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ABSTRACT We propose a generalized 3D shape descriptor for the efficient classification of 3D archae-
ological artifacts. Our descriptor is based on a multi-view approach of curvature features, consisting of
the following steps: pose normalization of 3D models, local curvature descriptor calculation, construction
of 3D shape descriptor using the multi-view approach and curvature maps, and dimensionality reduc-
tion by random projections. We generate two descriptors from two different paradigms: 1) handcrafted,
wherein the descriptor is manually designed for object feature extraction, and directly passed on to the
classifier and 2) machine learnt, in which the descriptor automatically learns the object features through
a pretrained deep neural network model (VGG-16) for transfer learning and passed on to the classifier.
These descriptors are applied to two different archaeological datasets: 1) non-public Mexican dataset,
represented by a collection of 963 3D archaeological objects from the Templo Mayor Museum in México
City that includes anthropomorphic sculptures, figurines, masks, ceramic vessels, and musical instruments;
and 2) 3D pottery content-based retrieval benchmark dataset, consisting of 411 objects. Once the multi-view
descriptors are obtained, we evaluate their effectiveness by using the following object classification schemes:
K -nearest neighbor, support vector machine, and structured support vector machine. Our object descriptors
classification results are compared against five popular 3D descriptors in the literature, namely, rotation
invariant spherical harmonic, histogram of spherical orientations, signature of histograms of orientations,
symmetry descriptor, and reflective symmetry descriptor. Experimentally, we were able to verify that our
machine learnt and handcrafted descriptors offer the best classification accuracy (20% better on average than
comparative descriptors), independently of the classification methods. Our proposed descriptors are able to
capture sufficient information to discern among different classes, concluding that it adequately characterizes
the datasets.

INDEX TERMS 3D shape descriptor, multi-class classification, multi-view approach, curvature, transfer
learning.

I. INTRODUCTION

Thanks to continuous advances in laser scanning and pho-
togrammetric techniques [67], there has been a significant
increase in the production of 3D models of Cultural Her-
itage (CH) objects, especially in fields like archaeology,
museology, conservation and art history. More recently, CH
researchers have joined efforts with computer vision and
machine learning specialists to identify and classify in an
automated manner several ancient artifacts based on their
shape. This has led to an explosion of exciting applications

to determine, for example, the provenance of Gallo-Roman
figurines [7], as well as to characterize the style of artworks,
such as Emperor Augustus portraits [57], Chinese terracotta
warriors [4] and Classical Roman sculptures [89], among
many others.

The growing interest in the production and use of 3D
digital models has motivated the need for developing intel-
ligent computer systems for the management, visualiza-
tion, classification, retrieval, etc; of this kind of data.
Globally available tools for the recognition and classifi-
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cation of 3D models from repositories -such as EURO-
PEANA- would have an enormous impact in the field of
CH. It would easily allow to download models to expand
their dissemination among scientists, students and the general
public [46].

One of the main challenges in building such a system
is finding the best combination of algorithms to recognize,
retrieve and classify 3D models. So far, most papers have
been only focused on improving the discriminatory power of
shape descriptors, both at global and local levels to facilitate
the classification and retrieval. Bibliographic surveys on the
subject have been published in the field of computer vision
since the 1980’s (see [3], [8], [54], [55], [80], [81]).

3D search engines on the other hand, provide only
retrieval functionality. For example, the Princeton 3D Search
Engine allows multi-modal searches from sketches and from
3D query models introduced by the user [25] (see also
http://shape.cs.princeton.edu/search.html). Another example
is the use of FlightField shape descriptors to allow content-
based searches [12]. More recently, Filali Ansary et al. [1]
proposed a solution that allows the user to input photographic
images, as well as sketches and 3D query-models to retrieve
similar objects. By applying different combinations of shape
descriptors and indexing algorithms, these search engines
have solved the problem of retrieval with different degrees
of success. All of them are able to discriminate between
3D models that have clearly different shapes, a car from a
person or a vase from a chair for example. Unfortunately, this
level of performance is not enough in the field of CH. As
Scopigno et al. [72] rightly point out: *“‘shape-based search
methodologies do not fulfill the expectations of the CH com-
munity. They are able to distinguish among very different
objects, but fail on identifying similar objects for which, more
advanced methods are required.”

In other words, we need to develop methods that are able
to distinguish subtle differences in objects of the same cat-
egory, for example, variations of anthropomorphic figurines,
vessels or archaeological masks. It is common that archaeolo-
gists rely heavily on subjective perceptions about the artifacts
shape, which is reflected in several discrepancies among
classifications given in the archaeological community. In this
context, it is necessary to go beyond the implementation of
description and retrieval algorithms to incorporate classifi-
cation procedures in a more objective manner based on 3D
shape geometry of archaeological artifacts. Gorisse et al. [34]
tackled this problem producing an interactive classification
and retrieval system called “3D-RETIN”.

The goal of this research is to develop a generalized
Hand-Crafted (HC) and Machine Learnt (ML) 3D shape
descriptors (described in section II) based on a Multi-
View approach of curvature values, aimed at classifying
objectively archaeological artifacts through machine learning
techniques (Support Vector Machine-SVM [38], Structured
Support Vector Machine-SSVM [83] and K-Nearest
Neighbor-KNN [62]). Our results show that our proposed
descriptors effectively extracts the most important geometric
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information of 3D models. They get the highest classifi-
cation scores among 5 different state of the art descrip-
tors in the literature, such as Rotation Invariant Spherical
Harmonic (SPH) [43], Histogram of Spherical Orienta-
tions (HoSO) [68], Signature of Histograms of OrienTa-
tions (SHOT) [82], Symmetry Descriptor (SYD) [42], and
Reflective Symmetry descriptor (RSD) [44]. A total average
of 93.6% of classification accuracy is obtained by HC and
ML descriptors, independently of the classification scheme
and datasets (Mexican and 3D Pottery).

The remaining of this paper is organized as follows. The
section II discusses 3D shape descriptors mentioned in the lit-
erature. Section III explains our shape representation method-
ology based on Multi-View and curvature map values. In the
section IV, we show the experimental set-up and results of the
3D shape representations and their classification accuracy.
Finally conclusions are present in the section V.

Il. RELATED WORK

Recently, 3D shape representation methods have been based
on the development of shape descriptors, which are numerical
representations of 3D models. This representation combines
mathematical, statistical and efficient computational methods
for their construction [80]. The results are 3D shape descrip-
tors, that encode the shape geometry in a numerical array or
feature vector x = [x1,x2,...,x4]. The resulting features
are dependent on the particularities of each 3D object model
information, and can be characterized by local or global
information.

A global descriptor describes the model as a whole, and
local descriptors describe patches in the model. For instance,
Figure la represents a side-view of a 3D model projected
onto a 2D plane (single image), from which local and global
descriptors are to be computed. A local descriptor describes
a property or metric around a key point (pixel in 2D or
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FIGURE 1. Approach examples used to construction of 2D shape

descriptors. (a) 2D projection. (b) Local curvature around vertices.
(c) Global shape area. (d) Global shape contour.
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vertex in 3D) that represents a common behavior of a par-
ticular (“‘small”) neighborhood or patch. Depending on the
application area, this property can be represented by curva-
ture, gradient orientation, average distance with respect to
closes neighbors, among the most common in [18] and [70].
Figure la depicts the projected local curvature values of the
3D model that particularly characterizes it from any other
similar model. Global descriptors on the other hand, are
presented by the shape area and object contour in Figures 1c
and 1d respectively, metrics that characterizes the entirely
object.

There exist different methods for the construction of 3D
shape descriptors, the most popular approaches are based
on Vertices [9], [35], [41], [53], [80], Multi-View Projec-
tions (MVP), and recently Transfer Learning [13], [20], [29],
[59], [88]. The first three approaches can be considered as
HC descriptors [40] (manually designed features), whereas
Transfer Learning is considered a ML scheme, in which a par-
ticular neural network model learns and extracts the database
input features or descriptors [36]. Among all descriptors,
the vertex approach is the most commonly used in the lit-
erature, it encodes geometry properties of points such as
areas and angles, and characterizes the shape by means of
global or local properties. The following methods are based
on the vertex approach:

« Histogram of Spherical Orientations (HoSO) [68]. It
is a local 3D shape descriptor of dimension 1024, that
uses concentric spheres around a vertex of interest. The
local descriptor is built by a Gaussian kernel in order to
obtain a histogram of orientation distances between the
interest vertex and its neighborhood. A Bag of Words
(BoW) model is then used to created a global descriptor
(HoSO-BoW) of the 3D model. The purpose of BoW
is to transform local descriptors into global descriptors
for object classification and matching [16]. It consists of
two main processes, codebook construction and global
histogram generation:

1) Codebook construction: LetD = {x1,x2, ..., XN, }
be local descriptors values of all object in the
dataset drawn on the same coordinate system. The
local descriptors in D are clusterized by applying
any clustering algorithm, for example K-means.
Their corresponding cluster centroids are then used
to initialize a new set M = {u, fa, ..., fg}
named ‘“Codebook”. This method has a computa-
tional complexity of O(NIEdXK)) [39], where Ny is
the number of /ocal descriptors and K the clusters
number. So, if Np is very large the codebook
construction is very hard.

2) Global descriptor construction: The number of
elements on each cluster centroid or Codebook is
used to build a frequency histogram, where each
bin summarizes a group of O; objects with similar
values, for O(i) = N and N being the total number
of objects in the dataset.
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o Signature of Histograms of OrienTations
(SHOT) [82]. It is a local 3D descriptor close related
to HoSO, that makes use of concentric spheres around
a vertex of interest. For each vertex, SHOT defines
a Normal Vector Reference-NVR (computed from its
closest neighbors) and a discrete 3D sphere centered at
vertex of interest. Next, the angle differences between
NVR and the normal vector from a discrete point over
the sphere is computed in order to generate a histogram
of angles. This histogram represents the local descriptor.
The final global descriptor (SHOT-BoW) is created by
the BoW model (see HoSO-BoW description).

o Spherical Harmonic descriptor (SPH) [43]. In this
work, authors make use of 3D surfaces as an appro-
ximation f of the real model, which is obtained by a
linear combination of 3D harmonic functions f;. The
linear coefficients «; are used as invariant global shape
descriptor, as show in Figure 2. The coefficients «; repre-
sent the proportion that each function contributes to the
surface. The result is an efficient and invariant descriptor
with respect to rotation transforms.

arfrt o+ 0ifi o+ aaf,

SPH

FIGURE 2. Surface approximation f generated by linear combination of
harmonic functions f;.

« Reflective and Symmetry Descriptors (RSD). These
methods are based on symmetry distances between a
vertex v; and its reflection y (v;) with respect to symme-
try plane I; that passes through the origin as depicted
in Figure 3. The blue dotted lines represent the symmet-
ric distances between a vertex a its corresponding reflec-
tion, which are perpendicular to symmetry plane. Each
component of the shape descriptor vector is computed
by the sum of all symmetric distances corresponding
to particular symmetry plane ;. After all symmetry
planes and symmetric distances have been computed,
the resulting descriptor is a global rotational invariant
vector with respect all symmetry planes of the 3D model
(additional details can be found in [42] and [44]).

Different than the vertices approaches, the view meth-

ods make use of Multi-View Projections (MVP) in
order to abstract the shape of the 3D model [15], [32], [51],
[63], [79]. Since the pioneer work of Cyr and Kimia [17]
on MVP, several new methods have been proposed in the
literature, some of the most recent are:

« MVP based on Local Visual Features. One of the
most representative methods in this group is the
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FIGURE 3. Illustration of symmetry between vertices. The blue dotted
lines represent the symmetric distances between the vertices and their
reflections, with respect to symmetry plane /4.

“Scale-Invariant Feature Transform (SIFT)”, which
encodes local features of partial views that are invariant
to rotation, scale, zooming, etc [S6]. SIFT local features
are then combined with the BoW model to create a
global descriptor of 3D model. The main drawback of
this approach is related to the generation of the codebook
(see appendix), which needs to handle large training set
of local features. Additional details of this methods can
be found in [60] and [61].

o MVP methods based on probabilistic models. They
model the local features (or descriptors) of the object
partial views through a Gaussian Mixture Model
(GMM) [86], and calculate how similar two objects are
based on a similarity function. For example, in [86],
GMM is used to model the Zernike moment descrip-
tors (proposed in [45] and [52]), using as a similarity
function the upper bound of the Kullback-Leibler diver-
gence of the corresponding probabilistic models (see
also [27]). These previous works the method cannot
be applied to complex objects as in our case. We use
archaeological artifacts with very complex and distinct
geometry.

In this work, we propose a combined method based on
curvature values [9], [26], [30], [50], [74], [87], [90] and
Multi-View approach, that produces descriptors with reduced
distortions and effective classification independently of the
classification scheme, as shown in the section IV. As far as we
know, there are no methods that consider both curvature and
MVP. As part of this study, we are also interested on applying
the state-of-the-art Transfer Learning-TL techniques to our
proposed descriptor, and analyze its effect on our small-scale
and complex datasets: Mexican and 3D Pottery (described in
subsection IV-A). TL is novel paradigm that takes in a Deep
Neural Network (DNN) pretrained model from a large-scale
dataset [20], [64], to transfer this previously learnt knowledge
onto a new problem or dataset.

One of the assumptions behind TL is that, the small-scale
dataset content be similar to the original large-scale training
set for the transfer knowledge to be meaningful or successful
(this is a relative term and dependent on the application
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area). Some of the most relevant applications of TL have
been developed for machine-learnt feature extraction in per-
ceptual problems [75], such as emotion recognition [59],
3D matching and registration [29], [88], pavement distress
detection [33], and classification of 3D Computer Aided
Design (CAD) models [79]. Su et al. [79] demonstrated the
effectiveness of transfer learning in the classification of 3D
CAD models datasets. In particular, they consider a simple
2D color appearance (Phong reflexion model [73]) as input
to a pretrained DNN model (VGG-M model) for feature
extraction [11]. As far as we know, TL has not been applied to
complex 3D shapes repositories of archaeological artifacts.

lll. METHODOLOGY

We describe the methodology to obtain 3D shape descriptors
based on local curvature values and the MVP model. Our
proposed descriptor, can be summarized by the following
steps:

1) Pose normalization of the 3D models.

2) Curvature descriptors calculation.

3) 3D shape descriptor construction based on MVP and
curvature maps.

The output of the previous steps represents what we call
an HC descriptor, a manually designed object feature extrac-
tor. To produce the ML descriptor based on TL, we add an
additional step as follows:

4) Transformation of the HC descriptor into an ML
descriptor by applying a pretrained DNN model
obtained from a different large-scale dataset.

Finally, we apply the following step scheme to both HC

and ML descriptors:

5) Dimensionality reduction by Random Projections
(RP).

6) Classification process.

A. POSE NORMALIZATION
3D models are given in arbitrary scale, position and orien-
tation as a consequence of the degrees of freedom in the
digitization process. Therefore, applications in classification,
retrieval, and recognition require a pose normalization step
before any processing. Pose normalization fix the objects in
a common reference frame defined by canonical or global
vectors e;, as shown in Figure 4. It consists of three basic
transformations, translation, scaling, and rotation, which alto-
gether must not modify the intrinsic geometry of the objects.
Translation transformation moves the centroid of the object
to the origin of the canonical or global reference system, as
depicted in Figure 4. The centroid position is denoted by o,
is computed by:

1 n
0o=-% (1)
i=1

where p; € P represented by (x;,yi,z), and P =
{p1.p2,...,p,} is the set of vertices. The actual normal-
ization consists in the subtraction of the centroid from the
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FIGURE 4. 3D model given in arbitrary scale, position and orientation
with respect to a global or canonical coordinate system {e;, e,, e3).

position of each vertex in the 3D model, so the new translation
invariant vertex is defined as:

pi=pi—o @)

The second transformation is scaling, which is performed
by first computing the largest distance between the centroid
and a vertex as follows:

t = max [p; —oll2 3
pieP

we use the inverse of 7 as a scaling factor, to obtain a new

vertex inside the unitary sphere defined as:

1
pi = xp; @
By applying the translation and scaling transformations

to the object, we obtain a normalized 3D model as shown
in Figure 5.

FIGURE 5. Normalized 3D model in terms of scale (inside the unitary
sphere) and translation.

Finally, we need to rotate the 3D model with respect to one
of the axes in the canonical frame. For this, an additional ref-
erence frame is required, which serves to define the orienta-
tion of the object, called unaligned frame and represent by u;
vectors. To visualize the relationship between the aligned and
unaligned frames, we make use of free body diagrams. These
diagrams are graphical illustration to connect bodies with
angular momentums (rotations) and forces [37]. Suppose that
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FIGURE 6. Free body diagrams for the unaligned and canonical
coordinate system, before and after rotation around axis e3.

our 3D model in Figure 6 only requires a rotation with respect
to the axis e3, we can see that the vertex p/ = (x, y/, z/) is
represented in the unaligned frame by a; (before rotation) and
v; in the new rotated frame, aligned with respect to e;.

The vectors a; = [ay, a2, az] and v; = [v; 1, vi2, Vi3] are
related by:

vii1 = lail (5a)
vi2 = |az| (5b)
vi3 = |as| (5¢)

The components of a; are the projections of p! over the
vectors u;, and corresponds to the component of the rotated
vertex p in the canonical reference frame represented by v;.
This relationship between components is formulated as:

vi1 = lai| =ulp! (6a)
vip = laz| = ulp! (6b)
vi3 = la3| = ulp! (6¢)

Using matrix notation, we obtain the transformation
between both coordinate systems, represented by:

Vil uir w2 wis | [ x
vio | = |ua  wuxn uxs ||y (7a)
Vi3 w31 uzp w3z | [
T
vi= U p:-/ (7b)

where U is the rotation matrix, which in our case is calcu-
lated by the method of Principal Components Analysis [2]
(PCA). PCA is an orthonormal linear transformation defined
by eigenvectors w;, that transfers the data to a new coordinate
system such that, the greatest variance by any projection of
the data lies on the first coordinate (first principal compo-
nent), the second greatest variance lies on the second coordi-
nate (second principal component), and so on. For example,
in Figure 5 the largest eigenvector w is a unit vector in the
direction of axis uj of the mask. Since these vectors are
collinear, there exists a relationship of the form u; = Aywj.
The eigenvectors can be interpreted by a geometrical rotation
of the canonical axes, and the reference frame will represent
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the directions of the maximum variability of the vertices in
terms of their covariance matrix distances, defined by:

1 n

¥=—— —o0)p;, —o)! 8

tx(n_l)Dp, )p; — 0) ®)

i=1

The eigenvectors are obtained by the Singular-Value
Decomposition (SVD) of the vertex covariance matrix, which
is defined as follows:

T =wAw’ 9)

where the matrix W contains the eigenvectors used as coordi-
nate system, and the diagonal matrix A stores the eigenvalues
of the covariance matrix. Geometrically speaking, the relation
U = WA corresponds to a matrix factorization of a rotation
matrix W and scale matrix A, that is, allow us to align 3D
models with arbitrary orientation, that is, we applied to each
vertex the transformation defined as:

vi=WTp/ (10)

Finally, we obtain a normalized set of vertices V =
{v1,v2,...,v,}, which are used for curvature calculation.

B. CURVATURE DESCRIPTORS

Local curvature, is a way of measuring or describing the
concavity of a surface at a point that lies on a curve line.
An important property we take advantage of in this work,
is that curvature is invariant against rigid transformations
(translation, rotation and scale) [49], implying that the same
curvature values are obtained independently of the orientation
of the 3D model. This property represents a point of reference
to distinguish different surface categories [21].

Local curvature descriptors of a vertex v;, can be character-
ized by the maximum «; and minimum k7 curvature values.
The directions of k1 and «, denoted by u;, u, respectively,
happens to be orthogonal and coplanar with respect to the
tangent plane defined by the normal vector n; at the vertex
v;. In Figure 7, we can see that the normal n; and the orthog-
onal axes u1, up define a reference frame oriented along the
principal curvatures k1 and k».

FIGURE 7. Principal curvatures directions «; and u, for a vertex v;
(Original image taken from: http://brickisland.net/cs177fa12/2p=214).
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As shown in [65], an eigen-analysis of the covariance
matrix of the normal vector projections around a local neigh-
borhood, can be used to compute the local curvature principal
components # and u; as follows:

Nk
_ 1 L p
A—mk{l(flk n)(n; —n) (1D

where the point n is the centroid of all Nx nearest normal
neighbors of v;, and iy = Bny is the normal projection
obtained by means a projection matrix defined as follow:

B=1—nn!

1

12)

Therefore, given a spherical neighborhood around each
vertex v; of the 3D model, we can obtain the two greatest
eigenvalues of covariance matrix A by means the SVD eigen-
decomposition, just as follow:

A=UANUT (13)

where A contains the two greatest eigenvalues corresponding
to the principal curvatures [71], which are obtained from
equations 11 and 13. By notation, we will refer to local
principal curvatures descriptors associated with a vertex v; as
follows:

(14a)
(14b)

Maximal curvature vertex «; |

Minimal curvature vertex k;2

Local curvature descriptors have been used to create curva-
ture maps [28]. The minimum and maximum local curvatures
descriptors are then used for creating curvature maps of the
3D models. Curvature map is a representation that resembles
a heat map, in which curvature descriptors are represented
with a color palette. For example, Figure 8 shows some
samples of the most popular curvature maps: Maximum, Min-
imum, Gaussian, Mean and Shape Index, where the highest
curvature values are represented in red color.

We can see that Mean and Shape Index descriptors, high-
light the most prominent geometric features of the 3D model.
For this reason, they will be used (along with MVP) in our
final shape descriptor representation. The Mean curvature
and Shape Index descriptor are defined as follows:

Mean curvature Ml—;& (15a)
2 . .

Shape index  — tan~! “:L T %02 (15b)
T Kil — Ki2

It is important to point out that the size of the neighbor-
hood (Ni) determines the spatial representation or locality of
curvature (shown in [85]), the smaller the size, the higher the
locality of the curvature.

3303



IEEE Access

M. Canul-Ku et al.: Classification of 3D Archaeological Objects

0% 100%

Normalized Curvature Values

FIGURE 8. Curvature maps associated to different curvature descriptors.
(a) Default color. (b) Maximal curvature «;. (c) Minimal curvature «,.
(d) Gaussian. (e) Mean. (f) Shape index.

C. SHAPE DESCRIPTOR CONSTRUCTION BASED ON MVP
Our proposed descriptor, is the result of combining the cur-
vature maps (subsection I1I-B) with multiple views of the 3D
object. The geometric intuition behind our approach, is that
curvature descriptors of similar objects are also similar, even
in 2D views [10]. Each view is a render image, created by
projecting the colored curvature maps of the 3D model over
a 2D plane (Figure 9). In computer graphics, the process of
automatically creating a render image, is known as “‘render-
ing process” [73].

In our methodology the rendering process can be described
as follows:

1) For each 3D object, use its center of mass to generate a
sphere that fully surrounds the model. Then, subdivide
the sphere into 36 regions as depicted in Figure 9. The
intersection points (black dots on the sphere) define the
uniformly sampled locations of the camera.

2) These 36 camera locations around the sphere corre-
spond to 6 slices defined along the horizontal plane
(azimuth axis), and 6 stacks in the vertical direction
(zenith axis).

3) Each camera location captures a partial view of the
colored 3D model, which is rendered into an RGB
image, and converted to gray-scale with dimension
d = W x L. This image is scanned in a top-
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30 Shape Curvature map Virtual Camera 2D projection

FIGURE 9. 3D Multi-View object descriptor construction, using the Mean
curvature map.

down and left-to-right fashion to obtain a vector
I € RY or descriptor for this partial view.

4) The final descriptor is constructed by concatenating
all I; vectors of the 3D model taken from different
perspectives (i.e. Multi-View approach):

S Iny ) (16)

with dimension W x L x N,,. For W = 32, L = 32,
and Ny = 36 (the number of 2D projections or views),
the resulting shape descriptor size is 36864.

xpc = {I1,12, ..

D. TRANSFER LEARNING FOR DESCRIPTOR
CONSTRUCTION BASED ON MVP

Deep Learning (DL) methods have been very popular in the
field of machine learning. This is related to several factors,
among them are the increase on computing performance
(clusters, cpus, gpus), larger datasets that allow more robust
training of such complex models, which in turn lead to high
accuracy classification rates [20]. However (as mentioned
before), on small-scale datasets (as the ones we are dealing
with) DL methods cannot guarantee correct classification of
new input data (data not used during the training process) due
to the ‘“‘overfitting problem” [31], [77]. A good alternative
for applying DNN on small datasets, is to reuse a pretrained
model with a large-scale dataset and use the learnt network
parameters for the generation of new descriptors (this is called
Transfer Learning-TL). The descriptors’ outputs preserve
important features learnt during the training process with
the large-scale dataset. For the pretrained network we make
use of the VGG-16 DNN (see Figure 10), developed by the
Oxford University-Visual Geometry Group (VGG) [76] as a
test bed for image classification systems for the ImageNet
Large-scale Visual Recognition Challenge (ILSVRC) [69].
ImageNet consists of 1.4 million of RGB images with dimen-
sion of 224 x 224 pixels, partitioned into 1000 classes.
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(224,224,3)
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FIGURE 10. VGG-16 neural network architecture employed for the 3D
shape Multi-View feature extraction, fc3 layer is replaced by the SSVM,
SVM and KNN classifiers in our experiments.
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An expanded version of our RGB HC-descriptor (from 32 x
32 to 224 x 224) is taken as input to the VGG-16 model,
which is processed by thirteen convolutional 2D layers split
into 5 blocks and two fully connected layers fcl and fc2 that
performs dimensionality reduction. The output ¢; of the fully
connected layer fc2, represents our ML vector descriptor with
length d = 4096. Instead of going into fc3 classification layer
in the VGG-16 (it performs the object classification based on
the pretrained large-scale dataset), it is passed on to the SVM,
SSVM, and KNN for the classification process based on our
experimental datasets (Mexican and 3D Pottery).

The final descriptor is constructed by concatenating all
t; vectors (i.e. 3D shape Multi-View feature extraction
approach) as follows:

vy} a7y

where Ny = 36, and the resulting shape descriptor size is
4096 x 36.

xyL = {t1,t2, ..

E. DIMENSIONALITY REDUCTION BY RANDOM
PROJECTIONS (RP)

Our method creates high-dimensional descriptors
(HC =[32 x 32 x 36] and ML = [4096 x 36]) with redundant
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information, that comes from the overlapping regions during
the Multi-View scanning process, as can be appreciated
in Figure 9. It is possible however, to efficiently reduce
descriptors’ length without (significantly) affecting important
information of the 3D models, that is curvature values in our
case.

This problem has been widely studied in [78], commonly
known as dimensional reduction technique. In particular,
Random Projection (RP) [19] is an efficient and simple
technique that transforms a dataset through a random pro-
jection matrix R. This transformation has the property to
preserve pairwise distances and similarities of the input vec-
tors or descriptors, and more importantly, it is independently
of the dataset. The matrix entries R; j, are random variables
from a Gaussian distribution with mean 4 = 0 and variance
o= % (where d is the descriptors’ length), which produces
an orthogonal matrix in a highly dimensional space.

The matrix R € R™*4 maps each vector z; € {I;,¢;} to a
lower dimensional vector sz € R™ (m << d), as follows:

P = Ry (18)
and the new shape descriptor is defined as:
xR = (fF 5P 2R (19)

1 > ZZ g e

We apply the above dimensionality reduction process to
our proposed HC and ML descriptors based on both shape
index and mean curvature values. For comparative purposes,
we make a distinction between these two descriptors for
HC and ML before and after applying the random projec-
tion, i.e., the HC descriptors before RP are named Hand-
Crafted Multi-View Shape Index Descriptor (HC-MVSID)
and Hand-Crafted Multi-View Curvature Descriptor (HC-
MVMCD), whereas HC-MVSID-RP and HC-MVMCD- RP
are the names after RP. The same nomenclature is applied
for he ML descriptors, that is ML-MVMCD, ML-MVSID,
ML-MVMCD-RP, and ML-MVSID-RP. The final step in our
methodology is the classification process.

F. CLASSIFICATION PROCESS

Supervised learning is a machine learning approach that con-
siders prior information for categorazing an object (words,
voice, images, 3D models, etc) within a certain class (that
is, objects with similar features). When the problem is
the classification of multiple objects over multiple classes,
the problem is known as a Multi-Class Classification (MCC)
problem [5]. The output of MCC can be in the form of a
label or number associated to the class membership of the
input object, or can be a more complex structure (structured
prediction) [6] of objects themselves, relationship among
objects, meanings of a sentence, a graph with words asso-
ciated to a certain topic etc. The MCC input information
is given in the form of descriptors denoted by the set X,
with corresponding labelset (or classes) output Y. The cor-
respondences between X and the right output Y is defined by
S = {(x1,y1), *x2,y2), - -+, (xn, yn)}, which is a subset of
the cartesian product X x Y.
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Classification methods assign correspondences between X
and Y by a prediction function F : X — Y, which is
determined during the training process. Next, we describe the
three classifiers used on our experimental section.

1) K-NEAREST NEIGHBORS (KNN)

KNN [62] is a simple geometric method that makes use of dis-
tances between the input descriptor and the ones in the dataset
for object classification. For example, Figure 11 depicts the
closest neighbors of an archaeological mask given as query.
The training process consist on the construction of a search-
tree data structure from the dataset. This classifier looks for
the nearest neighbors to the input descriptor, before assigning
the object class. That is, given a query x,, the search-tree
returns the subset S; € S defined by:

Sqg=1{xi,y) €S llxi —x4ll2 < lxiy1 —x4ll2,

Vi, 1<i<kl (20)

where k is the number of nearest neighbors, and S, is
the set of closest descriptors to x,, along their respective
labels or class information. S, is used in a prediction function
that finds the class x, belongs to. The prediction function is
defined as follows:

F(xy) = argmax Y 1{y, =y 1)

Yee¥ yi€Sy

wherey,. is an element of labelset (or class), and the prediction
label y = F(x,) corresponds to the class with the highest
frequency label. Figure 11 shows k = 5 closest neighbors
from 2 different classes, blue and red with two and three
members respectively. In this case, the prediction function
assigns x,; to the red class. The disadvantage of this method is
the search time, which is in the order of O(N log N) (where N
is the size of the dataset). Therefore KNN is no recommended
for large-scale datasets.

rd AN
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FIGURE 11. lllustration of K-Nearest Neighbors (KNN) method for shape
classification.

2) SUPPORT VECTOR MACHINES

The SVM and SSVM compute hyperplanes that split the
dataset into C regions or classes. Figure 12 shows an example
of a three-region hyperplane defined by perpendicular param-
eters W = [wy, wo, w3] (which are unknown). The parallel
bars (dashed lines) represent the prediction error margins

3306

RQ RS

FIGURE 12. Regions splited by hyperplanes and associated to three
classes.

for each hyperplane. W are used to formulate the prediction
function F : (X, W) — Y, defined as follows:

F(x,, W)= argmax w!x,

ce{wr,wa,..., w3} ¢
= argmax W'x, (22)
we.eW

the operation wchq is the distance of x, to each hyperplane

w., where the maximum distance defines the class of x,;. For
the SVM classifier [38], the prediction function in equation
22 is named “‘one-vs-rest approach’ [23].

The unknown parameter W, is computed by a quadratic
optimization problem defined by:

argmm ch Wc‘H/Zch
Wi, W2,..., i=1 c#y;
s.twy, T D) + by, > we O(x;) + b +2 — &
£/ =0, cefl,....Ch\y
Vi=1,...,N (23)

where £ is a slack variable that controls the prediction error
margins, wy, is the normal vector to the hyperplane, by, repre-
sents an offset with respect to the data space, ®(x;) is a feature
transformation function, and y is regularization parameter
associated to the margins.

SVM classifier output is represented by a label or a class
number (simple prediction). In addition to simple predictions,
SSVM (a generalization of the SVM) can be used for more
complex structured predictions rather than a single class, that
is it can be related to an image, concept, semantic mean-
ing, etc. [6], [83]. The optimization problem for SSVM is
defined as:

N
argmin 5 Liwig +y Y&
i=1
stAQ.y)+ (W, ¥(x,y) —
>0
Vi=1,...,N

Vy e Y \y; (24)

W, y))Fr <&
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where A(y,y;) is the loss function (Ex. Hamming loss func-
tion [84]) and W(x,y) is a junction feature function that
weights the feature vector with respect to the labelset Y.

IV. EXPERIMENTAL RESULTS
Our proposed Multi-View descriptors are aimed at extracting
the most relevant features that characterize 3D archaeological
objects. These features should contribute to a good classi-
fication independently of the classification algorithm being
applied. To test their performance for the object classification
problem, we have selected three multi-class classification
methods for the experiments: SVM, SSVM and KNN. The
first two classifiers were chosen because of their robustness
to overfitting [5], while KNN classifier is the most intuitive
to code, as well as the most used learning algorithms [62].
More complex algorithms such as DNN [20], [77], require
large databases (in the order of thousands of objects) for
the training phase. Our non-public archaeological database
contains less than 1000 objects, with unbalance number of
classes in terms of number of instances, therefore training
with DNN will incure in overfitting [31], [48], [59].

Next, we present the experimental protocol used to validate
our methodology, and discuss our results.

A. DATASETS

We evaluated our propose descriptors on two different 3D
models of archaeological datasets:

o Mexican Dataset. We use a sample of 963 digitiza-
tions of archaeological artifacts from the collection of
the Templo Mayor museum. The sample includes 3D
model of different objects such as anthropomorphic
sculptures, figurines, masks, ceramic vessels, musical
instruments, etc. The original artifacts were elements of
ritual offerings deposited for religious purposes in the
main ceremonial complex of Tenochtitlan, the capital
of the Mexica Empire. Due to its variety and symbolic
significance, the collection is one of the most important
research resources for specialists of the Mexica (i.e.
Mexican) civilization. This dataset is partitioned into
10 categories (in compliance with Mexican Archaeol-
ogists classification), whose distribution is showed in
Figure 13, and a sample of 3D models (one per class)
are shown in Figure 14.

= = N N
o %3 S a
S o S 1=}
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FIGURE 13. Class distribution of the Mexican dataset.
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FIGURE 14. Random sample of shapes (one per class) chosen from the
Mexican dataset. (a) Sultepec. (b) Xiuhtecuhtli. (c) Mezcala. (d) Chontal

Typical. (e) Chontal nose ball. (f) Tlaloc vessel. (g) Canes. (h) Flat
statuettes. (i) Cylindrical statuettes. (j) Flutes.
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FIGURE 15. Class distribution of the 3D Pottery dataset.

« 3D Pottery Dataset. This dataset, own by the Hamp-
son Archaeological Museum in Arkansas [47] contains
993 models, partitioned into 23 categories. Since the
number of artifacts per class is very sparse, we selected
411 models partitioned in 11 classes, which have an
homogeneous geometry, whose distribution and sample
of 3D models (one per class) are visualized on the
Figures 15 and 16 respectively.

B. EVALUATION

The effectiveness of our proposed descriptors (HC-
MVMCD, HC-MVSID, HC-MVMCD-RP, HC-MVSID-RP,
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FIGURE 16. Random sample of shapes chosen (one per class) from the
3D Pottery dataset. (a) Alabastron. (b) Amphora. (c) Hydria. (d) Kalathos.
(e) Krater. (f) Kylix. (g) Lekythos. (h) Pelike. (i) Psykter. (j) Native American.
(k) Picher Shaped.

ML-MVSID, ML-MVMCD, ML-MVSID-RP, ML-MVMCD-
RP), is compared against the following descriptors in the
literature (Table 1) : HoSO-BoW [68], SHOT-BoW [82],
SPH [43], SYD [42] and RSD [44], described in section
II. HoSO-BoW is of recent creation, with proven efficiency
with respect to SHOT-BoW, Fast Point Feature Histograms
(FPFH) [70] and Scale-invariant features (SISI) [18], among
others. The other descriptors we compare with (SPH, SYD
and RSD), have been referenced in numerous works on
matching and ranking tasks [80].

The evaluation process consists in splitting each dataset
into two random sets. The first set, groups 70% of the 3D
objects for knowledge acquisition or training, while the sec-
ond set (remaining 30%) is used in the test phase or classi-
fication process. The computation of the mean curvature and
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TABLE 1. Specification of 3D shape descriptors.

Descriptors Abbrev. Di i ity
ML Multi-View Shape Index Descriptor ML-MVSID 4096 x 36
ML Multi-View Mean Curvature Descriptor ML-MVMCD 4096 x 36

ML Multi-View Shape Index Descriptor

Random Projection ML-MVSID-RP 64 x 36
ML Multi-View Mean Curvature Descriptor

Random Projection ML-MVMCD-RP 64 x 36
HC Multi-View Shape Index Descriptor HC-MVSID 32 x 32 x 36
HC Multi-View Mean Curvature Descriptor HC-MVMCD 32 x 32 x 36
HC Multi-View Shape Index Descriptor Random Projection HC-MVSID-RP 8 x 8 x 36
HC Multi-View Mean Curvature Descriptor Random Projection ~ HC-MVMCD-RP 8 x 8 x 36
Spherical Harmonic [43] SPH 256
Symmetry Descriptor [42] SYD 1922
Reflective Symmetry Descriptor [44] RSD 3844
Histogram of Spherical Orientations [68] HoSO-BoW 100
Signature of Histograms of OrienTations (SHOT) [82] SHOT-BoW 100

shape index in our descriptors is slightly different depending
on the dataset involved. Since Mexican dataset comes with
higher resolution models than 3D Pottery (lower resolution
models), we found that a spherical neighborhood with a
normalized radius = 0.06 is sufficient to compute the mean
curvature and shape index around vertex v;. For the 3D Pot-
tery dataset on the other hand, a neighborhood of Ny = 30
vertices around v; provides enough resolution to analyze the
archaeological artifacts in our experiments.

For the construction of ML descriptors, we use the pre-
trained VGG-16 model from Keras [14]. Regarding object
classification task, we use scikit-learn [66] implementation
of the KNN and SVM (one-vs-rest approach) methods, and
pystruct [58] for the SSVM implementation. SVM and SSVM
where implemented with linear kernel and regularization
parameter y = 0.1 in all our experiments. Classification
results involve 30 randomly generated training and testing
sets, for which the classification accuracy (ACC) [22], [84]
along with its confidence intervals is reported as statistical
proof.

Finally, in order to visualize our descriptors dispersion
(or similarity) among intra and inter classes, we compute a
similarity matrix for each dataset (Mexican and 3D Pottery),
as discuss in subsection IV-D.

C. CLASSIFICATION RESULTS

A comparison of the classification accuracy and confidence
intervals for the proposed and discussed descriptors are sum-
marized in Tables 2-4. Overall, our descriptors ML and HC
get the highest ACC scores in all classification tests and
datasets, which are on average 20.2% better than the rest
of compared descriptors SPH, SYD, RSD, HoSO-BoW, and
SHOT-BoW. Among our own descriptors, ML descriptors
are the clear winners with approximately 3.1% better perfor-
mance than HC descriptor ones. Individually, there is not a
clear winner among the ML descriptors regarding classifi-
cation scheme and dataset, that is the first and forth places
only differ by 0.57%. What is important to point out is
that, dimensionality reduction by Random Projections (from
4096 x 36 to 64 x 36) does not affect the performance
accuracy of the classifiers in both ML and HC descrip-
tors. The average ACC difference between original length
(ML-MVMCD and ML-MVSID) and dimensionally reduced
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TABLE 2. SSVM descriptors’ classification accuracy and confidence
interval for both Mexican and 3D Pottery datasets.

SSVM
Descriptor Mexican 3D Pottery
ML-MVSID 0.978 + 0.013 0.933 £ 0.038
ML-MVMCD 0.977 £ 0.014 0.937 + 0.040
ML-MVSID-RP 0.978 + 0.012 0.922 4 0.045
ML-MVMCD-RP 0.975 + 0.013 0.927 + 0.047
HC-MVSID 0.956 + 0.015 0.886 + 0.038
HC-MVMCD 0.947 + 0.021 0.901 4 0.042
HC-MVSID-RP 0.962 + 0.014 0.879 + 0.043
HC-MVMCD-RP 0.964 + 0.017 0.885 + 0.038
SPH 0.915 + 0.023 0.839 + 0.046
SYD 0.929 + 0.027 0.789 + 0.048
RSD 0.854 + 0.018 0.706 + 0.065
HoSO-BoW 0.608 + 0.030 0.499 + 0.003
SHOT-BoW 0.495 + 0.080 0.334 + 0.033
TABLE 3. Same as Table 2, for the SVM classifier.
SVM

Descriptor Mexican 3D Pottery
ML-MVSID 0.978 + 0.014 0.934 + 0.041
ML-MVMCD 0.977 £ 0.014 0.938 + 0.042
ML-MVSID-RP 0.978 + 0.013 0.921 4+ 0.047
ML-MVMCD-RP 0.975 £ 0.012 0.925 + 0.047
HC-MVSID 0.964 + 0.016 0.904 4+ 0.040
HC-MVMCD 0.967 + 0.012 0.883 + 0.046
HC-MVSID-RP 0.962 + 0.017 0.890 + 0.051
HC-MVMCD-RP 0.965 + 0.011 0.875 + 0.045
SPH 0.940 + 0.016 0.840 %+ 0.050
SYD 0.944 + 0.027 0.679 +0.129
RSD 0.904 + 0.021 0.725 4+ 0.061
HoSO-BoW 0.543 + 0.012 0.542 + 0.053
SHOT-BoW 0.314 + 0.001 0.248 +0.014

(ML-MVMCD-RP and ML-MVSID-RP) descriptors con-
sidering all classifiers and datasets is around 0.47% (not
a significant difference). Similar behavior is found on HC
descriptors, with average ACC difference of 0.64%. Consid-
ering now all descriptors in Table 1, ML-MVMCD and ML-
MVSID get the highest ACC total average scores (across all
classifiers and datasets) of 0.955 and 0.953 respectively. The
third-best descriptor is ML-MVMCD-RP, with a total average
accuracy of 0.95, representing only 0.57% below the first
place descriptor ML-MVMCD (as shown in Table 5). SPH
descriptor came out to be in ninth place (fifth place if RP
descriptors are not considered), with a total average of 0.89,
corresponding to 6.9% below ML-MVMCD. SPH and SYD
obtained adequate classification accuracy, showing a more
stable behavior than RSD, HoSO-BoW, and SHOT-BoW. It is
surprising that HoSO-BoW and SHOT-BoW got high score in
the KNN classifier, but its performance on SSVM and SVM
was low and unstable, ending up with the worst classification
scores. An additional problem not related to HoSO-BoW and
SHOT-BoW but to KNN classifier, is the time required to
search for the nearest neighbors in reference to the object
descriptor in question [62]. This search is performed on a
tree data structure in the order of O(N log N) (where N is
the size of the dataset). Therefore, KNN is not recommended
for high-dimensional datasets. In contrast, SSVM and SVM
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TABLE 4. Same as Table 2, for the KNN classifier.

KNN

Descriptor Mexican 3D Pottery
ML-MVSID 0.974 + 0.015 0.922 + 0.037
ML-MVMCD 0.970 £ 0.013 0.932 4+ 0.004
ML-MVSID-RP 0.970 £ 0.015 0.918 +0.043
ML-MVMCD-RP 0.970 £ 0.013 0.926 + 0.044
HC-MVSID 0.955 £ 0.015 0.876 + 0.058
HC-MVMCD 0.945 £ 0.015 0.880 %+ 0.036
HC-MVSID-RP 0.950 + 0.016 0.861 + 0.055
HC-MVMCD-RP 0.941 £+ 0.016 0.875 + 0.037
SPH 0.945 £+ 0.021 0.853 + 0.052
SYD 0.945 + 0.019 0.752 + 0.063
RSD 0.942 £ 0.016 0.764 + 0.056
HoSO-BoW 0.955 £ 0.016 0.838 + 0.057
SHOT-BoW 0.922 + 0.028 0.557 + 0.068

TABLE 5. Total average classification performance below the best ranked
descriptor ML-MVMCD.

Descriptor %

ML-MVSID 0.20
ML-MVMCD-RP  0.57
ML-MVSID-RP 0.57
HC-MVSID 3.01
HC-MVMCD 3.62
HC-MVMCD-RP 3.94
HC-MVSID-RP 3.96

SPH 6.87
SYD 12.09
RSD 14.58
HoSO-BoW 30.46
SHOT-BoW 45.54

methods (in which our proposed schemes were the best) only
need a Matrix-vector product in the order of O(d x C) (where
C << N isthe number of classes), representing a much lower
classification times. Furthermore, SVM and SSVM classifier
offer better data generalization, which do not occur with KNN
method (it is more sensitive to overfitting).

Even though our work is focused on the comparison of
our proposed descriptors against state-of-the-art descriptors
in the literature, we were curious about the performance of
SVM and SSVM classifier involved in the experiment. The
ML descriptors get exactly the same ACC values for the
SVM and SSVM, while for the HC descriptors SVM is better
than SSVM by 0.7%. Considering the rest of descriptors
analyzed (SPH, SYD, RSD, HoSO-BoW, and SHOT-BoW),
the order of performance changes, yielding SSVM (0.760),
and SVM (0.734). It is clear that SSVM can be applied to
wider variety of problems than the SVM, but regarding to
classification problems, they are (theoretically speaking) very
similar (the only change is in the cost function, particularly in
the constraints’ formulation), so we do not find a clear winner
between these two classifiers, in this work.

D. SIMILARITY RESULTS

A similarity matrix (SM), is a pairwise graphical represen-
tation of data (or descriptors in our case) [24], that measures
their similarity. The similarity value is based on the Euclidean
distance between descriptors, which is normalized between
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FIGURE 17. Similarity matrix for best (ML-MVMCD) and worst
(SHOT-BoW) descriptors used in classification for Mexican and 3D Pottery
datasets. (a) SHOT-BoW for Mexican dataset. (b) ML-MVMCD for Mexican
dataset. (c) SHOT-BoW for 3D Pottery dataset. (d) ML-MVMCD for 3D
Pottery dataset.

[0 — 100], where a similarity close to 100 means that the
descriptors are very similar. Figure 17, shows the similarity
matrices of ML-MVMCD and SHOT-BoW, the best and
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worst ranked descriptors respectively for Mexican and 3D
Pottery datasets. Areas on red reflect descriptors with high
similarity, while deep-blue color represents descriptors with
low similarity. The diagonal red line represents a perfect
match, since descriptors are being compared against them-
selves. Within the same class (or intra-class), high similar-
ity values are expected (yellow-red color), otherwise low
similarity (closer to blue) must be present. Looking at the
similarity matrices for the Mexican and 3D Pottery datasets
for ML-MVMCD and SHOT-BoW, our descriptor discerns
much better the inter-class descriptors than SHOT-BoW. On
the contrary, SHOT descriptors on both datasets show high
similarity values among different classes; for this reason,
it may get confused during the classification process, yielding
poor results.

V. CONCLUSIONS

We have proposed two Multi-View descriptors based on
mean local curvature (HC-MVMCD) and shape index (HC-
MVSID) for 3D archaeological objects classification. Based
on these descriptors, we created two different sets of descrip-
tors, the first set was built using a VGG-16 pretrained model
under the transfer learning paradigm, while the second set
was hand-crafted, that is without automatic training for fea-
ture extraction. Our experiments are based on two archaeo-
logical datasets, Mexican (non-public) and 3D Pottery, which
consist of 963 and 411 3D objects. Our proposed descriptors
are compared against state-of-the-art descriptors in the liter-
ature, such as HoSO-BoW [68], SHOT-BoW [82], SPH [43],
SYD [42], and RSD [44]. Our proposed 3D Multi-View
descriptors (trained and untrained) obtained the highest
classification scores, showing that efficiently capture the
main structure of the models in both the Mexican and
3D Pottery datasets. They provide excellent classification
accuracy independently of the classification method being
used.
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