problem of semi-global stabilization via linear feedback for a class of
uncertain nonlinear systems. Different from the existing results, the systems considered here have uncertain
measurement functions due to the sensors’ property. By generalizing the notion of homogeneity with
monotone degrees to the uncertain case, a measurement feedback controller is recursively constructed to
semi-globally asymptotically stabilize the system by appropriately choosing a series of Lyapunov functions
as well as the corresponding level sets. The proposed control scheme not only performs in a linear form
for better implementation but also leads to robustness to different sensors. Finally, a numerical example is
presented to demonstrate the effectiveness of the control law.

INDEX TERMS Linear controller, nonlinear systems, semi-global stabilization, uncertain measurement
functions.

I. INTRODUCTION
In this paper, we will consider the following uncertain
nonlinear systems

ẋ1(t) = x2(t)+ φ1(x1(t)),
...

ẋn−1(t) = xn(t)+ φn−1(x1(t), · · · , xn−1(t)),

ẋn(t) = u(t)+ φn(x1(t), · · · , xn(t)),

yi(t) = xqii (t), i = 1, · · · , n, (1)

where x(t) = (x1(t), · · · , xn(t))T ∈ Rn, u(t) ∈ R, yi(t) are the
system states, the control input and the measurements of sys-
tem states, respectively. For i = 1, · · · , n, the unknown non-
linear terms φi(·) : Ri

→ R are continuous in system states
and the unknown powers qi ∈ R+odd satisfy ai ≤ qi ≤ bi,
with known constants ai, bi > 0.
Obviously, the uncertain system (1) is of a strict-feedback

form whose control problem has attracted much attention
from the nonlinear control community. However, it is com-
mon that the relationship between the sensor’s output and the
system state is uncertain, which can be mainly represented by
the following three types. If the noise exists in feedback infor-
mation obtained from the sensor, the measurement function

can be written as y = x + d , with d denoting the uncer-
tain noise. Instead of the traditional state-feedback controller,
several investigations have been engaged in designing the
measurement feedback controller, for example, [1]–[5] and
the references therein. If the linear relationship holds or the
first derivative of the output function is bounded, it can be
represented by y = dx for an constant d or y = h(x)
where the first derivative of the continuous function h(x) is
bounded. By constructing a state compensator and using the
compensator states to design a controller, the stabilization
result can be achieved in [6] based on the homogeneous
domination approach, which has been further generalized to
more complex systems [7], [8]. In addition, as shown in [9]
that, the voltage output from the infrared distance sensor
Sharp GP2D12 is a nonlinear function xd where x is the real
distance. For different products even from the same batch,
the value of d may not be the same, i.e., the constant d is
uncertain and varies from products to products. It has been
proved in [9] that the designed robust controller is able to
globally stabilize a family of nonlinear systems with differ-
ent measurement drifts as long as the drifts vary within the
assigned bounds. On this basis, the work [10] has solved the
robust control problem for high-order nonlinear systems with
more general conditions via measurement feedback.
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Undeniably, the global stabilization result is perfect, while
the controller is always in a nonlinear even nonsmooth form
or the assumptions imposed on the nonlinearities are rigorous,
which brings a lot of trouble for controller design and imple-
mentation. Therefore, a less ambitious control goal, semi-
global stabilization is pursued. The work [11] has solved the
semi-global output feedback stabilization problem for feed-
back linearizable systems. It is shown in [12] that uniform
observability and global stabilizability by smooth state feed-
back cannot achieve global stabilizability by smooth output
feedback, but can lead to semi-global result for nonlinear
systems. Based on this conclusion, the semi-global stabiliza-
tion via smooth output feedback has been achieved for a
class of minimum-phase [13] and nonminimum-phase [14]
nonlinear systems, respectively. By adopting the feedback
domination method, the work [15] has constructed a lin-
ear output feedback controller to semi-globally stabilize the
uncertain nonlinear systems under less restrictive conditions.
For a class of nonuniformly observable and nonsmooth stabi-
lizable nonlinear systems, semi-global stabilization has been
achieved by nonsmooth output feedback in [16]. Recently,
several new results have been proposed towards semi-
global stabilization for different kinds of nonlinear systems,
for example [17]–[19] and the references therein. However,
the abovementioned results rely on that at least partial of the
system states can be measured accurately and can be used to
design the observer and controller. Otherwise, the designed
controllers do not work anymore. For the first type mea-
surement function, the work [20] has presented a unified
framework of the semi-global stabilization for the uncer-
tain nonlinear systems via measurement feedback. In [21],
the semi-global output feedback stabilization problem has
been solved for the upper-triangular nonlinear system whose
output function is uncertain but its first derivative is bounded
that can be described as the second type. Up till now, there
is no controller design method for the measurement function
described as y = xd , i.e., the third type.

Motivated by the work [9], [10], this paper aims to solve
the semi-global stabilization problem for the system (1) via
linear measurement feedback. To this end, we first give the
conditions on the unknown powers qi’s and the nonlinearities
φ(·)’s based on the notion of the homogeneity with mono-
tone degrees. Then, by subtly constructing the Lyapunov
functions, as well as the associated level sets, a linear con-
troller made up of the measurements is proposed to make
the system (1) semi-globally asymptotically stable. The main
contributions of this paper are as follows:
(i) The proposed controller only consists of the uncertain
measurements rather than constructing any observer or com-
pensator, which, to an extent, reduces the complexity of the
nonlinear system.
(ii) Different from the existing nonlinear controllers,
the designed linear controller has simple structure and is
much easier to be implemented and therefore gains more
value in the real systems;

(iii) Robustness can be achieved since only the known bounds
for the uncertain qi’s are used in the controller design.
It means that even though different sensors are used, the con-
troller still works as long as their qi’s belong to the same
interval.

II. MATHEMATICAL PRELIMINARIES
In this section, we will revisit some fundamental definitions
including the homogeneous system theory and the semi-
global asymptotic stabilization, and several useful inequal-
ities, which will play an important role in the subsequent
development.
Definition 1: For a fixed choice of coordinates x =

(x1, · · · , xn) ∈ Rn and positive real numbers (r1, · · · , rn)
, r , a one-parameter family of dilation is a map 1r

ε : R+ ×
Rn
→ Rn, defined by 1r

εx = (εr1x1, · · · , εrnxn), ∀ε > 0
with r ′i s being the weights of the coordinates.
Definition 2: For a given dilation 1r

ε and a series of real
monotone numbers τ1 ≥ τ2 · · · ≥ τn, a continuous vector
field f (x) = [f1(x), · · · , fn(x)]T , x ∈ Rn, is said to be
homogeneous with monotone degrees (HWMD) τ1, · · · , τn,
if ∀x ∈ Rn

\{0}, fj(1r
εx) = ε

τj+rj fj(x), j = 1, · · · , n.
When τ1 = τ2 = · · · = τn = τ , the definition of

homogeneity with monotone degrees reduces to the tradi-
tional homogeneity with homogeneous degree τ .
Definition 3 [22]: The problem of semi-global asymp-

totic stabilization (SGAS) by linear feedback for the non-
linear system means that given an upper bound M > 0,
find, if possible, a linear controller u = LMx with the
gain LM depending on M , such that all the trajectories of
the closed-loop system starting from the compact set BM ,
[−M ,M ]n ⊂ Rn converge uniformly to the origin.
Remark 4: From the definition above, it is known that

the designed controller depending on the known bounds for
initial values, can stabilize the system. Obviously, the bounds
of the initial conditions are usually easy to be estimated and
therefore, semi-global stabilization may be good enough in
practical applications [23]–[25].
Lemma 5 [26]: For x ∈ R, y ∈ R, and p ≥ 1, the

following inequalities hold:
|x + y|p ≤ 2p−1|xp + yp|,(

|x| + |y|
) 1
p ≤ |x|

1
p + |y|

1
p ≤ 2

p−1
p
(
|x| + |y|

) 1
p .

If p ≥ 1 is an odd integer or a ratio of two odd integers,
|x − y|p ≤ 2p−1|xp − yp|,

|x
1
p − y

1
p | ≤ 21−

1
p |x − y|

1
p ,

|xp − yp| ≤ p|x − y|(xp−1 + yp−1)

≤ c|x − y||(x − y)p−1 + yp−1|,

with a constant c > 0.
Lemma 6 [26]: For any positive real numbers c, d and

any real-valued function γ (x, y) > 0, the following inequality
holds:

|x|c|y|d ≤
c

c+ d
γ (x, y)|x|c+d +

d
c+ d

γ−
c
d (x, y)|y|c+d .
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III. MAIN RESULTS
In this section, a linear controller will be constructed itera-
tively to solve the SGAS problem for system (1). During the
design procedure, considering that sensors cannot measure
the system states accurately, we can only use the uncertain
measurements and we still pursue its robustness. Therefore,
the following two assumptions need to be imposed to guar-
antee the solvability of this problem.
Assumption 7: For i = 2, · · · , n− 1, bi ≤

2ai−1ai+1
ai−1+ai+1

, bn ≤
2an−1
an+1+1

and aj ≥ 1, j = 1, · · · , n.
Assumption 8: There are constants κnj ≥ bj, 1 ≤ j ≤ n,

and κij ≥
bj
ai+1

, i = 1, · · · , n− 1, 1 ≤ j ≤ i, such that

φi(·) ≤ d(|x1|κi1 + · · · + |xi|κii ) (2)

for a known constant d ≥ 0.
Remark 9: The above two assumptions have given the

restrictions on the uncertain powers qi’s and the nonlinear
functions φi’s. When the sensors are able to measure the sys-
tem states accurately, ai = bi = 1 holds and the nonlinearities
satisfy the linear growth condition, i.e., φi(·) ≤ γi(·)(|x1| +
· · · + |xi|), with a C1 function γi(·). The SGAS result has
been achieved in the work [13] by appropriately choosing the
Lyapunov functions and the responding level sets.
Remark 10: Under Assumption 7, it can be concluded that

the homogeneous degrees of the system (1) are nonincre-
mental. Specifically, by choosing the homogeneous weights
ri = 1

qi
, i = 1, · · · , n and rn+1 = 1, one has

τi − τi+1 = (ri+1 − ri)− (ri+2 − ri+1)

= (
1

qi+1
−

1
qi
)− (

1
qi+2
−

1
qi+1

)

≥
2

bi+1
−

1
ai
−

1
ai+2
≥ 0, i = 1, · · · , n− 2,

(3)

and τn−1 − τn = 2
qn
−

1
qn−1
− 1 ≥ 2

bn
−

1
an−1
− 1 ≥ 0.

Therefore, the system (1) is said to be homogeneous with
monotone degrees (HWMD).

Now, the main result of this paper is summarized as
follows:
Theorem 11: Under Assumptions 7 and 8, there exists a

linear controller such that the closed-loop system is SGAS
via measurement feedback.

Proof:According to Definition 3, we will design a linear
controller such that the system states converge to the origin
as long as the initial values starting from the compact set BM .
Initial Step: Choose the first Lyapunov function V1(x1) =
r1

2−τ1
x

2−τ1
r1

1 and one has ∀x ∈ BM ,

V1(x1)≤
b2

2a1a2 − b1 + a2
(M2a1+1−

b1
a2 +M2b1+1−

a1
b2 ). (4)

Based on Assumption 8, the derivative of V1 along the
trajectory of system (1) is

V̇1 ≤ x
2−τ1−r1

r1
1 (x2 − x∗2 )+ x

2−τ1−r1
r1

1 x∗2 + d |x1|
2
r1 |x1|

κ11−
r2
r1

= ξ
2−r2
1 (x2 − x∗2 )+ ξ

2−r2
1 x∗2 + ξ

2
1 h1,1(x1) (5)

with ξ1 = x
1
r1
1 , h1,1(·) = |x1|

κ11−
r2
r1 and a virtual controller x∗2

to be determined later.
For the first Lyapunov function V1(x1), the corresponding

level set is designed as �1 , {x ∈ Rn
|V1(x1) ≤ N }, with

N =
b2

2a1a2 − b1 + a2
(M2a1+1−

b1
a2 +M2b1+1−

a1
b2 )

+

n∑
i=2

21−
1
bi

(
(

i∑
k=1

Mak +

i∑
k=1

Mbk )
2+ 1

ai
−

1
bi+1

+ (
i∑

k=1

Mak +

i∑
k=1

Mbk )
2+ 1

bi
−

1
ai+1

)
. (6)

This leads to that if x ∈ BM , V1(x1) ≤ N holds naturally,
i.e., BM ⊂ �1.

Since κ11 ≥
b1
a2
≥

r2
r1
, then h1,1(·) is bounded on �1,

i.e., h1,1(·) ≤ Mκ11−
b1
a2 +Mκ11−

a1
b2 := h̄1,1. By choosing the

virtual controller

x∗2 = −β
r2
1 ξ

r2
1 = −β

r2
1 y

r2
1 , β1 ≥ (h̄1,1 + n)b2 (7)

the derivative of V1(x1) becomes

V̇1(x1)|�1 ≤ −nξ
2
1 + ξ

2−r2
1 (x2 − x∗2 ). (8)

Obviously, the coefficient β1 only involves the upper and
lower bounds of q1, q2.

Step 2: By selecting W2(x1, x2) = ( 1
β1
)2−τ2

∫ x2
x∗2
(s

1
r2 −

x∗2
1
r2 )2−r3ds and ξ2 = x

1
r2
2 − x∗2

1
r2 , it can be calculated that

∀x ∈ BM ,

W2(·) ≤ (
1
β1

)2−τ221−r2 |ξ2|2−τ2 ≤ 21−r2 |x
1
r2
2 + x

1
r1
1 |

2−τ2

≤ 21−
1
b2

(
(Ma1 +Mb1 +Ma2 +Mb2 )2+

1
a2
−

1
b3

+ (Ma1 +Mb1 +Ma2 +Mb2 )2+
1
b2
−

1
a3

)
(9)

with the lower and upper limits of q1, q2, q3. Based on (9),
the associated level set is defined as

�2 , {x ∈ Rn
|V2(x1, x2) = V1(x1)+W2(x1, x2) ≤ N },

(10)

which implies that

∀x ∈ BM ⇒ V1(x1) ≤ V2(x1, x2) ≤ N ⇒ BM ⊂ �2 ⊂ �1.

(11)

Therefore, it can be derived that

V̇2|�2 = V̇1|�2 + (
1
β
)2−τ2ξ2−r32 (x3 + φ2)+

∂W2

∂x1
(x2 + φ1)

≤ −nξ21 + (
1
β1

)2−τ2ξ2−r32 (x3 − x∗3 )

+ (
1
β1

)2−τ2ξ2−r32 x∗3 + ξ
2−r2
1 (x2 − x∗2 )

+ (
1
β1

)2−τ2ξ2−r32 φ2 +
∂W2

∂x1
(x2 + φ1). (12)
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Based on Lemmas 5 and 6, one can get

ξ
2−r2
1 (x2 − x∗2 ) ≤ 21−r2 |ξ1|2−r2 |ξ2|r2 ≤

1
3
ξ21 + c2ξ

2
2 , (13)

where c2 = 1
a221/b2

(
(6 − 3

a2
) 1
21/b2

)2b2−1 is dependent of the
upper and lower bounds of q2.
According to Assumption 8, one has κ2jrj ≥

bj
a3
rj ≥ r3,

which leads to that

(
1
β1

)2−τ2ξ2−r32 φ2

≤ (
1
β1

)2+
1
a2
−

1
b3 d1|ξ2|2−r3 (|ξ1|κ21r1 + |ξ2|κ22r2

+β
κ22r2
1 |ξ1|

κ22r2 )

≤ (
1
β1

)2+
1
a2
−

1
b3 d1|ξ2|2−r3 (|ξ1|r3 + |ξ2|r3 )

×(|ξ1|κ21r1−r3 + |ξ2|κ22r2−r3 + β
κ22r2
1 |ξ1|

κ22r2−r3 )

≤
1
3
ξ21 + h2,1(x1, x2)ξ

2
2 , (14)

where d1 > 0 is a constant, h2,1(·) > 0 is a continuous
function of x1, x2 and only involves the known bounds of
q1, q2, q3.
In a similar way, the estimate for the last term in (12) can

be given as

∂W2

∂x1
(x2 + φ1) ≤

2− r3

r1β
1−τ2
1

21−r2 |ξ1|1−r1 |ξ2|1−τ2

× (|ξ2|r2 + β
r2
1 |ξ1|

r2 + d |ξ1|κ11r1 )

≤
1
3
ξ21 + h2,2(x1, x2)ξ

2
2 (15)

with a continuous function h2,2(·) > 0. Clearly, the last
inequality holds owing to τ1 ≥ τ2.
Substituting (13)-(15) into (12) yields

V̇2|�2 ≤ −(n− 1)ξ21 + (
1
β1

)2−τ2ξ2−r32 (x3 − x∗3 )

+ (
1
β1

)2−τ2ξ2−r32 x∗3 + (c2 + h2,1(·)+ h2,2(·))ξ22 .

(16)

Note that ∀x ∈ BM , x1, x2 are bounded on �2. As a result,
the continuous functions h2,1(·), h2,2(·) are bounded on the
level set �2, i.e., h2,1(·) ≤ h̄2,1, h2,2(·) ≤ h̄2,2.
By choosing the virtual controller x∗3 = −β

r3
2 ξ

r3
2 , β2 ≥

β
2b3+

b3
a2
−1

1 (h̄2,1 + h̄2,2 + c2 + n− 1)b3 , one has

V̇2|�2≤−(n− 1)ξ21 − (n− 1)ξ22+(
1
β1

)2−τ2ξ2−r32 (x3 − x∗3 ).

(17)

Step k: Suppose that at step k − 1, there is a C1 Lyapunov
function Vk−1 : Rk−1

→ R with the level sets �k−1 , {x ∈
Rn
|Vk−1(x1, · · · , xk−1) ≤ N } satisfying �k−1 ⊂ · · · ⊂ �1,

and a set of virtual controllers x∗i defined as

x∗1 = 0, ξ1 = x1/r11 − x∗1
1/r1 ,

x∗i = −β
ri
i−1ξ

ri
i−1, ξi = x1/rii − x∗i

1/ri , i = 2, · · · , k

(18)

with positive constants β1, · · · , βk−1, such that

V̇k−1|�k−1 ≤ −(n− k + 2)
k−1∑
i=1

ξ2i

+
( 1
β1 · · ·βk−2

)2−τk−1ξ2−rkk−1 (xk − x∗k ). (19)

In what follows, we will prove that (19) also holds at step k .
Construct the kth Lyapunov function

Vk (x1, · · · , xk ) = Vk−1(·)+Wk (·)

= Vk−1(·)+
( 1
β1 · · ·βk−1

)2−τk ∫ xk

x∗k

× (s
1
rk − x∗k

1
rk )2−rk+1ds (20)

and the corresponding level set �k = {x ∈ Rn
|Vk (x1, · · · ,

xk ) ≤ N }. Then, it can be calculated that ∀x ∈ BM ,

Wk ≤
( 1
β1 · · ·βk−1

)2−τk21−rk |ξk |2−τk
≤ 21−

1
bi
∣∣x 1

r1
1 + x

1
r2
2 + · · · + x

1
rk
k

∣∣2−τk
≤ 21−

1
bi

(
(
k∑
i=1

Mai +

k∑
i=1

Mbi )
2+ 1

ak
−

1
bk+1

+ (
k∑
i=1

Mai +

k∑
i=1

Mbi )
2+ 1

bk
−

1
ak+1

)
, (21)

which indicates that ∀x ∈ BM , Vk−1(·) ≤ Vk (·) ≤ N ,
i.e., BM ⊂ �k ⊂ �k−1 holds. Therefore, the derivative of
Vk arrives at

V̇k |�k ≤ −(n− k + 2)
k−1∑
i=1

ξ2i +
( 1
β1 · · ·βk−1

)2−τk ξ2−rk+1k

× (xk+1 − x∗k+1)+
( 1
β1 · · ·βk−1

)2−τk ξ2−rk+1k x∗k+1

+
( 1
β1 · · ·βk−2

)2−τk−1ξ2−rkk−1 (xk − x∗k )

+
( 1
β1 · · ·βk−1

)2−τk ξ2−rk+1k φk

+

k−1∑
i=1

∂Wk

∂xi
(xi+1 + φi). (22)

With the definition of ξk , the following inequalities can be
easily achieved based on Lemmas 5 and 6,( 1

β1 · · ·βk−2

)2−τk−1ξ2−rkk−1 (xk − x∗k )

≤
( 1
β1 · · ·βk−2

)2−τk−121−rk |ξk−1|2−rk |ξk |rk
≤

1
3
ξ2k−1 + ckξ

2
k , (23)
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where ck is a positive constant dependent of ai’s and bi’s, i =
1, · · · , k .

Similar to (14) and (15), the estimates for the last two terms
in the right-hand side of (22) will be given in the following
propositions whose proofs are included in Appendix.
Proposition 12: There exists a continuous function

hk,1(x1, · · · , xk ) ≥ 0, such that

( 1
β1 · · ·βk−1

)2−τk ξ2−rk+1k φk ≤
1
3

k−1∑
i=1

ξ2i + hk,1(·)ξ
2
k . (24)

Proposition 13: There is a continuous function hk,2(x1,
· · · , xk ) ≥ 0, satisfying

k−1∑
i=1

∂Wk

∂xi
(xi+1 + φi) ≤

1
3

k−1∑
i=1

ξ2i + hk,2(·)ξ
2
k . (25)

Substituting (23)-(25) into (22), one has

V̇k |�k ≤ −(n− k + 1)
k−1∑
i=1

ξ2i +
( 1
β1 · · ·βk−1

)2−τk ξ2−rk+1k

× (xk+1 − x∗k+1)+
( 1
β1 · · ·βk−1

)2−τk ξ2−rk+1k x∗k+1

+ (ck + hk,1(·)+ hk,2(·))ξ2k . (26)

Thus, we can construct the virtual controller x∗k+1 =

−β
rk+1
k ξ

rk+1
k , βk ≥ (n− k + 1+ ck + h̄k,1 + h̄k,2)bk+1 (β1 · · ·

βk−1)
2bk+1+

bk+1
ak
−1 with the bounds of hk,1(·), hk,2(·) on the

level set �k , such that

V̇k |�k ≤ −(n− k + 1)
k−1∑
i=1

ξ2i

+
( 1
β1 · · ·βk−1

)2−τk ξ2−rk+1k (xk+1 − x∗k+1). (27)

This completes the inductive proof.
Last Step: Based on the inductive arguments, it can be

proved that (27) holds for k = n. As a matter of fact,
we can choose the Lyapunov function Vn = Vn−1 +
( 1
β1···βn−1

)2−τn
∫ xn
x∗n
(s

1
rn − x∗n

1
rn )ds, and the controller

u = x∗n+1=−βn
(
yn + βn−1

(
yn−1 + · · · + β2(y2 + β1y1)

))
(28)

such that V̇n|�n ≤ −
∑n

i=1 ξ
2
i , with the level set �n , {x ∈

Rn
|Vn(x1, · · · , xn) ≤ N } satisfying BM ⊂ �n ⊂ · · · ⊂ �1

and βn ≥ 0.
In conclusion, according to Definition 3, we can claim

that for any system states starting from the compact set BM ,
the linear controller (28) with the controller gains βi’s
depending on M will make the system states converge to the
origin asymptotically, i.e., the system (1) is SGAS by the
linear controller (28).
Remark 14: Letting pi = 1 in the work [10] where high-

order nonlinear systems are investigated, a nonsmooth mea-
surement feedback controller can be designed to make the

system (1) globally asymptotically stable. However, linear
controllers are easy to be implemented. By taking a tradeoff,
the less ambitious control goal, SGAS rather than GAS may
be better in practical applications.

IV. AN ILLUSTRATIVE EXAMPLE
Consider the following nonlinear system

ẋ1 = x2 + 0.1x21 , ẋ2 = u, y1 = xq11 , y2 = x2, (29)

where q1 is an uncertain constant but belongs to the interval
[1, 2], |x1(0)| ≤ 1.5 and |x2(0)| ≤ 1.5. By simple calculation,
Assumptions 7 and 8 hold naturally with b2 ≤

2a1
a1+1
= 1 and

κ11 ≥
b1
a2
= 2. Therefore, according to Theorem 11, a linear

controller can be designed to make the system (29) SGAS.
Specifically, choose V1 = 1

1+q1
x1+q11 and �1 = {x ∈

R2
|V1(x1) ≤ 16.6}. The derivative of V1 is

V̇1|�1 = xq11 (x2 − x∗2 )+ x
q1
1 x
∗

2 + 0.1xq11 x
2
1

≤ ξ1(x2 − x∗2 )+ ξ1x
∗

2 + 0.1ξ21 (1+ |ξ1|)

≤ ξ1(x2 − x∗2 )+ ξ1x
∗

2 + 0.475ξ21 (30)

for ξ1 = xq11 = y1. With the virtual controller x∗2 =
−1.475ξ1, (30) becomes

V̇1|�1 ≤ −ξ
2
1 + ξ1(x2 − x

∗

2 ). (31)

Defining V2 = V1 + 0.2298ξ22 with ξ2 = x2 − x∗2 and
�2 = {x ∈ R2

|V2(x1, x2) ≤ 16.6}, one has [−1.5, 1.5]2 ⊂
�2 ⊂ �1. It can be deduced that

V̇2|�2 = V̇1|�2 + 0.4596ξ2(u+ 1.475q1x
q1−1
1 (x2 + 0.1x21 ))

≤ −ξ21 + ξ1ξ2 + 0.4596ξ2u+ 0.1356ξ
1+ 1

q1
1 |ξ2|

+ 1.3559ξ
1− 1

q1
1 |ξ2|(|ξ2| + β1|ξ1|)

≤ −
1
4
ξ21 + 0.4596ξ2u+ 17.1632ξ22 . (32)

Therefore, one can construct the controller

u = −37.3438ξ2 = −37.3438(y2 + 1.475y1) (33)

such that V̇2|�2 ≤ −
1
4ξ

2
1 −

1
4ξ

2
2 .

According to Theorem 11, the designed linear con-
troller (33) not only has simple structure, but also is robust
to q1 ∈ [1, 2]. In order to show the effectiveness, we choose
q1 = 5

3 and q1 = 13
7 , respectively, with the same initial value

(x1(0), x2(0)) = (1,−1.5) to conduct the simulation. As illus-
trated in FIGURE 1 and FIGURE 2, it can be concluded
that the system states starting from the set [−1.5, 1.5]2 can
converge to the origin in both situations. Therefore, it implies
that as long as q1 ∈ [1, 2], the controller u can semi-globally
asymptotically stabilize the closed-loop system (29)-(33)
under different kinds of sensors, which is consistent with the
theoretical analysis in the controller design procedure.
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FIGURE 1. The responses of the closed-loop system (29) and (33)
with q1 =

5
3 .

FIGURE 2. The responses of the closed-loop system (29) and (33)
with q1 =

13
7 .

V. CONCLUSION
In this paper, we have developed a systematic controller
design scheme for a class of nonlinear systems with uncertain
measurement functions by adopting the notion of HWMD.
With respect to any prescribed bounds for the initial val-
ues, the designed linear controller depending on the known
bounds can make the trajectories of the system states con-
verge to the origin asymptotically, i.e., the closed-loop system
is SGAS. Moreover, since only the uncertain measurements
and the known bounds are used, the robustness of the con-
troller holds for different sensors as long as the the unknown
powers qi’s belong to certain intervals.

APPENDIX
This part contains the technical details of the proofs.
For convenience, we introduce some generic functions
gi(x1, · · · , xi) ≥ 0 to represent any continuous functions only
dependent of the known bounds of qi’s and may be implicitly
changed in various places.

Proof of Proposition 12: According to Assumption 8 and
the definition of ξi’s, one has

φk ≤ d
(
|ξ1|

κk1r1 +

k∑
i=2

|ξi + βi−1ξi−1|
κkiri

)
≤ gk (·)(|ξ1|rk+1 + · · · + |ξk |rk+1 ), (34)

under which( 1
β1 · · ·βk−1

)2−τk ξ2−rk+1k φk

≤
1
3

k−1∑
i=1

ξ2i + hk,1(x1, · · · , xk )ξ
2
k (35)

with a continuous function hk,1(·) ≥ 0 dependent of the
known bounds qi’s, i = 1, · · · , k .
Proof of Proposition 13: According to (34),

Lemmas 5 and 6, one can get

k−1∑
i=1

∂Wk

∂xi
(xi+1 + φi)

≤

k−1∑
i=1

gi(·)|ξk |1−rk+1 |ξk |rk |xi|
1−ri
ri

× (|ξ1|ri+1 + · · · + |ξi+1|ri+1 )

≤

k−1∑
i=1

gi(·)|ξk |1−τk (|ξi|1−ri + |ξi−1|1−ri )

× (|ξ1|ri+1 + · · · + |ξi+1|ri+1 ). (36)

From Remark 10, we know that the homogeneous degrees
satisfy τ1 ≥ τ2 · · · ≥ τn, and then 1 − τk + 1 − ri +
ri+1 = 2 − τk − τi ≥ 0, ∀i = 1, · · · , k − 1. Therefore,
Proposition 13 holds naturally, with a continuous function
hk,2(x1, · · · , xk ) ≥ 0 and Lemma 6.
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