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ABSTRACT In modern chemical process control, the application of data-driven soft sensor has become
increasingly extensive. Feature extraction is an important step in soft sensor. A novel feature extraction and
integration method based on stacked autoencoders (SAE) and mutual information (MI)-weighted principle
component analysis (PCA) was proposed to solve the loss of information on shallow depth features and
original variables in neural network models. First, an SAE model was trained to extract the features of the
original variables with varying depths. Second, through an MI indicator, the original variables and features
with strong dependency on the outputs were selected. Then, MI was used to assign varied weights to the
features and original variables, and the PCA method was used to remove any possible redundancy between
the original variables and features of varying depths to obtain the principle components. Finally, the principle
components were used to construct a regressor, such as a neural network. The model was first tested using
the Boston housing dataset as a benchmark and then applied to the soft sensor of a constant top oil dry point.
The proposed model achieved optimal results in terms of the root mean squared error and r indicators in the
experiments and was thus proved feasible and useful.

INDEX TERMS Feature extraction, mutual information, soft sensor, stacked autoencoder.

I. INTRODUCTION
The petrochemical industry is fundamental to energy, trans-
portation, textiles, materials, electronics, and people’s daily
lives. In modern chemical industry processes, certain key
quality variables, such as product quality and gas concentra-
tion, should be accurately measured to accomplish process
control and system optimization. However, some physical
facilities that measure these variables are particularly expen-
sive and suffer from frequently long delays and extreme work
environments. These drawbacks render the direct measure-
ment of these variables difficult. Soft sensor is a technique
that estimates the quality of variables that are difficult to mea-
sure on the basis of other easily measured process variables.
It is used as a reliable and economical alternative to expen-
sive physical measurement sensing. Currently, soft sensor

technology is widely used in process control. Several data-
based modeling methods have been used to build models
according to the input and output data of processes. Improve-
ments in distributed control systems have driven modern
industries into the era of big data. As a result of the dif-
ficulty in obtaining the mechanisms of complex industrial
objects and given the large volume of easily accessible data
in industrial processes, data-driven soft sensor technology has
attracted the interest of researchers [1]–[6].

In data-driven modeling methods, neural network (NN)
models can well approximate nonlinear functions and have
thus been widely applied [7], [8]. Existing soft sensor meth-
ods based on NN models remarkably improve the advanced
control of complex processes and product quality. In the
past few years, deep NNs have been rapidly developed.
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Compared with traditional shallow NNs, deep NNs construct
deep models to simulate the cognitive mechanism of the
human brain so as to learn some abstract concepts. When
data are entered into the network, the output of the previous
layer continues to serve as the input of the next layer, and
the features are learned layer by layer through the neurons
of the hidden layers. In deep NNs, a large number of hidden
layers indicates highly abstract learned features [9]. Deep
NNs have many classic models, such as convolutional NNs,
recurrent NNs, deep belief networks, and stacked autoen-
coders (SAEs). An autoencoder is an unsupervised learning
model that learns the features of data by minimizing recon-
struction errors. SAEs are formed when the features extracted
from a previous autoencoder are used as inputs for the next
autoencoder. SAEs can learn different depth features of input
data [10]. Deep learning has also made good progress in soft
sensor applications.

Qiu et al. [11] proposed a soft sensor model on the basis of
deep NN and achieved better prediction results than a shallow
architecture soft sensor model did under extremely complex
scenarios. Yao and Ge [12] proposed a semi-supervised deep
learning model on the basis of a hierarchical extreme learning
machine and applied it to soft sensor. They used the deep
network structure of autoencoders to extract unsupervised
features with all process samples. Using a deep learning net-
work, Yan et al. [13] proposed a method for soft sensor mod-
eling that integrates an NNwith denoising autoencoders. This
modeling method could capture key information from data
through a deep model and thus build soft sensors with excel-
lent performance. The abovementioned studies pioneered the
application of deep NNs to soft sensor modeling and pro-
vided new tools for soft sensor in industrial processes. These
algorithms share one characteristic in common; that is, they
mainly use abstract features in the final layers of the deep
network and ignore the various levels of abstract information
contained in the layers with varying depths. Shallow NNs
have only one hidden layer. Once the original feature is
transformed into hidden layer information, the feature then
reaches the output layer. This phenomenon indicates that the
shallow features of data can also complete prediction tasks.
In traditional deep NNmodels, the information of the original
variables is transmitted layer by layer through the network.
The hidden layers only perform transmission functions. Ulti-
mately, only the final hidden layer is directly linked to the
output layer, although the features of the final hidden layer
are transmitted by the input data through multiple hidden
layers and serve as the abstract representation of the original
variables.

However, a certain amount of information loss is inevitable
in data compression and transmission. Different depth fea-
tures in a network contain varied levels of original variable
information, which may be beneficial to process modeling.
We can use the original input variables and information from
all layers in the deep NN to build our regression model. How-
ever, directly using these features could cause problems, such
as excessive dimensions of or redundancy between features.

Several authors have reported feature extraction methods.
Hild et al. [14] proposed the method of maximization of
Renyi’s mutual information (MI) using a stochastic informa-
tion gradient. mRMR [15] is a method for feature extraction
that sets an indicator that takes relevance and redundancy into
account to ensure the selection of features with maximum
relevance and minimum redundancy. Another study [16]
used ICA and an MI-based criterion for feature extrac-
tion. In the current study, we propose a new feature trans-
formation method which has a better performance on the
experiments.

To address the loss of information in deep networks and the
problem caused by directly using these features in modeling,
we propose a novel feature extraction and integration method
that is based on SAEs and MI-weighted principle component
analysis (PCA). This method uses SAEs to extract abstract
features of different depths from original data. According
to the MI values of the original variables and features with
output, the original variables and features that are strongly
associated with the output are selected. Following the weigh-
ing of these variables and features by the MI values, PCA is
performed to remove any redundant information and obtain
the principal components. Finally, these principal compo-
nents are used to build a regression model, such as an NN.

The remainder of this paper is organized as follows.
Section II introduces some of the related concepts used in
this method. Section III introduces the specific steps of the
proposed method. Section IV discusses the benchmark test
on the Boston housing dataset and soft sensor model of the
constant top oil dry point in an atmospheric tower. Section V
summarizes the main contributions of this article.

II. RELATED CONCEPTS
A. NN
NNs are abstract computing models that simulate the human
brain [17]. An NN’s structure is mainly made up of three
layers, namely, input, hidden, and output layers. These lay-
ers in the NN are connected such that information can be
transmitted back and forth [18]. Figure 1 shows the structure
of a three-layer NN. Assuming that the training set is D =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, then xi ∈ Rd , yi ∈ Rl , which
denotes that the input data have d attributes and that the
dimension of the output data is l.

The NN in Figure 1 is a multilayer feed-forward NN with
l output nodes, q hidden nodes, and d input nodes. The bias
of the hth node in the hidden layer is γh, and the bias of
the jth node in the output layer is θj. The connection weight
between the ith node of the input layer and the hth node of
the hidden layer is vih, and the connection weight between
the hth node of the hidden layer and the jth node of the output
layer is whj. We set the input received by the hth node of the
hidden layer as

αh =

d∑
i=1

vihxi (1)
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FIGURE 1. Structure of a neural network.

and the input value received by the jth node in the output
layer as

βj =

q∑
h=1

whjbh (2)

where bh is the output of the hth node in the hidden layer. The
activation function of the output and hidden layer nodes can
be set to the sigmoid function, that is,

f (x) =
1

1+ e−x
(3)

The function can compress a wide range of input values
into range (0, 1) as output.

For the training data (xk , yk ), we assume that the output
value of the NN is ŷk = (ŷk1, ŷ

k
2, . . . , y

k
l ). The following

formula could be obtained:

ŷkj = f (βj − θj) (4)

Hence, the square error of the NN is

Ek =
1
2

l∑
j=1

(ŷkj − y
k
j )

2 (5)

where 1
/
2 is added for convenience in the following deriva-

tion.
The NN in Figure 1 has a total of (d + l + 1)q + l

parameters to be determined, including d×qweights between
the input and hidden layers, q× l weights between the hidden
and output layers, q biases of the hidden layer nodes, and
l biases of the output layer nodes. We can apply the back-
propagation (BP) algorithm to estimate these parameters step
by step [19].

B. SAE
As a special NN, the autoencoder can maximize the recon-
struction of the original signal. To achieve this reconstruc-
tion, the autoencoder should obtain representative features
from the input data, that is, the main components of the
input data [20]. A single-layer autoencoder model can be
represented as a simple NN that is composed of three layers,
namely, input, hidden, and output layers. Figure 2 illustrates

FIGURE 2. Structure of an autoencoder.

FIGURE 3. Encoding and decoding stages of an autoencoder.

an autoencoder with four nodes in the input and output layers
and three nodes in the hidden layer.

As shown in Figure 3, the autoencoder model involves
encoding and decoding stages. The encoding stage refers to
the process of data transmission from the input layer to the
hidden layer. The decoding stage refers to the process of data
transmission from the hidden layer to the output layer.

In this study, we use e and d to represent the encoding and
decoding operations, respectively. When the activation func-
tion is set as a sigmoid function, the mathematical expression
of the two stages is presented as follows:

bh = e(αh) = f (
d∑
i=1

vihxi + γh) (6)

x̂j = d(βj) = f (whjbh + θj) (7)

In the autoencoder network, the model first encodes the
input vector x into vector b then decodes vector b into vec-
tor x̂. The decoded vector x̂ should approximate the input
vector x optimally. The degree of approximation can be mea-
sured by reconstruction errors. Here, we use the square loss
function with the following mathematical expression:

L(x, x̂) =
d∑
i=1

(xi − x̂i)2 (8)

SAE is a type of deep NN that is individually made
up of multiple connected autoencoders, in which the next
autoencoder is responsible for re-encoding the hidden layer
representation of the previous autoencoder. Whereas the first
autoencoder can only learn the shallow first-level features
of the input data, the second-level autoencoder can learn
high-level features and new modes on the basis of the com-
bination of the first-level features. Therefore, the SAE model
can mine the representation of various levels of abstract fea-
tures of input data [24]. The hidden layer can learn extremely
complex abstract features. Thus, SAEs are applicable to dif-
ficult tasks, such as face recognition, handwritten character
recognition, and object detection in images. An SAE can
be stacked into many layers, and a deep SAE can consid-
erably improve the performance of deep NN models while
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FIGURE 4. SAE construction process.

increasing the amount of computation. The features extracted
from the SAE can be used as an input into the classifier or
regressor to predict input data. Figure 4 shows the construc-
tion process of the SAE with two autoencoders structured as
4-3-4 and 3-2-3.

The specific training steps of the SAEs are as follows:
(1) The first autoencoder is trained using the original

input x, which can learn the first-level features b of the
original input.

(2) Raw data are used as input for the previously trained
autoencoders. For each input x(k), the corresponding first-
level features b(1)(k) can be obtained. Then, we use these first-
level features as the input of the second autoencoder to learn
the high-level features b(2)(k).

(3) The SAE is obtained by combining these two single-
layer autoencoders.

C. PCA
PCA can remove correlations between variables via orthog-
onalization. In this way, most information from the original
data can be retained. At the same time, the original data can
be reorganized, and the redundant parts can be eliminated to
obtain unrelated principal components. As a result, dimen-
sions are reduced, and redundancies are removed [22]. The
main steps of PCA are detailed below.
(1) Construction of observation sample matrix
On the basis of the collected data, an n × p dimension

matrix is formed; here, n and p are the instance and number
of attributes of collected data, respectively.

X =


X1
X2
...

Xn

 =

x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...

xn1 xn2 · · · xnp

 (9)

(2) Construction of observation sample covariance matrix
E{[X −E(X )][Y −E(Y )]} is the covariance of the random

variables X and Yrepresentedbycov(X ,Y ). Hence, we obtain the

following:

cov(X ,Y ) = E{[X − E(X )][Y − E(Y )]} (10)

The covariance matrix of vector X = [X1,X2, . . . ,Xn]T

can be calculated according to Eq. (11) to form a symmetric
matrix C as follows:

C =


cov(X1,X1) cov(X1,X2) · · · cov(X1,Xn)
cov(X2,X1) cov(X2,X2) · · · cov(X2,Xn)

...
...

. . .
...

cov(Xn,X1) cov(Xn,X2) · · · cov(Xn,Xn)


(11)

(3) Eigenvalue decomposition of the covariance matrix C

QTCQ = 3 =


λ1

λ2
. . .

λn

 (12)

where 3 is a diagonal matrix with λi (i = 1, 2, . . . , n) as its
eigenvalue and Q is an orthogonal matrix. Then, according
to the numeric value of the eigenvalue, the eigenvectors are
re-ordered to obtain a new matrix:

U = (u1,u2, . . .un) =


u11 u12 · · · u1n
u21 u22 · · · u2n
...

...
. . .

...

un1 un2 · · · unn

 (13)

(4) Calculation of the rate of cumulative contribution
Cumulative contribution rate refers to the proportion of the

sum of the first k eigenvalues and the sum of all eigenvalues

ρ =

k∑
i=1
λi

n∑
i=1
λi

. (14)

The number of principal components that should be
extracted is not fixed but is determined on the basis of the
fact that the cumulative contribution rate ρ reaches a certain
percentage. Thus, we set the condition as ρ > 95%. When
the cumulative variance contribution rates of the largest k
eigenvalues meet the requirement, k principal components
can be selected.
(5) Calculation of principal components

Z = PTX (15)

where P is the matrix of the first k columns of the eigenvector
matrix U. Therefore, the k principal components are calcu-
lated as follows:

Z1 = u11x11 + u12x12 + · · · + u1nx1n
Z2 = u21x21 + u22x22 + · · · + u2nx2n
...

Zk = uk1xk1 + uk2xk2 + · · · + uknxkn

(16)
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D. MI
In probability theory, the MI of two random variables is a
measurement of their interdependence [23]. The MI of the
random variables X and Y is denoted as I (X;Y ) and mathe-
matically defined as

I (X;Y ) = H (X )− H (X |Y ) (17)

where H (X ) is the information entropy of X and H (X |Y ) is
the conditional information entropy of X when given Y . The
information entropy and conditional information entropy of
the random variables are mathematically defined as follows

H (X ) = −
n∑
i=1

P(Xi) log(P(Xi)) (18)

H (X |Y ) = −
n∑
i=1

m∑
j=1

P(X=xi,Y =yi) log(P(X=xi|Y =yi))

(19)

where n and m represent the number of discrete states of
X and Y , respectively; and P(X = xi,Y = yi) represents
the joint probability distribution of X and Y .
On the basis of the definition, we determine that if the

joint distribution p(x, y) of two variables can be obtained,
then their correlation can be obtained by calculating the MI,
and the dependency among the variables can be analyzed.
For continuous data, we can use the histogram method to
transform them into discrete data so as to estimate probability
density.

III. SAE–MIPCA-BASED FEATURE EXTRACTION
AND INTEGRATION METHOD
The SAE method can construct features with varying depths
in different hidden layers of a network. These features are
high-level representations of input variables and may contain
information that is helpful for modeling. The traditional deep
NN only uses the features in the final hidden layers to obtain
the output. However, the features of the hidden layer become
increasingly abstract as the depth of the network increases.
In fact, original variables and certain shallow features in a
deepNN also contain information with output. Hence, the tra-
ditional deep NNmay suffer from information loss. The com-
bination of original variables and the different level features
of the original variables should containmore information than
original variables do. However, mixing them directly will
cause problems such as multicollinearity or feature dimen-
sions that are too high; the outcome is detrimental to mod-
eling. To avoid these problems, we can use the MI index to
select output-related variables and features and weigh them
prior to the PCA. This step is deemed as supervised PCA.
That is, the variables with strong dependence on the output
will play important roles in PCA, whereas the importance
of variables with a week dependency on the output will be
suppressed. Therefore, these processing steps can construct
features with more information than original variables do and
with minimal redundancy.

After obtaining the feature output by MIPCA, we can use
their features to train a regressor.

The proposed method can be summarized in detail as
follows.
Data Preprocessing Stage:
(1) To attain a uniform scale for each attribute of the data

and improve the stability of the model, we should normalize
each dimension of the input and output of the dataset such
that the range of each feature in the dataset lies in the interval
of [0, 1] before training.

(2) We divide the entire dataset into a training set Xtrain,
a validation set Xvalidation, and a test set Xtest with ratios
of 60%, 20%, and 20%, respectively. The training set is used
to train themodel offline. The validation set is served to adjust
the hyper-parameters of the model to find the optimal model.
The test set is used to observe the prediction performance
of the model online.
Offline Modeling Stage:
(3) We train an SAE consisting ofm autoencoders on Xtrain

to obtain the features of m different depths {B1,B2, . . . ,Bm},
where Bi is the feature extracted from the hidden layer of the
autoencoder in the SAE. Each autoencoder adopts a strat-
egy of early stopping during training to avoid over-fitting.
That is, when the reconstruction error of each autoencoder
is no longer reduced on the validation set during s steps,
the training is stopped in advance to avoid over-fitting. In this
manner, we can obtain features with enhanced generaliza-
tion capabilities. The quantity of autoencoders and nodes of
each autoencoder that belongs to the SAE can be set as the
parameter with the best effect through multiple experiments.
Typically, when the number of training samples is large and
the dimension of original variables is small, we can set a
large number of layers of the SAE because the risk of over-
fitting is small. Conversely, when the dimension of the orig-
inal variables is large but the number of training samples is
insufficient, the number of layers of the SAE cannot be set too
high to avoid over-fitting. The number of nodes in the hidden
layer of each autoencoder can be set according to experience.
Thus, we set it to 75% of the number of nodes in the input
layer as the initial number. Then, the number is adjusted on
the basis of the reconstruction error of the autoencoder on the
validation set.

(4) The effective MI threshold MIth is determined as fol-
lows. Exactly 1,000 random vectors are randomly generated
by a uniform distribution in the range of [0,1]. The dimension
of each vector is consistent with the number of training sam-
ples. Then, the MI of the 1,000 random vectors is calculated
with the training data outputs. The 50th largest MI value
is selected as threshold MIth. Thus, for a certain feature,
if the MI with the output is greater than the threshold MIth,
the feature has a certain causal relationship with the output at
a 95% confidence level.

(5) The variables Vre with strong relevance to the output
values are selected from the original variables and extracted
features. Specifically, we calculate the MI between vari-
ables in Xtrain and {B1,B2, . . . ,Bm} with the outputs of the
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training set. If the MI of a variable with the output value is
higher than MIth, then the variable is selected. Otherwise,
the variable is discarded.

(6) We obtain the principal component Vpc of the reserved
variables Vre using the MI-weighted PCA. That is, the matrix
of reserved features Wre is multiplied with a diagonal matrix
(such that each element is the MI of each reserved feature
with outputs) to increase the importance of features with large
MI with output and decrease the importance of features with
small MI. This step yields the weighted reserved features
of Wre. Then, the PCA algorithm is used to process Wre to
remove possible redundancies between these features due to
the relevance of different depths in the network. The number
of principal components k retained by the PCA can be consid-
ered to meet the cumulative contribution rate of 95%. Thus,
we obtain the principle components of Vpc.

(7) We use Vpc as input data and label y as output to train
a regressor. The regressor should be simplified and easily set
up as an NN with one or two hidden layers because the input
already contains the components of the original variables and
different depth features.
Online Prediction Stage:
(8) The test data setXtest is processed using trained network

structures and parameters to obtain the prediction values.
Specifically, we first use the SAE that was trained in step (3)
to acquire the features of different depths of the test data.
Then, we reserve the variables of the same nodes for the
test data and features according to the variables reserved in
step (5). We use the same MI weights and PCA parameters
in step (6) to obtain the MI-weighted principal components.
Finally, the principal components of the feature are input into
the regressor that was trained in step (7), and the output value
of the regressor should be inversely normalized to obtain the
predicted value ŷ.

IV. CASE STUDY
A. BENCHMARK TEST ON BOSTON HOUSING DATASET
The dataset was originally published by Du et al. [21]. The
data in the dataset date back to 1978. Exactly 506 instances
cover information on the 14 attributes of houses in various
suburbs in Boston, Massachusetts. This dataset is often used
as a benchmark to test algorithm performance. The hardware
environment for the experiment was an Intel i5-4200u CPU
with 8 GB RAM.

We used the first 13 attributes as independent variables and
the 14th attribute as the dependent variable that we sought to
predict. After normalizing each dimension of the independent
and dependent variables into a range of [0, 1], we randomly
selected 304 instances from 506 samples as the training set,
101 instances as the validation set, and 101 instances as the
test set.

We trained the SAE to extract the different depth fea-
tures of the original attributes. After several experiments,
the structure of the SAEwas determined to be formed by three
stacking autoencoders. The structures of the three autoen-
coders were 13-10-13, 10-7-10, and 7-4-7, respectively.

The training process involved the use of the adaptive moment
estimation (Adam) optimization algorithm. Compared with
the traditional BP algorithm, the Adam algorithm is more
efficient and stable. At the same time, the reconstruction
error on the validation set was observed after each parameter
update. If the error on the validation set no longer dropped
within s = 30 iterations, then the training would be stopped
in advance to avoid the over-fitting of the autoencoder model.
In this manner, features including the 13 original variables
and 10 + 7 + 4 = 21 different depth abstract features
were obtained for each input sample. Then, we calculated
the MI between each feature with output. After 1,000 times
of random sampling, the MI threshold was determined to be
0.1626 with 95% confidence. Figure 5 shows the MI of each
feature with output and the value of threshold MIth. MI was
calculated using the histogram method, and the box number
was set to 10.

FIGURE 5. MI of each feature with output and the value of the threshold.

FIGURE 6. Explained variance contribution ratio of each principle
component.

Figure 5 shows that only the fourth feature’s MI with
output fell below the threshold. Hence, we concluded that
the fourth feature was independent of the output and thus
discarded it without proceeding to the subsequent calculation.
The remaining features were multiplied by MI and processed
by PCA. Figure 6 displays the corresponding variance contri-
bution of each principal component.

After calculation, the cumulative variance contribution
rate of the first eight principal components reached 95.03%.
Therefore, the first eight principal components were retained
as input features of the next regressor.

Finally, we should use these principal components to
build the regressor. We selected three types of regressor,
namely, NNs, support vector regression (SVR), and random
forest (RF). After several experiments, the NN’s structure
became three layers. The quantities of nodes in each layer
were set to 8, 8, and 1 for the input, hidden, and output layers,
respectively. The activation function could use the sigmoid
function due to the small number of layers. Similar to the
abovementioned step in training the autoencoders, the Adam
optimization algorithm and early stopping strategy were also
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used when training this NN. The number of waiting steps for
the early stopping strategy was also set to 30. The parameters
of the SVR model were as follows: penalty parameter c was
set to 1, and the kernel function used RBF. The parameters
of the RF model were as follows: the number of trees was set
to 500, and the minimum number of samples to split was set
to 2. At this point, the offline training stage of the model was
completed.

In the online prediction stage, the test data were brought
into the network to obtain the output value of the model.
Then, the output value was processed by anti-normalization
to obtain the final prediction value ŷ.

In this test, two indicators, namely, root mean squared
error (RMSE) and Pearson correlation coefficient (r),
were used to evaluate the performance of the algorithm.
Eqs. (20) and (21) provide their mathematical definitions.

RMSE =

√√√√ 1
ntest

ntest∑
i=1

(ŷi − yi)2 (20)

r =

ntest∑
i=1

(yi − ȳ)(ŷi − ¯̂y)√
ntest∑
i=1

(yi − ȳ)2
√
ntest∑
i=1

(ŷi − ¯̂y)2
(21)

where ŷi is the prediction value of the ith test data, yi is the
true value of the ith test data, ¯̂y is the mean of the prediction
values, and ȳ is the mean of the true values. To eliminate the
fluctuation of the model performance caused by the random
distribution of data, we conducted 20 random assignments,
fitted 20 models, and averaged 20 prediction performances
as the total performance of the model.

To further explain the prediction performance of themodel,
we trained six models for comparison. Three of these models
were NN, SVR, and RF, and they directly used the original
variables as input. Their parameters were also equal to the
regressors in the proposed method. The other three methods
were built by changing the MIPCA in the proposed method
by mRMR as the method for selecting the features.

Figure 7 shows the prediction and true values of different
modeling methods on the test set. The abscissa of each point
in the figure represents the prediction value, and the ordinate
represents the true value. The closer the data point is to the
dotted line of the symmetric axis, the better the prediction
effect of the model is. Table 2 shows the performance metrics
of the various methods.

On the basis of Figure 7, we found that the points pre-
dicted by the proposed method were close to the dotted line
in each sub-graph; thus, the prediction was accurate. The
same conclusion can be drawn in Table 1. The RMSE and
r indexes were the best in each group of regressors, followed
by SAE-mRMR for each group. This finding showed that the
features that were transformed by the SAE-MIPCA method
had better representation capabilities to build accuratemodels
on the benchmark dataset compared with the other methods.

FIGURE 7. Prediction and true values of modeling methods on the
test set.

TABLE 1. Prediction accuracy indicators of different algorithms.

B. SOFT SENSOR MODEL OF CONSTANT TOP OIL
DRY POINT IN AN ATMOSPHERIC TOWER
Atmospheric distillation towers are the primary production
facilities for refineries. Their production level directly affects
the utilization rate of crude oil and the economic benefits
of enterprises. As a typical multilateral distillation tower,
the atmospheric tower extracts kerosene, gasoline, diesel, and
other products from the sidelines. The following quality indi-
cators need to be controlled for the products of atmospheric
tower distillation: dry point of constant top oil, flash point,
freezing point, distillation range of gasoline, condensation
point of diesel, 95% distillation temperature, and so on. The
main product at the top of the atmospheric tower is the
constant top oil, which this study aims to analyze through
experimentation. If the dry point of the constant top oil is
extremely high, then the heavy components of the produced
oil will be extremely high and affect the quality of the oil.
Therefore, we build a soft sensor model of the constant top
oil using the proposed method.
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In this experiment, the following independent variables
were selected: total outlet temperature, total flow, tower top
temperature, tower top pressure, top reflux output energy,
top product volume, constant light oil flow, constant first-
line flow, constant second-line flow, constant third-line flow,
constant top cycle output energy, constant first middle output
energy, constant second middle output energy, vaporization
section temperature, and stripping steam flow. These fac-
tors can be obtained directly (or counted indirectly) through
the DCS system in real time. In addition, the properties of
crude oil directly affect the dry point of the constant top oil.
However, the properties of crude oil are often difficult to
obtain due to the frequent transformation of refined crude oil.
We could use the artificial analysis value of the dry point
of the constant top oil in the previous few moments as an
indirect representation of the properties of refined crude oil.
If too many moments were selected, the complexity of the
model would increase. Through several experiments, select-
ing the artificial analysis values of the dry point in the four
moments before the current moment as independent variables
was deemed appropriate.

The experiment collected 150 samples and randomly
selected 90 instances as the training set, 30 instances as the
validation set, and 30 instances as the test set. The proposed
method was used to model the soft sensor of the atmospheric
tower. After several experiments, the SAE’s parameters were
set as follows: the input layer had 19 nodes, and three autoen-
coders were added in turn. The structure of each autoencoder
was 19-15-19, 15-11-15, and 11-7-11. After 1,000 times of
random sampling, the MI threshold MIth was set to 0.3652.
Figure 8 shows the original variables of the input layer and
the MI values of the different depth features as extracted by
the SAE with dry points.

FIGURE 8. MI value of each feature with dry point.

Figure 8 shows that 35 variables whose MI values with dry
points exceeded the threshold were reserved. After multiply-
ing these variables with their MI, the PCA algorithm was
used to remove possible redundancies and to simplify the
variables. Figure 9 depicts the ratio of the explained variance
of each principal component.

The cumulative variance contribution rate of the first
11 principal components reached 96.26%. Therefore,
we reserved 11 principal components as the input features
of the following regressor.

We continued to use NN, SVR, and RF as regressors.
After several experiments, the structure of the NN was set
as follows: the input layer had 11 nodes, the hidden layer

FIGURE 9. Explained variance ratio of each principal component.

FIGURE 10. Prediction results and true values of dry point.

had 15 nodes, and the output layer had 1 node. The activation
function adopted the sigmoid function. Similarly, the Adam
parameter optimization algorithm was used during training,
whereas the early stopping strategy was used to avoid the
over-fitting of the regressor. The parameters of SVR were
as follows: penalty parameter c was set to 1, and the kernel
function used the RBF kernel function. The parameters of the
RFmodel were as follows: the number of trees was set to 500,
and the minimum number of samples to split was set to 2.

During the online test, the test data were brought into the
network, where the output values of the model should be
anti-normalized to obtain the final prediction value ŷ. The
experiment was repeated 20 times, and the average of the
20 prediction performances was taken as the performance of
the model.

For comparison, the NN, SVR, RF, SAE-mRMR-NN,
SAE-mRMR-SVR, and SAE-mRMR-RF models were
trained. Figure 10 provides the prediction results and true
values of the dry point. Table 2 presents the prediction
accuracy indicators RMSE and r .

The results in Table 2 show that when the regressor was
set as NN or RF, the models with SAE to extract high level
features underwent considerable improvement in accuracy.
However, when the regressor was SVR, the improvement
was minimal. Conversely, the accuracy of the models using
MIPCA as the feature transformer was slightly higher than
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TABLE 2. Prediction accuracy indicators of different algorithms.

that of the models using mRMRwith the same regressor. The
results of the experiment indicated the effectiveness of the
method in soft sensor for constant top oil dry points.

V. CONCLUSION
For the original NN model, only the last hidden layer is
directly linked to the output layer. Moreover, the direct
output-related information that may be contained in the input
layer and the previous hidden layer does not directly affect
the output in the network and may be lost in the process
of transmission. This study proposed to use SAEs to extract
the features of different levels and then filter the original
variables and features with high MI using the outputs. The
proposed method uses MI-weighted PCA to strengthen the
weights of features with strong dependency on outputs and
weaken the weights of features with minimal dependency on
outputs. At the same time, this method removes the possible
redundancies of different depths in those features. We used
the principal components of the weighted features to con-
struct a regressor, such as the NN. The benchmark test on
the Boston housing dataset and soft sensor model of constant
top oil dry points showed that the modeling accuracy of this
method was better than that of other models in the experi-
ments. This result proved the effectiveness of the proposed
method in dry point soft sensor for constant top oil.

The proposed method did show certain drawbacks. For
example, the structure of the SAE and NN regressor in the
method was determined only after multiple attempts during
the experiments; hence, the process was time consuming.
In addition, the improvement of the model performance for
different regressions varied, although the previous feature
extraction process remained unchanged. For the NN regres-
sor, this satisfactory feature extraction process improved the
regression performance. However, in some cases of SVR, the
promotion was not as big as that for NN.

These issues need to be addressed in future research.
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