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ABSTRACT Incrementally, building a 3D map in which object instances are semantically annotated has
a wide range of applications, including scene understanding, human–robot interactions, and simultaneous
localization and mapping extensions. Although researchers are developing efficient and accurate systems,
these methods still face a critical issue: real-time processing, because the task requires a series of heavy
processing components, e.g., camera pose estimation, 3D map reconstruction, and especially recognition.
In this paper, we propose a novel object-oriented semantic mapping approach aiming at overcoming such
issues by introducing highly accurate object-oriented semantic scene reconstruction in real time. For high
efficiency, the proposed method employs a fast and scalable object detection algorithm for exploiting
semantic information from the incoming frames. These outputs are integrated into geometric regions of
the 3D map, which are carried by the geometric-based incremental segmentation method. The strategy of
assigning class probabilities to each segmented region, not each element (e.g., surfels and voxels), notably
reduces the computational cost, as well as the memory footprint. In addition to efficiency, by geometrically
segmenting the 3D map first, clear boundaries between objects appear. We complementarily improve the
geometric-based segmentation results beyond the geometric only to the semantic-aware representation. We
validate the proposed method’s accuracy and computational efficiency through experiments in a common
office scene.

INDEX TERMS Semantic mapping, SLAM, segmentation, object detection.

I. INTRODUCTION
Incrementally building up a semantically annotated 3D map
is a vital technology for the computer vision and robotics
communities. As an annotated 3D map of indoor scenes has
a wide range of applications, including human-robot interac-
tions andmixed reality, much effort has been made to develop
efficient and accurate systems for the goal of building each to
its own map representation. Among them, an object-oriented
map would be the most important and efficient representation
considering it also could be applied to SLAM extensions
that include object-level pose graph optimization and address
dynamic objects in the scene.

Motivated by the recent developments of 2D semantic
segmentation and object detection algorithms, many methods
efficiently combine the algorithms with the state-of-the-art
SLAM method for a highly accurate semantically segmented
3D map [1]–[7]. However, these conventional methods still
face a critical issue, real-time performance, because such
a system requires a series of processes with high com-
putational costs, including 3D reconstruction, camera pose

estimation, and especially, recognition. Basically, the recog-
nition part can be divided into 2 steps, 2D recognition for
incoming frames and updating the class probabilities of the
reconstructed 3D map with the 2D recognition result. For
instance, SemanticFusion [1] and MaskFusion [5] employ
SegNet-based CNN [8] and Mask R-CNN [9] for the first
step, respectively, and then update the class probabilities of
each element (i.e., surfel and voxel) consisting the recon-
structed 3D map. As these 2 steps have a huge time com-
plexity, these methods suggested to only extract semantic
information on a subset of the input frames. Although such
a frame skipping strategy can improve the run-time perfor-
mance, this method limits the range of application, since it
tends to be inaccurate under fast camera motions. Further-
more, as these methods assign class probabilities to each
element of the 3D map, the memory footprint for storing
semantic information increases.

In this paper, we propose a novel semantic mapping frame-
work for overcoming such issues by yielding highly accurate
semantic scene reconstruction in real-time. In contrast to
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conventional methods, which have a huge time complex-
ity for 2D semantic segmentation for the incoming frames,
we utilize a fast object detection method for understanding
objects in the frame. To build up an accurately segmented 3D
map, we incrementally build up a geometrically segmented
3D map first. Then, we annotate each segmented region
with bounding boxes outputted by the fast object detector
(i.e., YOLO v2 [10]). This strategy notably reduces the time
complexity because at each new frame the probability distri-
butions must be updated for the segments that are visible on
the image plane from the current camera pose, in contrast to
conventional methods that must update the probabilities for
all surfels and voxels on the image plane. This strategy also
notably reduces the space complexity because the probability
distributions need to be stored only at each segment rather
than at each element of the 3D map.

In addition to the computational efficiency, this approach
carries high accuracy in terms of the shape reconstruction
of the objects in the scene. In contrast to conventional
methods [1]–[5], [7], which directly use the 2D semantic seg-
mentation results for the segmentation of the reconstructed
3D map, by segmenting the 3D map geometrically, clear
boundaries between objects appear. This geometric-based
segmentation method does not require any priori models
of the objects in the scene. Thus, considering the capa-
bility of the state-of-the-art object detection method (e.g.,
YOLO9000 [10]), the proposed framework can be carried out
in any unseen indoor scenes.

In return, the semantic information improves geometric-
based segmentation. One of the common and critical issues
of geometric-based segmentation approaches including the
Tateno et al.’s [11] method is that these methods sometimes
over-segment objects (e.g., dividing a chair into a backrest
and a seating surface). We introduce a novel strategy for
improving the incremental segmentation framework beyond
the geometric-only to the semantic-aware representation by
jointing the geometric labels recognized as parts of the same
object.

The overall framework can work in real-time on off-the-
shelf architectures, while requiring low computational com-
plexity compared to the state of the art. In addition, differently
from other methods, including [1]–[3], [12], the proposed
approach does not require any post-processing based on, e.g.,
a conditional random field (CRF), to refine the reconstructed
semantic map. We demonstrate the effectiveness of the pro-
posed approach on a common office scene and report its high
accuracy, run-time performance, and memory footprints.

II. RELATED WORKS
A. SEMANTIC MAPPING
SLAM++ [13] of Salas et al. is one of the first approaches for
object-oriented mapping. They employed point pair features
to detect objects to reconstruct a 3D map at the level of
objects rather than points and planes. Although the scheme
enabled the SLAM system to extend to object-level loop

closure, detailed 3D models of objects are required before-
hand for preprocessing to learn the 3D feature descrip-
tors. Reference [14] also requires a priori known 3D object
models. Tateno et al. [15] used the OUR-CVFH feature
descriptor [16] to match pre-learned objects with geometri-
cally segmented regions that incrementally built up in TSDF
volumes [17]. Stückler and Behnke [18] also mapped learned
objects in the point cloud reconstructed with the dense
SLAM system by extracting multi-resolution 3D shapes and
textures.

Motivated by the impressive performance of state-of-the-
art CNNmodels for 2D semantic segmentations, recent works
for object-orient mapping have mainly focused on effectively
combining them with SLAM systems [1]–[7]. Co-fusion [7]
employs SharpMask [19] to mask object regions, aiming
at tracking and reconstructing detailed shape of dynami-
cally moved objects. In addition, several methods employ
Mask R-CNN [4], [5]. MaskFusion [5] carries out tracking
and dense reconstruction for moving instances in real-time,
as well as for the background static map. Fusion++ [4]
utilizes the same prediction model but aims at extending the
SLAM system by means of object-level pose graph opti-
mizations and relocalizations. On the other hand, the huge
processing time required for the forward pass of these very
deep CNN models disrupt these systems to carry out in real-
time. Thus, many methods [1]–[6] suggest extracting seman-
tic information on only subset of the input frames.

Sünderhauf et al. [6]’s method is closely related to the pro-
posedmethod. Themethod achieves object-oriented semantic
mapping by projecting key depth frames, in which regions
are segmented geometrically and annotated with Single Shot
Multi-box Detector (SSD) [20], based on the camera pose
estimated by ORB-SLAM2 [21]. Contrary to [6], the pro-
posed method tracks each object instance in the scene with
the geometric-based incremental segmentationmethod. Thus,
semantic information from multiple views of the object
region are integrated resulting in highly accurate object
mapping.

In addition, several methods for recognizing an entire
part of a 3D map have been proposed [1]–[3], [12].
SemanticFusion [1] employed the CNN model proposed by
Noh et al. [8] for 2D semantic segmentation, a Bayesian
framework for 2D-3D label transfer to fuse the 2D seman-
tic segmentation labels to the 3D map, and a CRF for 3D
map refinement as post-processing. Similar to the existing
object-oriented mapping method, the forward pass of the
CNN model is the crucial bottleneck, thus the method feeds
an input frame to the CNN model once every 10 input frames
to achieve real-time performance.

B. GEOMETRIC-BASED INCREMENTAL SEGMENTATION
A series of 3D geometric segmentation algorithms have been
proposed to extract geometrically separated regions from
incoming 3D information in an unsupervised fashion. Seg-
mentation for a depth map in real-time has been proposed
byUckermann et al. [22], [23], Pieropan andKjellstrom [24],
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FIGURE 1. Flow of the proposed framework. Bounding boxes, outputted by the pre-trained object detector YOLO v2 [10], are used to update class
probabilities assigned to each segmented region and improve the geometric-based segmentation results towards semantic-aware representations.

and Abramov et al. [25]. In addition to frame-wise segmenta-
tion, Tateno et al. [11] and Finman et al. [26] have developed
real-time geometric-based segmentation methods for a 3D
mesh and a 3D point cloud, respectively, reconstructed with
dense SLAM in an incremental approach.

C. 2D RECOGNITION
Several CNN models [9], [10], [19], [20], [27], [28] for
exploiting semantic information from an input image have
been proposed, sometimes yielding impressive results. In
particular, state-of-the-art object detectors, including YOLO
v2 [10] and SSD [20], deliver an outstanding performance in
terms of fast processing time for the forward pass, scalability,
and accuracy.

III. METHOD
FIGURE 1 shows the flow diagram of the proposed frame-
work. The input is represented by RGB and depth frames
obtained from a free-moving RGB-D sensor, which are
processed individually.

The proposed method has five components: the SLAM
framework, 2D object detection, incremental building of
a geometric 3D map, updating of the class probabili-
ties assigned to each segment of the geometric 3D map,
and improvement of the geometric 3D map with seman-
tic information. In the following section, we describe these
components in detail.

A. SLAM
The proposed system requires the camera pose in the tar-
get scene. In this work, we employ the dense approach of

InfiniTAM v3 [29], relying on the efficient and scalable data
representation proposed by Keller et al. [30], which uses a
set of surfel sk to build the 3D map. With this method, at the
t-th incoming RGB-D frames, the current camera pose T t ∈
SE(3) is estimated through Iterative Closest Point [31] and
RGB alignment. The new surfels generated from the current
depth map are fused into the 3D map with the estimated
camera pose and are used to refine the 3D coordinates and
normal associated with the existing surfels.

B. OBJECT DETECTION
In order to recognize object instances in the scene, first we
apply the CNN-based object detector to the input image.
Although there are many ways to recognize objects in the
image, these methods are not sufficiently fast (e.g., Mask
R-CNN takes 0.5 sec per image). However, recent works of
the CNN-based object detection algorithm achieved real-time
performance while showing high accuracy [10], [20].

In this work, we use theYOLOv2 [10], which has achieved
impressive results on the established computer vision bench-
marks, including MS COCO [32] and PASCAL VOC [33].
Given the input image It (u),u = (x, y) ⊂ Z2, 0 ≤ x <

W , 0 ≤ y < H , YOLO v2 [10] outputs a set of bounding
boxes as bi, i ⊂ N, 1 ≤ i ≤ M , and class probabilities are
assigned to each bounding box as P(c|It ) ⊂ R by letting M
be the number of bounding boxes and c ⊂ Z be the class
category.

C. GEOMETRIC-BASED INCREMENTAL SEGMENTATION
Because the form of the bounding box is not enough
to retrieve information on a 3D shape, we geometrically
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segment the 3Dmap of the target scene toward the goal of pre-
cise object-oriented 3D map reconstruction. Then, we assign
class probabilities of objects to each segment with the bound-
ing boxes. We employ the unsupervised incremental segmen-
tation approach proposed by Tateno et al. [11]. This method
associates a segmentation label li with each surfel sk , by prop-
erly propagating and merging segments extracted from the
current depth map.

D. CLASS PROBABILITY UPDATES
Conventional methods assign class probabilities to each ele-
ment that composes the 3D map. Conversely, we propose
to assign class probabilities to each segmentation label li
associated with each region constituting the geometric 3D
map. With this approach, each label li is assigned to a dis-
crete probability distribution P(c|I1...t ) and to a probability
confidence 0.P(c|I1...t ) is initialized to 0 over all class prob-
abilities, and 0 is also initialized to 0. Therefore, by letting N
be the number of class categories, the space complexity for
storing class probabilities is O(N · Nl), where Nl denotes the
number of segmentation labels, in contrast to conventional
methods [1], [12] which require O(N · Ns), where Ns is the
number of elements of the 3D map (e.g., the number of
surfels). This is an important difference in terms of scalability
since typically Ns � Nl . This also appears as a more natural
approach, as it could be argued that humans recognize objects
by assigning semantic labels in a region-wise manner rather
than element-wise.

In order to fuse the output of the object detector properly
with the 3D map, we update the class probabilities assigned
to each segmentation label li using a confidence-based
approach. First, we render the updated geometric 3D map
on the current image plane using the estimated camera pose
T t and the 3D position x(k) associated with each surfel sk .
The rendered segmentationmapL(u), where each component
is associated with a segmentation label li, is generated with
L(π (T−1t x(k))) = li(k) by denoting the segmentation label
li of a surfel sk with li(k). Here, L(u) takes φ on the pixel
u which is not filled with a label li. Through the label map,
we associate the bounding boxes bi, the output of the object
detector, with the segmented object in the reconstructed 3D
model.

First, we define geometric-based bounding boxes b
geo
li

through the rendered label map as follows:

b
geo
li (left) = min{x|L(u) = li,u = (x, y) ⊂ Z2

}

b
geo
li (right) = max{x|L(u) = li,u = (x, y) ⊂ Z2

}

b
geo
li (top) = min{y|L(u) = li,u = (x, y) ⊂ Z2

}

b
geo
li (bottom) = max{y|L(u) = li,u = (x, y) ⊂ Z2

} (1)

As for the bounding box bi outputted by YOLO v2 [10],
we define set of bounding boxes Blow as follows:

Blow = {bi|max
c

P(c|It ) > σlow}, (2)

Next, we find the bounding box bi ⊂ Blow that maximizes
the following equation to each label li in the rendered label
map L:

IoU(b
geo
li , bi) =

b
geo
li ∩ bi

b
geo
li ∪ bi

. (3)

Similarly for each element bi ⊂ Blow, we find the label li
that minimizes equation (3) to obtain a set U of pairs (li, i)
that match each other.

The class probabilities P(c|I1...t ) and the probability con-
fidence 0 of li of each element (li, i) ⊂ U are updated with
class probabilities P(c|I1...t ) of its pair bi

P(c|I1...t )←
1
Z
·
0P(c|I1...t−1)+ P(c|It )

0 + 1
, 0←0+1,

(4)

which is applied to all class probabilities. Here, the constant
Z is for normalizing the class probabilities to the proper
distribution.

E. SEGMENTATION IMPROVEMENT
Since the geometric-based segmentation [11] described in
section III-C is processed only with geometric information,
some of the objects in the target scene might be divided into
pieces (e.g., dividing a chair into a backrest and a seating
surface). Here, we merge these pieces with semantic infor-
mation which is provided in the form of a bounding box. The
goal of this stage is to identify andmerge these corresponding
segments together.

With this goal, all possible label pairs (la, lb), la 6= lb are
associated with a confidence m(la, lb) ⊂ Z. If a pair (la, lb)
is identified for the first time, its associated confidence is
initialized as follows:m(la, lb) = 0. Next, the set of bounding
boxes with high class probabilityBhigh is defined as follows:

Bhigh = {bi|max
c

P(c|It ) > σhigh}, (5)

Then, we define a set 9 of pair (la, lb) for each bounding
box bi ⊂ Bhigh with the following conditions:

9 = {(la, lb)|
|Ubi
la |

|Ula |
> σsame ∧

|Ubi
lb |

|Ulb |
> σsame}. (6)

Here, the set Uli and U
bi
li are defined as follows:

Uli = {u = (x, y) ⊂ Z2
|L(u) = li},

Ubi
li = {u = (x, y) ⊂ Uli |x < bi(right) ∧ x > bi(left) ∧

y < bi(bottom) ∧ y < bi(top)}. (7)

Inwords,Uli denotes the set of pixels assigned to the label li
in L, and Ubi

li denotes the set of pixels assigned to the label li
in the bounding box bi. Thus, equation (7) verifies whether
the label li is a part of an object instance by considering
the ratio of the target label li in the bounding box bi. We
increment the confidence m(la, lb), which indicates la and lb
consist of the same object, of a pair (la, lb) ⊂ 9 as follows:
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m(la, lb)← m(la, lb)+ 1. If the confidence m(la, lb) exceeds
the threshold σmerge, we merge the label la with the label lb
only when the pair (la, lb) satisfies the following condition:

min |x(k)− x(s)| < σdist, la(k) ⊂ L(u), lb(s) ⊂ L(u).
(8)

Here, as mentioned in sections III-A and III-C, x(k), x(s)
and la(k), lb(s) denote the 3D position and the label of the
surfel sk and ss, respectively. Condition (8) is based on the
hypothesis that the labels la and lb constituting the same
object are separated by at most σdist in Euclidean distance.

IV. EXPERIMENTS
In this section, we evaluate the performance and efficiency of
the proposed system. Following are the details of the evalua-
tion environment: CPU: Intel Core i7-5557U 3.1GHz, GPU:
GeForceGTX1080Ti, andRAM: 16GB.We used theweights
distributed on the official webpage of YOLO v21 [10], which
is trained on the MS COCO dataset [32]. The setting of the
threshold values is as follows: σlow = 0.24, σhigh =
0.6, σsame = 0.9, σmerge = 10, and σdist = 2.0cm.
In order to evaluate our system, we captured 586 RGB-D

frames in a common office with Kinect v1. We rescaled each
input frame to 320×240 resolution as other methods did [1].

A. RUN-TIME PERFORMANCE AND MEMORY FOOTPRINT
In this section, we demonstrate the efficiency of the proposed
method, which is one of the main contributions of the pro-
posed method, by means of analysis of the run-time perfor-
mance and the memory footprint. We quantitatively compare
the run-time performance with state-of-the-art approaches
and show the results in TABLE 1. As shown in TABLE 1,
we achieved 27.2 Hz while performing all processing com-
ponents on every input frame, while MaskFusion [5] and
Fusion++ [4] achieved 30 Hz and 4–8 Hz by extracting
semantic information on every 12 and 30 frames, respectively.

TABLE 1. Comparison of run-time performance. FQ denotes the
frequency recognition of the input frame is performed and the class
probabilities of the 3D map are updated.

.

TABLE 2 shows the average time spent on each processing
stage, described in section III, through all frames of the office
sequence. Although the bottleneck is the process for exploit-
ing the semantic information from the input frame (i.e., object
detection) as in conventional methods [1]–[7], [12], the pro-
posed method has drastically reduced the bottleneck consid-
ering that these conventional methods spend about 500 ms

1https://pjreddie.com/darknet/yolov2/

TABLE 2. Average time spent on each processing stage. Note that the
processing with * and the processing with ** can be processed
simultaneously.

.

on the processing. As for processing the class probability
updates and the segmentation improvement, we shorten the
computational time by limiting the processing target to Blow
and Bhigh which are the subset of all the bounding boxes
outputted by YOLO v2 [10].

FIGURE 2 shows the processing time spent on each frame.
As shown, the proposed method demonstrates an almost con-
stant complexity even if the size of the 3D map reconstructed
with SLAM is increased. This is mainly caused by the pro-
posed strategy of updating the class probabilities, where
the processing target is limited to a subset of all bounding
boxes, thus maintaining the complexity O(n2) (i.e., the size
of the input image) of the incremental geometric-based seg-
mentation method [11]. However, several frames consumed
huge processing time. On these frames, segmentation merg-
ing is performed, and processing for equation (8) had huge
complexity.

FIGURE 2. Processing time spent on each frame of the office sequence.

FIGURE 3. Comparison of memory usage for storing class probabilities
with conventional approaches where class probabilities are assigned to
each element of the 3D map [1], [3]–[5], [12], [34].

Last, we discuss the results of the memory footprint
used for storing class probabilities as shown in FIGURE 3.
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FIGURE 4. Qualitative results of the proposed object-oriented 3D semantic mapping method in an office scenario. In the geometric 3D
map, different colors show different objects. Zoomed-in snapshots from the semantic 3D map of the proposed method are shown at
the bottom.
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We compared the proposed method with conventional
approaches [1], [3]–[5], [12], [34], including MaskFusion
[5] and Fusion++ [4], which assigns class probabilities to
each element (e.g., surfels and voxels) of the 3D map rather
than to each segment. As shown there, the memory usage
of the proposed method is significantly reduced compared
to the conventional approach over all frames. The average
memory usage of the proposed method is 0.004% of those
conventional approaches. The reason for this improvement
is the significant reduction in the space complexity for
storing class probabilities. As the proposed method stores
class probabilities to each segmented region, the space
complexity is O(N · Nl), where Nl denotes the number of
segmentation labels and N denotes the number of class
categories, in contrast to conventional approaches which
require O(N · Ns), where Ns is the number of elements of
the 3D map (e.g., the number of surfels). Here, Nl and Ns
were 119 and 2748249 in the end of the scene, respectively.
Thus, the memory usages for storing class probabilities of the
proposed method and conventional approaches are 38KB and
879,440KB.

B. ACCURACY
FIGURE 4 shows the qualitative result of the object-oriented
semantic 3D map reconstructed with the proposed method.
As shown in FIGURE 4, we reconstructed the semantic
map in which the 3D shapes of the object instances clearly
appear by effectively merging geometric-based incremental
segmentation and the object detector. In particular, by seg-
menting the reconstructed 3D model geometrically, clear
boundaries between objects appear (e.g., the chair and floor
in FIGURE 4), as witnessed by the close-up snapshot shown
at the bottom of the figure.

In the geometric 3D map, the chairs and person were not
divided into small pieces, and the 3D map was segmented in
a semantic context compared with those without a segmen-
tation improvement scheme. This scheme also contributed
to the accuracy of the semantic 3D map compared to the
semantic 3D map without segmentation improvement.

However, this method has the limitation. The accuracy of
the semantic 3D map depends on the accuracy of the geomet-
ric segmentation because of the nature of this method: assign-
ing class probabilities to each region which is mainly carried
by the geometric-based segmentation method. As shown
in FIGURE 4, the laptop on the desk was not segmented
geometrically, thus resulting laptop was not mapped in the
semantic 3D map (See the blue ellipse in the camera view of
object-oriented semantic 3D map in FIGURE 4). We leave
the exploration of improving this limitation to future work.

V. CONCLUSION
In this paper, we proposed an efficient method for
object-oriented semantic mapping. The proposed method
assigns class probabilities to each segment of the 3D map,
which carried by incremental geometric-based segmentation
method, with bounding boxes outputted by a fast object detec-

tor. In return, the segmented 3Dmap is improved with seman-
tic information beyond the geometric-only to semantic-aware
representations. With experiments, we confirmed that the
proposed method has a capability of achieving highly accu-
rate semantic mapping without priori 3D shapes of the
objects. The proposed method also achieved 27.2 Hz while
performing recognition for every input frame and notably
reduced the memory footprints, thanks to the high efficiency
that characterizes the computationally intensive stages of the
proposed framework.
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