
Received November 4, 2018, accepted December 8, 2018, date of publication December 17, 2018,
date of current version January 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2887099

Power- and Time-Aware Deep Learning Inference
for Mobile Embedded Devices
WOOCHUL KANG 1, (Member, IEEE), AND JAEYONG CHUNG 2, (Member, IEEE)
1Department of Embedded Systems Engineering, Incheon National University, Incheon 22012, South Korea
2Department of Electronic Engineering, Incheon National University, Incheon 22012, South Korea

Corresponding author: Jaeyong Chung (jychung@inu.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
through the Ministry of Education under Grant NRF-2016R1D1A1B03934266, and in part by the Incheon National University Research
Grant in 2018.

ABSTRACT Deep learning is a state-of-the-art approach that provides highly accurate inference for many
cyber-physical systems (CPS) such as autonomous cars and robots. Deep learning inference often needs
to be performed locally on mobile and embedded devices, rather than in the cloud, to address concerns
such as latency, power consumption, and limited bandwidth. However, existing approaches have focused
on delivering ‘‘best-effort’’ performance to resource-constrained mobile embedded devices, resulting in
unpredictable performance under highly variable environments of CPS. In this paper, we propose a novel
deep learning inference runtime, called DeepRT, that supports multiple QoS objectives simultaneously
against unpredictable workloads. In DeepRT, the multiple inputs/multiple outputs (MIMO) modeling and
control methodology is proposed as a primary tool to support multiple QoS goals including the inference
latency and power consumption. DeepRT’s MIMO controller coordinates multiple computing resources,
such as CPUs and GPUs, by capturing their close interactions and effects on multiple QoS objectives.
We demonstrate the viability of DeepRT’s QoS management architecture by implementing a prototype of
DeepRT. The evaluation results demonstrate that, compared with baseline approaches, DeepRT can support
the desired inference latency as well as power consumption for various deep learning models in a highly
robust manner.

INDEX TERMS Deep learning, DVFS, feedback control, embedded systems, low power, power-awareness,
Quality-of-Service, QoS, real-time.

I. INTRODUCTION
In recent years, deep learning has emerged as a state-of-
the-art approach that provides robust and highly accurate
inference for many intelligent systems [1]. For instance,
visual scene-understanding enabled by complex deep neu-
ral networks is actively used by many cyber-physical
systems (CPS) such as camera-based surveillance, home
automation devices, cognitive-assistance wearables, and
autonomous vehicles [2], [3]. In many CPS applications,
deep learning inference needs to be performed locally on
mobile embedded devices, rather than in the cloud to address
concerns such as latency, power consumption, limited band-
widths, and privacy [4]. However, since mobile embedded
devices have limited resources and their operating environ-
ments are highly dynamic [5], it is very challenging to support
predictable inference performance. For instance, when a self-
driving vehicle drives from a highway to crowded city areas,

it needs to perform additional computation such as detecting
pedestrians, which might incur sudden increase of inference
latency and power consumption due to potential resource
contention. For many CPS, the unpredictability of perfor-
mance might incur problems, ranging from degraded user
experience to compromised safety to unexpectedly shorter
lifetime. However, many previous approaches have focused
on optimizing the performance of deep learning inference for
resource-constrained embedded devices either by compress-
ing deep learning models [6], [7] or by exploiting hardware
accelerators [8], [9]. These approaches provide significant
performance gains, but they are not aware of performance
requirements of applications and provide only ‘best-effort’
performance in terms of inference latency, power consump-
tion, etc.

In this paper, we propose a deep learning inference run-
time, called DeepRT [10], that provides predictable inference

3778
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-4757-8999
https://orcid.org/0000-0001-5819-1995


W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

performance for CPS. In particular, DeepRT’s novel QoS
management architecture supports multiple goals simulta-
neously, e.g., inference latency and power consumption, by
exploiting MIMO (Multiple Inputs/Multiple outputs) mod-
eling and control techniques [11]. Deep learning inference
requires collaboration between heterogeneous computing
resources such as CPUs and GPUs, and the proposed MIMO-
based QoS management architecture captures close interac-
tions between such heterogeneous computing resources and
their effect on multiple QoS objectives.

To show the viability, we have implemented and evaluated
the proposed QoS management architecture by extending
Caffe [12], a popular open-source deep learning framework.
The evaluation results demonstrate that DeepRT’s approach
to MIMO-based QoS management is significantly more
effective than baseline approaches. In particular, DeepRT can
support both target inference latency and power consump-
tion simultaneously in a highly robust and efficient manner
against unpredictable workloads.

The rest of this paper is organized as follows. Section II
gives an overview of DeepRT. Section III presents the archi-
tecture of DeepRT and the details of feedback control mech-
anism of DeepRT. Section IV shows the details of evaluation
settings and evaluation results. The related work is presented
in Section V. Finally, Section VI concludes the paper and
discusses future work.

II. OVERVIEW OF DEEPRT
A. BACKGROUND ON DEEP LEARNING INFERENCE
Deep learning is a machine learning algorithm to solve intu-
itive problems such as recognizing spoken words or objects
in images by applying a cascade of layers of mathematical
transformation units. Deep learning models define the struc-
ture of these layers and their related parameters or weights.
The parameter values of the models are learned through the
process called training. During the training phase, batches
of hundreds of input data is traversed forward and backward
through the layers to update the parameter values until the
desired inference accuracy is obtained. The training phase
is often performed off-line at the cloud because this phase
is highly computation-intensive and might take a long time
(e.g., a few days or weeks.) Once a deep learning model
is trained, it can be deployed to various systems such as
self-driving cars, smartphones, surveillance cameras, and the
cloud. The deployed deep learning models are used by appli-
cations to infer a situation for given sensor inputs. This step
is called the inference phase. During the inference phase,
the input data from sensors such as cameras are transformed
through the sequence of layers of the model to generate
output. Since the transformation at each layer requires highly
data-parallel computation, GPUs that are found in most mod-
ern computing hardware are actively exploited for deep learn-
ing inference. Figure 1 depicts the structure of an inference
task that requires the collaboration between the CPU and
the GPU devices. Once an inference task is invoked with

FIGURE 1. Collaboration of CPU and GPU for deep learning inference.

a specified deep learning model M , each layer of M is
executed sequentially by invoking the layer’s corresponding
GPU kernels. This whole process of transforming sensor
inputs to inference results is oftenmanaged by a deep learning
inference runtime, such as TensorRT [13] and Caffe [12],
that provides a set of optimized implementation of inference
operations defined in the model.

Low inference latency and power efficiency are two pri-
mary performance metrics during the inference phase. For
example, self-driving cars need to complete perception-action
cycles on the order of a few tenth of a second. If such dead-
lines are not supported, users might have negative experience
of the application, or the safety in safety-critical systems can
be compromised. In many battery-powered devices, power-
efficiency is as important as the low latency because theymay
have to operate without recharging for days or months. For
example, current self-driving cars consume around 2.5 kilo-
watts for making self-driving decisions, and this massive
power consumption is becoming a problem that limits driving
distances [14].

B. SERVICE MODEL OF DEEPRT
DeepRT is a deep learning inference runtime that supports
predictable inference service for applications exploiting deep
learningmodels [10]. DeepRT has been designed for soft real-
time applications that require predictable inference latency
and power consumption. An application can request DeepRT
to initiate an inference task with a deep learning modelM and
a related Quality-of-Service (QoS) specification Q. The QoS
specification Q is defined as a tuple Q = 〈D,P〉, in which D
is a deadline, or desired inference latency, and P is a desired
power consumption.

In CPS, inference tasks are usually periodic. For instance,
inference tasks periodically sample data from sensors and
provide data to DeepRT for timely inference service. Dead-
line D is an end-to-end latency required to complete each
activation of the inference task, or processing all layers in
the model M . The (relative) deadline of periodic inference
tasks are usually set to their periods because each activa-
tion of the inference tasks needs to be finished before their
next period. In DeepRT, soft deadline semantics are applied,
in which inference tasks are still worth even if they miss
their deadlines. For example, inference results for wearable
cognitive-assistance systems is still worth even if they miss
their deadlines [15]. Soft deadline semantics have been cho-
sen since most inference tasks of CPS run in unpredictable

VOLUME 7, 2019 3779



W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

open environments, where the complete knowledge of task
sets or timing constraints are not available. The purpose of
DeepRT is not to completely avoid deadline misses, but to
support QoSmanagement that minimizes the deadline misses
at runtime while achieving predictable power consumption.

III. POWER- AND TIME-AWARE INFERENCE
In this section, we discuss DeepRT’s core mechanism to
support predictable inference latency and power consumption
simultaneously.

A. QoS METRICS
Many real-time systems use the deadline miss ratio as a pri-
mary QoS metric for performance monitoring. The deadline
miss ratio shows the ratio of tardy inference tasks to the total
number of inference tasks. For instance, mobile applications
such as speech-to-text or translation need to complete the
inference under a stringent low latency, e.g., 200ms. If the
desired deadline miss ratio of the speed-to-text using deep
learning is 0.99, then 99% of inference tasks are supposed to
meet 200ms deadlines.

However, it turns out that the deadline miss ratio is not
appropriate for DeepRT because the task invocations of
inference applications are usually low compared to typical
real-time applications. For instance, typical frame rates of
wearable cognitive-assistance systems are between 5Hz and
12.5Hz [15]. With such a low number of service invoca-
tions, the deadline miss ratio has a wide confidence interval
and this might lead to unstable statistical interpretation. To
address this problem, DeepRT controls the QoS based on the
average tardiness of inference tasks. For each inference task,
we define tardiness as a metric to monitor the timeliness of a
task:

tardiness =
actual inference latency
target inference latency

. (1)

When an inference task is being delayed, then its tardiness
becomes greater than 1. Conversely, when the tardiness is less
than 1, it means that the task is completed earlier than the
deadline.

Another QoS metric, which might pose conflicting
requirements, is power consumption. In modern processors,
the speed of processors, such as CPUs and GPUs, is con-
trolled by their operating clock frequencies.With this capabil-
ity, we can reduce the ratio of tardy inference tasks at the cost
of increased power consumption. For example, doubling the
clock frequency of a processor can reduce the latency of tasks
running on the processor by up to half. Increasing the pro-
cessor clock frequency also drops the processor utilization.
In many real-time systems, scheduling policies, such as rate
monotonic and EDF (Earliest Deadline First), can guarantee
no deadline misses if the utilization of the processor is under
certain bounds [16]. However, one disadvantage of increasing
processor frequency to meet the deadlines is the increased
power consumption. As shown in Equation 2, the power

FIGURE 2. DeepRT’s QoS management architecture.

consumption is proportional to the processor frequency f :

power(V , f ) = C × V 2
× f , (2)

where C represents a device specific constant, and V indi-
cates the supply voltage [17]. Since V increases proportion-
ally with f , the combination of V and f has a cubic impact
on total power consumption. Therefore, a proper processor
frequency should be chosen, either statically or dynamically,
to support the desired deep learning inference latency under
the specified power consumption range.

B. QoS MANAGEMENT ARCHITECTURE
Figure 2 shows the QoSmanagement architecture of DeepRT.
DeepRT consists of twomajor components: theQoSmanage-
ment layer and the model execution layer. A deep learning
inference task is invoked with a service request from applica-
tions that specifies a deep learning modelM and a set of QoS
requirements Q. The model execution layer is responsible
for typical jobs of a deep learning runtime; it passes the
input from sensors to the cascade of layers of the given deep
learningmodelM to generate final inference results. TheQoS
management layer continuously monitors the performance
of inference tasks running in the model execution layer, and
controls the underlying hardware resources to support the
desired QoS requirements Q.
The model compressor in the QoS management layer first

checks if the model M needs to be compressed at runtime.
If the footprint of M is no less than the available memory,
M is compressed to reduce its memory footprint.1 For precise
monitoring of the tardiness of inference tasks, milestones
are inserted at several chosen layers of model M . Whenever
either these milestones are passed or the inference task is
completed, its tardiness is reported to the monitor. The mon-
itor computes the QoS errors, or the differences between the
desired and the monitored QoS metrics, i.e., the tardiness
error and the power consumption error of inference tasks. The
MIMO feedback controller computes the clock frequency
adaptation of CPU and GPU devices to reduce these QoS

1The model compression algorithm is out of scope of this paper. Readers
are referred to our previous work [10].

3780 VOLUME 7, 2019



W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

TABLE 1. Notations used in the feedback control loop.

FIGURE 3. MIMO control of tardiness and power.

errors. Finally, the resource manager makes a schedule to
enforce the requested clock frequency adaptation.

1) FEEDBACK CONTROL PROCEDURE
The goal of QoS management is to support the end-to-end
latency of inference tasks and the power consumption close
to the target deadline D and the target power consumption
P, respectively. To achieve this goal, we might consider
scheduling tasks a priori. However, because the environment
of CPS is highly dynamic and unpredictable, it is very hard,
if not impossible, to have accurate knowledge of related
tasks and their resource requirements. For instance, schedul-
ing policies of some resources, such as GPUs, are usually
unknown [18].

To address this problem, we propose the Multiple
Inputs/Multiple Outputs (MIMO) feedback control architec-
ture shown in Figure 3, in which multiple QoS goals are han-
dled dynamically by controlling heterogeneous processors,
e.g., CPUs and GPUs. The overall MIMO feedback control
procedure is as follows:

1) At the k-th monitoring instant, the average tardiness
errors etard (k) and the average power consumption
error epwr (k) are computed for inference tasks.

2) Based on etard (k) and epwr (k), the MIMO controller
computes the control signals 1freqcpu(k + 1) and
1freqgpu(k + 1) for CPU and GPU devices, respec-
tively.

3) Given CPU’s and GPU’s current frequencies freqcpu(k)
and freqgpu(k), the frequencies until the (k+1)th moni-
toring instant are set to freqcpu(k)+1freqgpu(k+1) and
freqgpu(k)+1freqgpu(k+1) for CPU and GPU devices,
respectively.

4) The model execution layer of DeepRT enforces
1freqcpu(k + 1) and 1freqgpu(k + 1) using available
discrete clock frequencies of CPU and GPU devices,
respectively.

5) Wait until the (k + 1)th monitoring instant; the time
period between the kth and the (k + 1)th monitoring
instants is the (k + 1)th monitoring period.

6) Repeat the above steps in 1)- 5) for continuous QoS
management.

2) MILESTONES AND MONITORING PERIOD
The monitoring period of the feedback control loop deter-
mines the rate of feedback control. The shorter themonitoring
period is, the more frequent and timely control of QoS can
be provided at the cost of increased overheads. Therefore,
the monitoring period should be set considering the trade-off
between the timeliness of QoS control and its overhead.

One challenge in setting the monitoring period of DeepRT
is the diversity of deep learning models. For instance,
the inference latency of small models such as LeNet [19] is
just a few milliseconds in a mobile device while deeper mod-
els such as GooLeNet [20] have more than several hundreds
milliseconds inference latency in the same environment. If
an inference latency is longer than the monitoring period,
the feedback control decision for the next monitoring period
cannot be made properly due to the unavailability of the
tardiness information at the monitoring instant. To handle this
problem, DeepRT instruments milestones into several chosen
layers for progress monitoring of deep learning models. Each
milestone is associated with an internal deadline as follows:

profiled latency to the milestone
profiled end-to-end inference latency

× deadline D (3)

Whenever amilestone is passed during the inference phase,
its tardiness is calculated according to the internal dead-
line. For example, Figure 4 shows the latency to the n-th
layer of GooLeNet during the inference. If the monitoring
period is 200ms, the QoS control cannot be provided at every
monitoring instant because the profiled end-to-end inference
latency using the GooLeNet model is about 207ms, and,
hence, the tardiness information cannot be provided to the
MIMO controller. Therefore, at least one milestone needs to
be inserted for proper feedback control. Since the profiled
latency to the 40th layer is about 103.5ms, if the target
deadline D is 200ms, one milestone can be inserted at the
40th layer with the internal deadline of 100ms(= 103.5ms

207ms ×D).
Whenever the 40th layer is passed during the inference, the
tardiness of the inference task is computed using this internal
deadline, resulting in proper feedback control in every moni-
toring period.

C. FEEDBACK CONTROL LOOP DESIGN
In this section, we take a systematic approach to designing a
MIMO feedback control loop for the simultaneous control of
tardiness and power consumption of inference tasks.

1) SYSTEM MODELING
The first step in designing a feedback control loop is to build
a system model by mathematically quantifying the effect of
control inputs on the monitored QoS metrics. As discussed in

VOLUME 7, 2019 3781



W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

FIGURE 4. Inference latency to n-th layer of GoogLeNet.

Section III-B, we are interested in supporting the tardiness of
inference tasks and the power consumption simultaneously.
To support two QoS goals simultaneously, we need at least
two control inputs that can affect the QoS metrics in an effec-
tive and meaningful manner [11]. Given tardiness and power
as two QoS metrics, we can easily choose the clock frequen-
cies of two heterogeneous processors involved in inference
as two primary tuning knobs to control the tardiness and
the power consumption of inference tasks because, as shown
in Figure 1, both tardiness and power of deep learning infer-
ence are determined by the close collaboration between CPUs
and GPUs. While CPUs are responsible for managing the
whole forward process of inference tasks such as staging
in/out data between the layers of a deep learning model,
GPUs perform computation-intensive parallel transformation
of each layer. We choose to use a linear time-invariant MIMO
model, shown in Equation 4, to capture these interactions
between multiple control inputs (freqcpu and freqgpu) and
multiple system outputs (tardiness and power).[
tardiness(k + 1)
power(k + 1)

]
= A ·

[
tardiness(k)
power(k)

]
+ B · u(k), (4)

where u(k) is a vector representation of control inputs:

u(k) =
[
freqgpu(k)
freqcpu(k)

]
(5)

The parameters A and B reflect the modeled system’s
dynamics. The model shows that the next system state[
tardiness(k + 1) power(k + 1)

]T is determined by the cur-
rent state

[
tardiness(k) power(k)

]T and the control inputs
u =

[
freqgpu(k) freqcpu(k)

]T . Because the model has two
control inputs and two system outputs, both A and B are
2 × 2 matrices. To obtain the parameters A and B, we
might consider first principles of deep learning inference
systems. However, deep learning inference systems are very
complex artifact that has complex interaction between the
inference runtime and various hardware resources. There-
fore, we choose to use system identification, instead of first
principles. System identification is a statistical approach to
build mathematical models of dynamic systems from empir-
ical data. During actual system identification, various com-
binations of two control inputs are applied to the system to
stimulate the dynamics of the modeled system. For system
identification, we choose to use CaffeNet model on a Jetson

FIGURE 5. System identification.

TK1mobile device. 2 Figure 5 shows the behavior of DeepRT
during the system identification. The model parameters A
and B can be obtained by performing regression analysis
using this empirical data. In our study, the obtained model
parameters are as follows:

A =
[
0.638 −0.047
0.529 0.154

]
, B =

[
−0.391 −0.027
1.744 0.488

]
Since matrix B quantifies the effect of inputs to the system
dynamics, it needs to be analyzed carefully. It should be
noted that freqgpu(k)’s weight on tardines is −0.391 while
freqcpu(k)’s is only −0.027. This implies that freqgpu(k) has
about 14 times higher impact on the tardiness of inference
tasks than freqcpu(k). In contrast, freqgpu(k)’s weight on
power is only about four times of freqcpu(k)’s.; the weight of
freqgpu(k) on power is 1.744 while freqcpu(k)’s is 0.488. This
implies that freqcpu(k) has relatively higher impact on power
consumption of inference tasks. We found that various deep
learning models (LeNet, CaffeNet, and GooLeNet) manifest
very similar dynamics.

2) VALIDATION AND ANALYSIS OF SYSTEM MODEL
Once a system model is obtained, its validity must be eval-
uated by comparing the model’s predictions with actual
experimental data. The accuracy metric R2 (= 1 −
variance(experimental value - predicted value)

variance(experimental value) ) is commonly used to
quantify the accuracy of amodel. TheR2 value of 1.0 suggests
a perfect fit, and a model is considered acceptable for control
purposes if R2 ≥ 0.8 [11]. In our study, R2 for the tardiness
and the power consumption is 0.84 and 0.80, respectively,
and, hence, our model is accurate enough for control pur-
poses.

A valid model of a system can be used to predict the
behavior of the system. For example, the system model can
be used to investigate the system’s controllability that tells if
there exists some input sequence to drive the system to any

2The details of evaluation testbed is discussed in Section IV.

3782 VOLUME 7, 2019



W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

FIGURE 6. Feasible control regions. (a) Range of feasible inputs.
(b) Predicted range of feasible outputs.

target state. The controllability of a system can be tested with
a controllability matrix C shown in Equation 6.

C =
[
An−1B An−2B ... AB B

]
(6)

A linear time-invariant system is controllable if and only if
controllability matrix C is invertible [11]. In our modeled
system, the rank of C with the given system parameters A
and B is 2, and, hence, the target system is controllable.
This result implies that any state of

[
tardiness power

]T can
be reachable by applying some sequence of control inputs
u(0),u(1), . . . ,u(n− 1),u(n). However, since control inputs
u(k) =

[
freqgpu(k) freqcpu(k)

]T have limits in real systems,
regions of feasible outputs need to be analyzed. For example,
Figure 6-(a) illustrates the range of CPU and GPU clock
frequencies in a NVIDIA Jetson TK1 embedded board. The
solid parallelogram in Figure 6-(b) is the corresponding feasi-
ble region predicted by the MIMOmodel in Equation 4. Each
labeled corner in Figure 6-(a) is displayed in Figure 6-(b) with
the same letter. A combination of power and tardiness that
does not lie within the parallelogram in Figure 6-(b) is not
feasible because either one or both of freqcpu and freqgpu is
out of feasible ranges.

3) CONTROLLER DESIGN
Once we have a valid MIMO approximation model, a MIMO
controller can be designed for the target system, DeepRT.
For its robustness and simplicity, we choose to exploit the
proportional integral (PI) control function given by

u(k) = −K
[
e(k)
eI (k)

]
= −

[
KP KI

] [
e(k)
eI (k)

]
(7)

TABLE 2. Hardware of the testbed.

where KP and KI , respectively, are proportional and integral
control gains. At each k-th monitoring instant, the controller
calculates the control input u(k) by monitoring the QoS error
e(k) and the integrated QoS error eI (k):

e(k) =
[
etard (k)
epwr (k)

]
=

[
reftard − tardiness(k)
refpwr − power(k)

]
, (8)

eI (k) =
[
eI ,tard (k)
eI ,pwr (k)

]
=

[
eI ,tard (k − 1)+ etard (k)
eI ,pwr (k − 1)+ epwr (k)

]
. (9)

The characteristics of the controller, such as settling time
and maximum overshoot, are determined by the control gains
KP and KI . To get proper control gains for MIMO systems,
LQR (linear quadratic regulator) technique is typically used.
LQR is a method to get optimal control gains by focusing
on the trade-off between control efforts and control errors.
Typically, computer tools such as MATLAB command dlqr
is used. For more details on the LQR method, readers are
referred to [11].

IV. EVALUATION
In this section, we evaluate our implementation of DeepRT
and compare it with a state-of-the-art implementation of deep
learning inference runtime.

A. IMPLEMENTATION AND TESTBED
We have implemented DeepRT by extending Caffe [12],
which is a popular open source deep learning framework.
Deep learning frameworks, such as Caffe and Tensor-
Flow [21], provide the implementation of efficient deep
learning inference functionalities, such as optimized GPU
kernels for various deep learning layers. However, they do
not support QoS. Though our implementation is based on
Caffe, the proposed MIMO control mechanism of DeepRT
is framework-neutral and can be easily adapted to other deep
learning frameworks such as TensorFlow [21].

In our testbed, DeepRT runs on a NVIDIA Jetson
TK1 mobile platform. Table 2 summarizes the specification
of the Jetson TK1. As shown in Table 2, the clock frequencies
of CPU/GPU of Jetson TK1 have a dozens of discrete levels.
For fine-grained and smooth control of CPU/GPU clock fre-
quencies, the model execution layer of DeepRT exploits the
pulse width modulation (PWM) technique [22] that emulates
arbitrary clock frequencies by switching between several
discrete frequency levels. The operating system of Jetson
TK1 is Ubuntu 14.04 Linux, and it supports several CPU
DVFS policies through DVFS governors [23]. The default
DVFS governor is on-demand, in which the clock frequencies

VOLUME 7, 2019 3783



W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

TABLE 3. Baseline approaches.

TABLE 4. Deep learning models.

of CPUs are adjusted according to the utilization of CPUs.
Unlike CPUs, Jetson K1 does not provide DVFS governors
for GPUs, and, hence, their clock frequency must be set
manually by users.

During the evaluation, the power/energy consumption of
the Jetson TK1 is monitored with a Yokogawa WT310E
power meter. The real-time power/energy measurements are
reported to the Jetson TK1 via USBTMC protocol.

B. BASELINES AND EVALUATION GOALS
The objectives of the performance evaluation are 1) to deter-
mine if DeepRT can support multiple QoS goals simultane-
ously under various unpredictable conditions and 2) to test
the robustness of DeepRT against unpredictable workload
changes.

We evaluate DeepRT with the baselines shown in Table 3.
Open represents a state-of-the-art approach to deep learning
inference. In Open, inference tasks run on the original Caffe
deep learning framework with the default CPU DVFS gov-
ernor, which is on-demand. The frequency of GPUs is set to
the maximum because GPUs of Jetson TK1 does not provide
adaptive DVFS governors. MIMO is our approach support-
ing both the target tardiness and the power consumption of
inference tasks via simultaneous control of CPU and GPU
devices. Both SISOmax and SISOopen support the target tar-
diness of inference tasks through Single Input/Single Output
(SISO) control of the GPU clock frequency. Therefore, both
SISOmax and SISOopen are not aware of power consumption.
In SISOmax , the frequency of CPU is set to the maximum.
In contrast, the CPU frequency of SISOopen is adjusted
dynamically by the default on-demand CPUDVFS governor.
To verify the effectiveness of DeepRT in various deep

learning models, two representative, but very contrasting,
models shown in Table 4 are considered. CaffeNet is a
slightly modified variant ofAlexNet [24]. CaffeNet represents
memory-intensive deep learning models that have a large
number of parameters. Even thoughCaffeNet has only 24 lay-
ers, it has three large fully-connected layers that occupy 96%
of its 61 million parameters. CaffeNet model’s parameters
occupy 243 MBytes of storage. Due to this large number

TABLE 5. DeepRT’s Tasks.

TABLE 6. Inference task’s periods and QoS goals.

of parameters, inference tasks with CaffeNet model need
to perform frequent high-bandwidth memory operations. In
contrast,GoogLeNet represents highly computation-intensive
deep learning models [20]. Even thoughGoogLeNet has deep
152 layers, the model requires only 7 million parameters and
takes up 53MBytes of storage.Most layers ofGoogLeNet are
computationally demanding convolution layers. Both Caf-
feNet and GoogLeNet take 224 × 224 images as input and
classify them into 1000 classes.

For the evaluation of DeepRT, tasks shown in Table 5
are involved. Inference tasks of DeepRT perform actual exe-
cution of a given deep learning model. Inference tasks are
periodic and, as shown in Figure 1, they run both in CPU
and GPU devices. Inference tasks are activated periodically
to process periodic sensor streams. As shown in Table 6, dif-
ferent periods andQoS goals are assigned to different models,
considering their primary applications and resource require-
ments. For example, the period of CaffeNet is determined to
achieve 12.5 frames/second, which is required for semantic
segmentation of real-time camera images [25]. The target
latency, or relative deadline, of the inference task is set to be
shorter than its period in order to reserve slack time for non-
real-time tasks that perform aperiodic jobs such as processing
I/O and GUIs. Because many CPS applications must process
sensor inputs in real time without buffering, the batch size of
inference tasks is set to one. The control task is responsible for
QoS management. The control task is activated periodically
every 500ms, and adapts the clock frequencies of CPU and
GPU devices according to the monitored inference tardiness
and power consumption.

C. AVERAGE PERFORMANCE
In this set of experiments, we investigate if DeepRT can sup-
port QoS goals under various conditions. In each experiment,
the performance is observed for at least 300 monitoring peri-
ods and its average with 99% confidence interval is reported.

1) VARYING TARGET TARDINESS
In this experiment, the target tardiness of inference tasks are
varied from 0.7 to 1.3 while the target power consumption is
fixed.

Figure 7 shows the results for CaffeNet, in which the
target power consumption is fixed at 5.5W. As shown

3784 VOLUME 7, 2019



W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

FIGURE 7. Varying target tardiness (CaffeNet). (a) Tardiness. (b) Power. (c) CPU frequency. (d) GPU frequency.

FIGURE 8. Varying target tardiness (GooLeNet). (a) Tardiness. (b) Power. (c) CPU frequency. (d) GPU frequency.

in Figure 7-(a), both MIMO and SISOmax satisfy the tar-
get tardiness very closely. Because Open does not support
QoS, its tardiness is not affected by varying target tardiness.
SISOopen is supposed to support the target tardiness through
SISO control of tardiness, but this experiment shows that it
cannot support the target tardiness. For instance, SISOopen’s
tardiness deviates from the target tardiness by 42% when the
target tardiness is 0.7. This is incurred by two conflicting
feedback controllers of SISOopen. In SISOopen, the GPU clock
frequency is controlled by DeepRT’s SISO controller, while

the CPU clock frequency is controlled by the on-demand
DVFS governor. Because both controllers are not aware of
each other, they cannot make coordinated control decisions,
failing to converge to the target tardiness.

Figure 7-(b) shows the power consumption in the same
experiment. It shows that the target power consumption is
closely supported by MIMO while other approaches do not
support the target power consumption. This is because the
approaches other thanMIMO are not aware of the power con-
sumption of inference tasks. For instance, SISOmax’s power

VOLUME 7, 2019 3785



W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

consumption varies from 5.78W to 5.52W as the target tar-
diness varies from 0.7 to 1.3. In contrast, MIMO maintains
the power consumption at 5.5W despite the varying target
tardiness. As shown in Figures 7-(c) and -(d), MIMO sup-
ports both the target tardiness and the power consumption by
simultaneously adjusting the clock frequencies of CPU and
GPU devices. This simultaneous and coordinated adaptation
of CPU and GPU clock frequencies is achieved by the system
model in Equation 4 within the feasible control region shown
in Figure 6.

However, as shown in Figure 7-(a), the tardiness ofMIMO
begins to deviate from the target tardiness as the target tar-
diness is set to be away from 1.0, For example, when the
target tardiness is 0.7, the tardiness of MIMO is 7% off the
target. This is because one of tuning knobs begins to reach
its saturation point as the target tardiness moves further away
from 1.0. For instance, as shown in Figure 7-(d), the GPU
clock frequency is almost at its maximum when the target
tardiness is 0.7, and, hence, the clock frequency cannot be
further increased to achieve the QoS goals.

Figure 8 shows the result when the same experiment is
performed for theGooLeNet model. ForGooLeNet, the target
latency and the power consumption of inference tasks are set
to 0.15 seconds and 6.3W, respectively. Though GooLeNet
and CaffeNet have very different model structures, we can
observe similar results for both deep learning models. As
shown in Figures 8-(a) and (b), MIMO closely supports the
varying target tardiness of inference tasks while maintaining
6.3W power consumption.

2) VARYING TARGET POWER CONSUMPTION
In this experiment, the target power consumption of inference
tasks is varied while the target tardiness is fixed at 1.0. Since
only MIMO is aware of power consumption, only MIMO is
evaluated for CaffeNet and GooLeNet models.

Figure 9 shows the result for CaffeNet, in which the
target power consumption is varied from 5.1W to 5.8W
while the target deadline is fixed at 0.05 seconds. In
Figures 9-(a) and (b), we can see thatMIMO closely supports
both the target tardiness and the target power consumption
while the target power consumption is in between 5.2W and
5.6W. Figure 9-(c) shows that both tunning knobs, i.e., freqcpu
and freqgpu, are adjusted to support both QoS goals simul-
taneously. However, if the target power consumption is out-
side the range between 5.2W to 5.6W, both tardiness and
power consumption begin to deviate from the QoS goals. For
instance, when the target power consumption is 5.1W, the
tardiness and power consumption, respectively, are 1.01 and
5.158W, which are +1% and +1.1% deviations from the
respective QoS goals. On the other hand, when the target
power consumption is 5.8W, the tardiness and power con-
sumption, respectively, are 0.974 and 5.65W, which is−2.6%
and −2.6% different from each QoS goal. These results are
incurred because one or both of the tuning knobs, i.e., freqcpu
and freqgpu, are saturated at both extremes. For instance,
in Figure 9-(c), when the target power consumption is 5.7W,

FIGURE 9. Varying target power (CaffeNet). (a) Tardiness. (b) Power.
(c) CPU/GPU frequency.

the CPU frequency is already at the maximum, and, hence,
it is impossible to further increase its frequency. As shown
in Figure 6, the combination of target tardiness and power
consumption is achievable only within the feasible input
region. Once one of inputs is saturated, we need to change
QoS goals accordingly.

Figure 10 shows the result for GooLeNet, in which the
target power consumption is varied from 5.8W to 6.6Wwhile
the target inference latency is set to 0.2 seconds. Although
the model structure of GooLeNet is deeper and more com-
putationally intensive than CaffeNet, we can observe similar
results. As shown in Figures 10-(a) and (b), as far as both
clock frequencies of CPUs and GPUs are within the feasible
input region, GooLeNet closely supports both QoS goals
while the desired power consumption is varied.

D. TRANSIENT PERFORMANCE AND ROBUSTNESS
Average performance is not enough to demonstrate the per-
formance of dynamic systems, such as DeepRT, since the
performance can change severely in a short time period. For
example, consider a situation where a person with a wearable
cognitive-assistance device walks to a more crowded area.
This change in the physical world might result in sudden
increase of workloads to process more objects.

3786 VOLUME 7, 2019



W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

FIGURE 10. Varying target power (GoogLeNet). (a) Tardiness. (b) Power.
(c) CPU/GPU frequency.

In this experiment, we introduce sudden change of work-
loads to observe the transient behavior of DeepRT and its
robustness against unexpected disturbances. At the 100th
monitoring instant, a periodic disturbance thread is activated
and continues until the 200th monitoring instant. The distur-
bance thread performs matrix multiplication. The size of the
matrix is arbitrarily changed from 40 × 40 to 120 × 120 to
make the workload unpredictable. The period of the distur-
bance thread is set to 10ms so that it frequently interrupts
inference tasks.

Figure 11 shows the transient behavior ofMIMO when the
sudden disturbance is applied to interrupt the execution of the
inference task that runs GooLeNet. Until the 100th monitor-
ing period, both the target tardiness and the power consump-
tion are closely supported by adjusting the clock frequencies
of CPU and GPU devices. As the disturbance is applied at the
100th monitoring instant, the tardiness increases immediately
to 1.18. However, the tardiness is stabilized quickly to the
target tardiness in the next monitoring period. Similarly, at the
100th monitoring instant, the power consumption increases
suddenly to 6.51W, which is 3.3% higher than the QoS goal.
However, the power consumption is stabilized to have less
than 2% deviation from the QoS goal within one monitoring

period. Figure 11 also shows the clock frequencies of GPU
and CPU devices during the experiment. We can observe that
the QoS goals are supported by adjusting the clock frequen-
cies of both devices simultaneously. For instance, at the 100th
monitoring instant, the clock frequencies of GPU and CPU
devices are adjusted by +36% and −46%, respectively, to
handle the change of workloads.

Figure 11-(b) shows the transient behavior of SISOmax in
the same experiment. We can observe that SISOmax closely
satisfies the target tardiness even in the presence of sudden
disturbance. For instance, when the disturbance is applied
at the 100th monitoring instant, SISOmax’s tardiness is sta-
bilized within 2 monitoring periods. However, since SISOmax
is not aware of power consumption, its power consumption
increases to 6.95W in the presence of disturbance. As shown
in Figure 11-(b), SISOmax adjusts only GPU clock frequency
to support the target tardiness, so unlike MIMO, its power
consumption cannot be controlled.

V. RELATED WORKS
There has been significant effort to develop highly effi-
cient and light-weight deep learning inference methods for
mobile and embedded devices. Several hardware accelerators
have been proposed for efficient deep learning inference on
resource-constrained edge devices [7], [8]. They showed sig-
nificant improvements both in terms of inference latency and
energy consumption, but a major drawback is their inflexibil-
ity and limited scope of application. Several software-based
approaches also have been proposed [13], [26]. DeepX, for
example, is a software accelerator that decomposes a mono-
lithic deep learning model into unit-blocks for efficient exe-
cution on heterogeneous local device processors [26]. There
has been also significant effort in hand-crafting small foot-
print deep learning models [27], [28] or compressing trained
models for resource-constrained mobile devices [29]–[31].
Despite these large body of work, none of these approaches
support predictable inference performance. Because they are
not aware of applications’ QoS, they only support unpre-
dictable ‘best-effort’ performance. Our previous work on
DeepRT supports predictable inference latency via feedback
control [10]. However, our previous work supports only one
QoSmetric, and does not consider power consumption as one
of primary QoS metrics.

Control theory is one of the most widely used mathemat-
ical tool to tune various aspects of dynamic systems, and it
has been applied actively to many software systems such as
web servers [32], databases [33], and approximate computing
frameworks [34]. However, these control-theoretic solutions
of previous studies are not directly applicable to our work
because they do not consider specific requirements and con-
straints arising from deep learning inference. A key research
question in deep learning inference is how to support mul-
tiple QoS goals when various heterogeneous processors are
involved. To the best authors’ knowledge, no previous work
has addressed this question directly. In this work, we propose
a MIMO control method as a primary tool that supports

VOLUME 7, 2019 3787



W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

FIGURE 11. Transient performance (GoogLeNet). (a) MIMO. (b) SISOmax .

multiple QoS goals simultaneously by controlling heteroge-
neous processors.

DVFS is a primary tuning knob to control the speed of var-
ious processors. Since voltage/frequency scaling has a cubic
effect on power consumption, there has been a large body
of research on exploiting DVFS to support the timeliness of
tasks in an energy-efficient manner [35], [36]. The use of
DVFS for real-time tasks was theoretically studied first by
Yao et al. [37]. In their work, they assume an ideal processor
that can scale to any continuous speed. Fu et al. proposed
to use pulse width modulation (PWM) techniques to map
the desired average power to a series of discrete frequency
levels [36]. DeepRT also exploits PWM to emulate continu-
ous frequency levels using discrete frequency levels. Despite
thematurity of CPUDVFS, there has been little study onGPU
DVFS [38]. Some results demonstrated that applying CPU
DVFS strategies to GPUs could be ineffective [39], [40].
Though Deep learning inference tasks require close coordi-
nation of CPUs and GPUs, no previous works have addressed
the problem of coordinating DVFS of CPUs and GPUs.
DeepRT’sMIMO controller simultaneously adjusts the speed
of CPU and GPU devices to support both timeliness and
power consumption of inference tasks.

VI. CONCLUSIONS
This paper introduces DeepRT, a deep learning infer-
ence runtime that coordinates underlying heterogeneous
resources to support predictable inference latency and power
consumption simultaneously. DeepRT demonstrates a
control-theoretic solution to supporting predictable infer-
ence performance. In particular, the MIMOmodeling/control
methodology is proposed as a systematic tool that captures
the potential interactions between heterogeneous processors
and QoS metrics. We have demonstrated the viability of
the proposed QoS management approach by implementing
an experimental prototype. The results show that DeepRT

can support the desired inference latency as well as power
consumption for various deep learning models in a highly
robust manner.

For future work, we would like to enhance DeepRT in
several different directions. First, the feedback controller of
DeepRT will be extended to include more QoS metrics such
as inference accuracy. By pruning low-weight connections
of deep learning models, the computational overhead can
be reduced significantly. However, model-pruning usually
reduces the inference accuracy. We plan to study a runtime
mechanism that makes a systematic negotiation between
inference accuracy and computational overheads. Second,
we are interested in supporting adaptive feedback control that
allows a controller itself can be adjusted online. We believe
that adaptive control approaches can significantly increase
the generality and robustness of DeepRT’s QoS management
architecture.

REFERENCES
[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.

Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org

[2] F. Falcini, G. Lami, and A. M. Costanza, ‘‘Deep learning in automotive
software,’’ IEEE Softw., vol. 34, no. 3, pp. 56–63, May/Jun. 2017.

[3] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. (2016). ‘‘ENet:
A deep neural network architecture for real-time semantic segmentation.’’
[Online]. Available: https://arxiv.org/abs/1606.02147

[4] W. Shi and S. Dustdar, ‘‘The promise of edge computing,’’ Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[5] Y.-F. Tu and G.-J. Hwang, ‘‘The roles of sensing technologies and learning
strategies in library-associated mobile learning: A review of 2007–2016
journal publications,’’ Int. J. Mobile Learn. Org., vol. 12, no. 1, pp. 42–54,
2018.

[6] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
CoRR, 2015. [Online]. Available: http://arxiv.org/abs/1510.00149

[7] S. Han et al., ‘‘EIE: Efficient inference engine on compressed deep neu-
ral network,’’ in Proc. 43rd Int. Symp. Comput. Archit. (ISCA), 2016,
pp. 243–254.

[8] Z. Du et al., ‘‘ShiDianNao: Shifting vision processing closer to the sen-
sor,’’ in Proc. ACM/IEEE 42nd Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2015, pp. 92–104.

3788 VOLUME 7, 2019



W. Kang, J. Chung: Power- and Time-Aware Deep Learning Inference for Mobile Embedded Devices

[9] N. P. Jouppi et al., ‘‘In-datacenter performance analysis of a tensor pro-
cessing unit,’’ in Proc. 44th Annu. Int. Symp. Comput. Archit. (ISCA),
New York, NY, USA, 2017, pp. 1–12.

[10] W. Kang and J. Chung, ‘‘DeepRT: predictable deep learning infer-
ence for cyber-physical systems,’’ Real-Time Syst., pp. 1–13, Jul. 2018,
doi: 10.1007/s11241-018-9314-y.

[11] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control
of Computing Systems. Hoboken, NJ, USA: Wiley, 2004.

[12] Y. Jia et al. (2014). ‘‘Caffe: Convolutional architecture for fast feature
embedding.’’ [Online]. Available: https://arxiv.org/abs/1408.5093

[13] (2017). NVIDIA TensorRT. [Online]. Available: https://developer.
nvidia.com/tensorrt

[14] J. Stewart. (Feb. 2018). Self-driving cars use crazy amounts of power, and
it’s becoming a problem. Wired. [Online]. Available: https://www.wired.
com/story/self-driving-cars-power-consumption-nvidia-chip/

[15] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for VM-
based cloudlets in mobile computing,’’ IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14–23, Oct. 2009.

[16] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[17] P. Pillai and K. G. Shin, ‘‘Real-time dynamic voltage scaling for low-power
embedded operating systems,’’ ACM SIGOPS Oper. Syst. Rev., vol. 35,
no. 5, pp. 89–102, 2001.

[18] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, ‘‘GPU
scheduling on the NVIDIA TX2: Hidden details revealed,’’ in Proc. IEEE
Real-Time Syst. Symp. (RTSS), Dec. 2017, pp. 104–115.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[20] C. Szegedy et al., ‘‘Going deeper with convolutions,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[21] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’
in Proc. OSDI, vol. 16. 2016, pp. 265–283.

[22] Y. Fu, N. Kottenstette, C. Lu, and X. D. Koutsoukos, ‘‘Feedback thermal
control of real-time systems on multicore processors,’’ in Proc. 10th ACM
Int. Conf. Embedded Softw. (EMSOFT), New York, NY, USA, 2012,
pp. 113–122.

[23] V. Pallipadi and A. Starikovskiy, ‘‘The ondemand governor,’’ in Proc.
Linux Symp., vol. 2, 2006, pp. 215–230.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[25] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431–3440.

[26] N. D. Lane et al., ‘‘DeepX: A software accelerator for low-power deep
learning inference on mobile devices,’’ in Proc. 15th ACM/IEEE Int. Conf.
Inf. Process. Sensor Netw. (IPSN), Apr. 2016, pp. 1–12.

[27] A. G. Howard et al. (2017). ‘‘MobileNets: Efficient convolutional
neural networks for mobile vision applications.’’ [Online]. Available:
https://arxiv.org/abs/1704.04861

[28] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50×
fewer parameters and < 0.5 MB model size.’’ [Online]. Available:
https://arxiv.org/abs/1602.07360

[29] M. Jaderberg, A. Vedaldi, and A. Zisserman, ‘‘Speeding up convolu-
tional neural networks with low rank expansions,’’ in Proc. Brit. Mach.
Vis. Conf., 2014. [Online]. Available: http://www.bmva.org/bmvc/2014/
papers/paper073/

[30] Y. Gong, L. Liu, M. Yang, and L. Bourdev. (2014). ‘‘Compressing deep
convolutional networks using vector quantization.’’ [Online]. Available:
https://arxiv.org/abs/1412.6115

[31] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, ‘‘Compressing
neural networks with the hashing trick,’’ in Proc. Int. Conf. Mach. Learn.,
2015, pp. 2285–2294.

[32] C. Lu, T. F. Abdelzaber, J. A. Stankovic, and S. H. Son, ‘‘A feedback control
approach for guaranteeing relative delays in Web servers,’’ in Proc. 7th
IEEE Real-Time Technol. Appl. Symp., Taipei, Taiwan, 2001, pp. 51–62,
doi: 10.1109/RTTAS.2001.929865.

[33] W. Kang and J. Chung, ‘‘Energy-efficient response time management for
embedded databases,’’ Real-Time Syst., vol. 53, no. 2, pp. 228–253, 2017,
doi: 10.1007/s11241-016-9264-1.

[34] H. Hoffmann, ‘‘JouleGuard: Energy guarantees for approximate applica-
tions,’’ inProc. 25th Symp.Oper. Syst. Princ. (SOSP), NewYork, NY,USA,
2015, pp. 198–214.

[35] J.-J. Chen and C.-F. Kuo, ‘‘Energy-efficient scheduling for real-time sys-
tems on dynamic voltage scaling (DVS) platforms,’’ inProc. 13th IEEE Int.
Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2007, pp. 28–38.

[36] X. Fu and X. Wang, ‘‘Utilization-controlled task consolidation for
power optimization in multi-core real-time systems,’’ in Proc. IEEE 17th
Int. Conf. Embedded Real-Time Comput. Syst. Appl. (RTCSA), vol. 1,
Aug. 2011, pp. 73–82.

[37] F. Yao, A. Demers, and S. Shenker, ‘‘A scheduling model for reduced
cpu energy,’’ in Proc. 36th Annu. Symp. Found. Comput. Sci., Oct. 1995,
pp. 374–382.

[38] X. Mei, Q. Wang, and X. Chu, ‘‘A survey and measurement study of
GPU DVFS on energy conservation,’’ Digit. Commun. Netw., vol. 3, no. 2,
pp. 89–100, 2017.

[39] D. H. K. Kim, C. Imes, and H. Hoffmann, ‘‘Racing and pacing to idle:
Theoretical and empirical analysis of energy optimization heuristics,’’ in
Proc. IEEE 3rd Int. Conf. Cyber-Phys. Syst., Netw., Appl., Aug. 2015,
pp. 78–85.

[40] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres, ‘‘Power
and performance characterization and modeling of GPU-accelerated sys-
tems,’’ in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp., May 2014,
pp. 113–122.

WOOCHUL KANG (S’09–A’09–M’14) received
the Ph.D. degree in computer science from the
University of Virginia, in 2009. He was a Senior
Researcher with the Electronics and Telecommu-
nications Research Institute, South Korea, from
2000 to 2004 and from 2009 to 2012, and a
Post-Doctoral Research Associate with the Uni-
versity of Illinois at Urbana–Champaign, USA,
from 2012 to 2013. He is currently an Associate
Professor with the Department of Embedded Sys-

tems Engineering, Incheon National University, Incheon, South Korea. His
research interests include real-time systems, distributed middleware, feed-
back control of computing systems, and deep learning for embedded systems.

JAEYONG CHUNG received the B.S. degree
in electrical engineering from Yonsei University,
Seoul, South Korea, in 2006, and the M.S. and
Ph.D. degrees in electrical and computer engi-
neering from the Department of Electrical and
Computer Engineering, The University of Texas
at Austin, Austin, in 2008 and 2011, respectively.
He was with the Strategic CAD Lab, Intel, and the
IBM Thomas J. Watson Research Center during
the summers of 2008 and 2010, respectively. From

2011 to 2013, he was with the Design Compiler Team at Synopsys, Inc.,
Mountain View, CA, USA. He is currently an Associate Professor with
the Department of Electronic Engineering, Incheon National University,
Incheon, South Korea. His current research interests include neuromorphic
systems and deep learning.

VOLUME 7, 2019 3789

http://dx.doi.org/10.1007/s11241-018-9314-y
http://dx.doi.org/10.1109/RTTAS.2001.929865
http://dx.doi.org/10.1007/s11241-016-9264-1

	INTRODUCTION
	OVERVIEW OF DEEPRT
	BACKGROUND ON DEEP LEARNING INFERENCE
	SERVICE MODEL OF DEEPRT

	POWER- AND TIME-AWARE INFERENCE
	QoS METRICS
	QoS MANAGEMENT ARCHITECTURE
	FEEDBACK CONTROL PROCEDURE
	MILESTONES AND MONITORING PERIOD

	FEEDBACK CONTROL LOOP DESIGN
	SYSTEM MODELING
	VALIDATION AND ANALYSIS OF SYSTEM MODEL
	CONTROLLER DESIGN


	EVALUATION
	IMPLEMENTATION AND TESTBED
	BASELINES AND EVALUATION GOALS
	AVERAGE PERFORMANCE
	VARYING TARGET TARDINESS
	VARYING TARGET POWER CONSUMPTION

	TRANSIENT PERFORMANCE AND ROBUSTNESS

	RELATED WORKS
	CONCLUSIONS
	REFERENCES
	Biographies
	WOOCHUL KANG
	JAEYONG CHUNG


