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ABSTRACT To improve the prediction accuracy of traffic flow, a travel time prediction model based on
gradient boosting decision tree (GBDT) is proposed. In order to test the applicability of GBDT, models
with different prediction horizons (5 min ahead, 10 min ahead, and 15 min ahead) are established. The
11 variables are viewed as candidates in this paper. Different from other machine learning algorithms as
black boxes, GBDT can provide interpretable results through variable importance. In the proposed model,
the variable importance shows that for different prediction horizons, the most important influence variable is
uniform, which is travel time in the current period. Traffic conditions in the current period have the greatest
influence on the predicted travel time. Compared with the back propagation neural network model and the
support vector machine model, the proposed GBDT model can produce more accurate prediction results,
especially in multi-step prediction, indicating that GBDT is a promising method in travel time prediction.

INDEX TERMS Different prediction horizons, freeway, gradient boosting decision tree (GBDT), machine

learning, traffic flow, travel time prediction.

I. INTRODUCTION
With the rapid growth of car ownership, traffic conges-
tion has become one of the most serious social problems.
To reduce traffic jam, many transportation infrastructures
have been built. Recently, Advanced Traffic Information Sys-
tems (ATIS) has drawn great attention as it can help the traffic
managers make full use of the transportation infrastructures.
ATIS is a subsystem of Intelligent Transportation Systems
(ITS), which aims at providing timely and reliable traffic
information to the public [1]. Based on accurate traffic infor-
mation, on the one hand, traffic managers can improve traffic
management decisions; on the other hand, travelers can make
better travel choices [2], [3]. Travel time has been one of the
most important and intuitionistic performance measures of
a transportation system [4]. With accurate travel time, more
informative decision in terms of trip generation and routing
can be made by travelers individually. Traffic condition can
become more stable and traffic congestion can be mitigated
collectively [5]. Therefore, accurate travel time prediction
algorithm is imperative.

In recent years, travel time prediction has become a
hot research field of ITS. Accurate real-time travel time
prediction is the premise of realizing traffic control and

management and traffic guidance, which is the key factor
for transforming ITS from passive response to active action.
Travel time prediction is also one of the most important issues
to be solved in areas such as traffic control systems and traffic
flow guidance systems. Accurate prediction of travel time
has important practical significance and application value
for alleviating urban traffic congestion and avoiding resource
waste.

Travel time can be achieved directly or indirectly. Direct
methods measure travel time using probe vehicle, records
at toll stations, tracking of cell phones, and many other
technologies [6]. Indirect methods infer travel time using
measured traffic volume, speed, and occupancy from point
sensors (e.g., loop detector, video camera) along the vehi-
cle trajectory [7], [8]. In previous literature, the infer-
ence of travel time has gone through various approaches,
including traffic flow theory, time series analysis, statisti-
cal regression and artificial neural network [5], [8]-[10].
The development of traffic information acquisition tech-
nology has provided us with a large amount of traf-
fic data, which offer us an opportunity to develop
a more accurate travel time prediction based on data
mining.
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The paper introduces a new data mining technique called
Gradient Boosting Decision Tree (GBDT) for travel time pre-
diction. Compared with traditional parametric models, data
mining algorithms can be deeply explored implicit relation-
ships between variables.

II. LITERATURE REVIEW

Travel time prediction plays a crucial role in dynamic traffic
management decision and travel decision. Therefore, a wide
range of algorithms of travel time prediction had been pre-
sented in the literature.

Early researches were based on mathematical statis-
tics [11]-[13], for example, Zhang and Rice [14] proposed
a linear model with the varying coefficient. The coefficient
varied with the smoothing function of the departure time.
The method was simple to implement and widely applica-
ble to sensor data. A simple moving average method with
constant weight and two adaptive moving average methods
were developed by Farokhi Sadabadi ef al. [15]. The results
showed that the three moving average methods had simi-
lar accuracy in short-term prediction. However, the predic-
tion accuracy declined with the increase of prediction time.
Fei et al. [16] applied a dynamic model to predict the freeway
travel time. In this model, the prediction process was con-
sidered as a random process and the prediction travel time
distribution of its associated confidence intervals could be
produced as results. This model combined historical traffic
information with existing traffic measures. The results of
the experiment showed that the model could provide accu-
rate and reliable travel time prediction under different traffic
states. Using data of the floating car, a traffic flow prediction
model based on the Kalman filter model was proposed by
Nanthawichit et al. [17]. The state equation was represented
by a macroscopic traffic flow model. The model was tested
under various traffic states, which were applied to the short-
term prediction of travel time. Taking into account noise of
the model, Chu et al. [18] developed a travel time prediction
method based on adaptive Kalman filtering, which combined
the data of loop detector with floating car. Because of easy to
implementation and low computational effort, models based
on mathematical statistics method are widely used. However,
the accuracy is generally low.

Another type of travel time perdition method is machine
learning algorithm [19], [20], including K-Nearest Neigh-
bor (KNN), Support Vector Machines (SVM) [21], and
neural networks [22]. A KNN model was presented by
Qiao et al. [23], which could produce accurate predic-
tion results under different traffic states. A bus travel time
prediction model based on the SVM was proposed by
Reddy et al. [24]. The model used V-Support vector regres-
sion as a linear kernel function and used the data collected
by public bus equipped with a GPS system to validate. The
result showed that the accuracy of the model was significantly
improved under the condition of high variance. Zeng and
Zhang [25] raised a state-space neural network model with
time delays. The input of the model included the parameters
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of current road segment (speed, occupancy, traffic flow), and
the parameters of downstream and upstream sections (speed,
occupancy, traffic flow), which was verified by the data
collected in the Houston freeway. The results indicated that
the model was more accurate than ordinary neural network.
To predict the travel time of trucks, three kinds of machine
learning methods were presented by Sun et al. [26]. The
three models were based on KNN, SVM, and Random Forests
algorithms respectively. Experimental results showed that the
accuracy of models based on the SVM and Random Forests
respectively were higher than that of KNN. Models based
on machine learning methods need large amounts of com-
putation, but the high accuracy drives scholars to shift their
research focus to these methods.

In summary, the analysis of the literature mentioned above
shows that there are many methods for predicting travel
time. Mathematical statistics models provide interpretable
parameters and a simple model structure, while machine
learning models do not assume any particular model structure
of the data, but treat it as unknown. Due to the nonlinear
characteristics of traffic flow, machine learning methods for
travel time prediction are overall more accurate than the
methods based on mathematical statistics. Therefore, travel
time prediction model has gradually transferred to machine
learning methods. However, most machine learning model is
lack of result interpretability, which limits the application in
travel time prediction.

In recent years, data mining and machine learning have
gradually come into sight. The latest research has applied
the Random Forests model to the traffic prediction [27], [28].
Compared with traditional parametric models, machine learn-
ing algorithms can be deeply excavated implicit relationships
between variables. However, there are fewer studies on the
application of GBDT in the transportation field. Based on
GBDT, Ma et al. [29] presented a model to predict the inci-
dent clearance time using different types of explanatory vari-
ables. The comparison result showed that the proposed model
outperforms BP neural network, support vector machine,
and Random Forests. However, the nonlinear relationship
between influence variable and response variable was not
investigated. Yang ef al. [30] raised a short-term traffic vol-
ume prediction model based on GBDT. Whereas in the pro-
posed model, variables related to traffic states such as density
were not considered. A taxi travel time prediction model
using Random Forests and Gradient Boosting was proposed
by Gupta et al. [31]. In this study, the prediction accuracy
of Gradient Boosting Regression model was greater than
Random Forests Regression model. While variable impor-
tance was not analyzed. Zhang et al. [32] developed an
urban travel time prediction model based on Spatiotemporal
Gradient Boosted Regression Tree (STGBRT). The proposed
model accounted for spatiotemporal correlations extracted
from historical and real-time traffic data for adjacent and
target links. The prediction accuracy was elevated in both
half-an-hour predictions and one-hour predictions. Neverthe-
less, the parameters of the proposed model only considered
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TABLE 1. The commonly used loss function and gradient.

s, signly, — f(x)), |y, - f(x)]> 5,
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Absolute 1 .
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Exponential
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xth component: I(y; =¢,) —p,(X;) Classification

the number of trees and the learning rate. A travel time
prediction model based on gradient boosting method was
presented by Zhang and Haghani [33], but the input variables
were only time-related variables. Variables related to traffic
states such as density and flow were not considered. Li and
Bai [34] developed a freight vehicle travel time prediction
model based on Gradient Boosting Regression Tree. The pre-
start prediction model used the data-time feature as influential
variables and made use of trajectory data as the real-time
information to perform post-start prediction. The prediction
accuracy of the two models was significantly improved. But
there was no comparison with other similar approaches. Vari-
able takes into account the mean speed, Yet variables related
to traffic states were also not considered.

In view of this, the hot-spot algorithm in machine
learning—Gradient Boosting Decision Tree is used to estab-
lish a travel time prediction model. The influence of variables
on travel time can be deeply excavated through GBDT.

The main contribution of this paper is (1) Accurately
predicting travel time with different prediction horizons.
(2) Providing a flexible framework to adopt different types of
predictors as the input variables (such as traffic flow, speed,
density, occupancy, number of vehicles and data-time vari-
ables). (3) Understanding the diverse influences of different
variables on the predicted travel time, exploring the nonlinear
relationship between variables and the predicted travel time,
and having good interpretability.

The rest of the paper is structured as followed. Section III
will give the methodology of GBDT to build a travel time
prediction model followed by Section IV, which describes the
data used in this paper. Results and discussions are presented
in Section V. Finally, the conclusions and future work are
outlined in Section VI.

ill. METHODOLOGY

This section presents the methodology and learning algo-
rithms of GBDT. GBDT is an iterative decision tree algorithm
as originally derived by Friedman [35].

A. THE THEORY OF GRADIENT BOOSTING DECISION TREE
1) LOSS FUNCTION

The loss function is a function to measure loss and error,
which reflects the credibility of the model. The smaller the
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loss function is, the higher accuracy of the model is. Cur-
rently, there are various loss functions in GBDT [36]-[38].
The most commonly used loss functions and corresponding
gradients are shown in TABLE 1.

2) GRADIENT DESCENT ALGORITHM
Supervised learning is an important kind of machine learning
algorithms. For supervised learning, we suppose there are N
training samples, {(X1 , yl), (X2, y2), (XN yN)}, where
X' ={x!,x?, ..., xK} is the feature vector of the sample i,
and y* is the response variable of the sample, namely the target
variable. The response variable of a sample can be either
a continuous value (in regression problems) or a discrete
value (in classification problems). The objective of machine
learning is to find a mapping function F(X) between the
independent variable X and target variable y' by using the
training data. In order to find the optimal function, a loss
function L(y, F(x)) is usually set for the model. Optimal
mapping function F*(X) can be obtained through minimizing
the loss function, as

F*(X) = argmin L(y, F(x)) )
F(X)

When F(X) is a linear regression problem, the mapping
function F(X) is,

FX,0)=0X =00+ 01x1 +6hx2+---+0x, (2)

Assuming L(6) is the loss function of the linear regres-
sion problem, and then the optimal mapping function can be
obtained by,

0* = argmingL(0) = argmingL(y, F(X,0)) (3)
F*(X) = F*(X,0) 4)

The optimization problem can be effectively solved by
Gradient Descent (GD) algorithm, which is also called the
steepest descent algorithm. The theoretical basis is that the
loss function always decreases the fastest in the direction of
the negative gradient (the gradient is the maximum direction
derivative of a function at a certain point). The GD algorithm
reduces function value along the negative gradient direction
when optimizing the objective function.

When solving the minimum value of loss function, the min-
imum loss function and the parameter values of the model can
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Algorithm 1 The Gradient Descent Algorithm
Step 1 initialize the parameter 6y
Step2form=1,2...M, repeat

(1) Calculate the negative gradient d,,, = — % £(0)|6m
(2) Calculate the step-size p,, = argminf (6,,—1 + p -
]
dm)

(3) Update 6,y = O—1 + om - dm
Step 3 Until the termination condition, then 6* = 6y +

M
Z o
m=1

be obtained by the iterative method in the negative gradient
direction. Algorithm 1 illustrates the basic steps of the GD
algorithm.

3) GRADIENT BOOSTING ALGORITHM

a: OPTIMIZATION IN FUNCTION SPACE

The difference between boosting method and conventional
machine learning is that the optimization is held out in the
function space. Fo(X) = fo(X) is set as the initial value
according to the GD algorithm described above. Taking the
function F(X) as a whole, the optimal function is obtained
after M — th iterations.

M
F*X) =Y fix) 5)
i=0

where f;(x)(i = 1,2...M) is the function increments, that
f[iX) = —pi-gm(X). Among them, the new base-learner is the
largest loss function associated with negative gradients [39].
Therefore, for M — th iterations, the negative gradient is
shown in (6).

[BL(% FX))
gm=—|—

IF(X) ©)

]F(X)=F,;l—|(X)

where g, is the direction in which the loss function drops the
fastest when F'(X) = F;,—1(X). For each step, a new decision
tree is aimed to correct the error made by its previous base-
learner, so the current model is updated to (7).

Fu(X) = Fu1(X) + pm - hi(X, i) @)

Assuming h(X, a;,) is the base-learner. The step-size of
GD is calculated as (8).

N
pm = argmin Y [LyiFu-10)) + p - h(Xi, )] (8)
n=1

The function f (X) is determined by the parameter o, which
is shown in (9).

fX)=—p K(X; a) &)
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b: GRADIENT BOOSTING ALGORITHM

Boosting method is one of the most important methods in
ensemble learning, which generates base models sequentially.
The step of boosting method is shown as follows.

o Step 1: Each sample has weights, initial of which is
identical;

o Step 2: Base-learner 1 is used to learn the training sam-
ples;

o Step 3: When the learning is completed, the weight of
the wrong samples is increased, and the weight of the
correct samples is reduced;

o Step 4: Base-learner 2 is used to learn;

o Step 5: Repeat Steps 2-4 obtain M base-learners;

o Step 6: Combine the results of the M base-learners as
the ultimate learning result.

The weight of each base-learner in the boosting method is

different. The specific process of boosting is shown in Fig 1.

Training sample {(X, Y)}

P Weighting Weighing
Learner 1 Learner 2 Learner M
h h, hy,

P P Pu

FO) =Y p,h(X,a,)

m=1

FIGURE 1. Boosting method.

It can be seen from Fig. 1 that the ultimate prediction result
of boosting method is the combination of M base-learner
results, showed in (10).

M
FX) =) om (X, ) (10)
m=1
Similar to the optimization in function space described
earlier, then

m
FuX) = —pi - h(X; ;) (11)
i=0
The training value for each sample is shown in (12).
. dL(yi, F(X;))
P ikl i i _ 12
i OF (X)) 1FeO=F,_ 1) (12)

The establishment of the aforementioned model is the
process of solving the gradient, so it is also called the boosting
method based on gradient. Algorithm 2 illustrates the basic
steps of the Gradient Boosting algorithm.
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Algorithm 2 The Gradient Boosting algorithm
Step 1 initialize F, (,(X ) with a constant, Fo(X) =

argmin Z L(y;, p)

Step 2 form = 1 2 ..M, repeat
1) Calculate the negative gradient
= [8L§y;&0f))]F(X):Fm_l(X), i=1,2...N
) Calculate oy, = argmin 3 [y; — B - h(X;, a)]?
a.f
(3) Calculate the step-size

N
om = argmin Z [LOiFn—1(x) + p - h(X;, o0)]

(4) Update Fm(X) Fu—1X) + om - (X, )
Step 3 Until the termination condition, then output the final
model F,,,(X)

In the above algorithm, the meaning of o, =
argmin ) [y; — B - h(X;, «)]? is to measure the proximity

a.fp
between the base-learner and the negative gradient by using
the square error at each step of boosting, and choose the
base-learner with the smallest fitting error.

4) GRADIENT BOOSTING DECISION TREE ALGORITHM
GBDT algorithm uses a regression tree model of Classifica-
tion and Regression Trees (CART), which is shown in (13).

J
f(x) = ch I(x €R)) (13)

Equation (13) indicates that the data space is divided into J
units (J leaf nodes), each of which has fixed output value c;.
Combining Algorithm 2 and Equation (13), GBDT can solve
most of the regression models.

However, GBDT might suffer the overfitting problem,
which could be effectively solved by introducing the learning
rate n at each iteration. Learning rate is a regularization
method in GBDT. To further improve the generalization of
GBDT, random subsample was introduced by Freidman.

The subsample fraction is proposed to obtain new training
data sets by randomly sampled without returning in each
step of boosting. Meanwhile, a new feature vector set is
obtained randomly sampled without returning in each step.
The regression tree is fitted using the new training data sets
and feature vector sets. Utilizing the subsample fraction is
the second way to regularize GBDT.

5) VARIABLE IMPORTANCE AND PARTIAL

DEPENDENCE FUNCTION

a: VARIABLE IMPORTANCE

Variable importance is calculated in the model by the number
of time variables appear in the decision tree and performance
improvement of the model after each split [35], [36].

1 M
) = 2 D (T (14)
m=1
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J
R(Ty) =Y EF1;(x%) (15)

Jj=1
where in (14)-(15), T, is the m — th decision tree in GBDT
F with J leaf nodes. lj(Xk) is the indicator function that
whether variable X¥ was chosen as split variable at node j
in the decision tree Ty,. E 2 is the squared error improvement
of the corresponding node after selecting the variable X to
split. 1 2(F ) is the importance value of the variable X* in the
Gradient Boosting Decision Tree F'. / kz(Tm) is the importance

value of the variable X* in the decision tree T),.

b: PARTIAL DEPENDENCE FUNCTION

Through GBDT, the partial dependence function of the
trained model F(X) for variables can be calculated and the
corresponding function graph can be drawn. Equation (16) is
the calculation formula for partial dependence function.

F(Xs) = Ex,[F(X,)] = Z F(Xs.Xic)  (16)
where X is a subset of variables that need to calculate partial
dependent functions. X¢ is the complementary set of Xg. XgU
Xc = Xk is asubset of variables in the model. X;¢ is the value
of X¢ in training sample, where i = 1,..., N.

B. PARAMETERS OF MODEL
In GBDT, there are five parameters need to be determined,
which is presented in Table 2.

TABLE 2. Parameters in GBDT.

Parameters Description
J number of leaf nodes in a single regression tree
n learning rate
S, number of attribute sampling
fid subsample fraction
M number of regression trees

1) NUMBER OF LEAF NODES IN A SINGLE

REGRESSION TREE J

In the process of constructing GBDT, a weaker regression
tree is used to improve the model at each step. Therefore,
for each regression tree, it will not be allowed to grow and
pruned fully. All regression trees are limited to the same size
by J. The recommended value of J is 5-8 [40]. For specific
problems, J can be determined through experiments.

2) LEARNING RATE 7

Learning rate n (0 < n < 1) is a regularization method
used to control the contribution of a single decision tree in
the model, which can prevent over-fitting of GBDT. There
is a tradeoff between the number of regression trees M and
learning rate n. With the same number of regression trees,
the smaller 7 is, the higher the training risk is. Smaller learn-
ing rate requires a large number of regression trees to obtain
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the same training risk. In general, a small n (n < 0.1) with a
large M is advisable, while smaller 1 will increase the training
time.

3) SUBSAMPLE FRACTION frd

The Subsample fraction frd(0 < frd < 1) is another reg-
ularization method to prevent over-fitting. Unlike Random
Forests, sampling without replacement is used in GBDT.
If frd is 1, the whole sample is used as a subsampling. If frd
is less than 1, part of sample participates are used, which
avoids over-fitting but increases the fitting deviation of the
sample. Therefore, the value of frd cannot be too low, which
is recommended as [0.5, 0.8].

4) NUMBER OF ATTRIBUTE SAMPLING Sq

In developing Random Forests, Breiman [41] demonstrated
that additional benefits might be acquired if a subset of pre-
dictors is randomly selected as potential splitters during the
tree construction process. In order to improve the precision
of the model, GBDT combines the idea of Random Forests.
In the process of constructing the decision tree, each node
uses part of the variable as the candidate variable.

5) NUMBER OF REGRESSION TREES M

The number of regression trees M is also called iterations.
In the growth process of GBDT, each iteration will generate a
regression tree. Increasing the number of regression trees will
improve the prediction accuracy of the training data sets, but
correspondingly increase the training time. In order to choose
the appropriate M to prevent over-fitting, the data need to be
divided into two parts, one for training and one for testing.
With the increment of M, the error of test data sets decreases
first and then increases. Therefore, M needs to be selected by
the error of test data sets.

IV. DATA PREPARATION

A. SOURCE OF DATA

To validate the proposed model, field data collected in
Nanjing were used. Unfortunately, the amount of data
was still insufficient. Thus, we critically reviewed existing
researches and found that using microsimulation software
was a good solution and VISSIM has been used for valida-
tion by several researchers [42]-[46]. Thus, we used field
data to calibrate VISSIM software and got sufficient data
to verify the proposed model. VISSIM is used for modeling
and analyzing the operation of urban traffic and public traffic
under various traffic conditions (lane set, traffic structure,
traffic signals, bus station and so on), which is an effective
tool for evaluating the design of traffic engineering and urban
planning [47].

1) SELECTION OF A SIMULATION SECTION

Nanjing Airport freeway between the Airport Interchange
and Lukou Interchange, with the length of 1048.28m and
4 lanes in one direction, is selected as the research area. Time
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detectors are set at both ends of the selected freeway section.
The route diagram is presented in Fig. 2.

Lukou Airport
Interchange Interchange
EEEE——
1048.28m

FIGURE 2. The study area.

2) DETERMINATION OF SIMULATION PARAMETERS

a: TRAFFIC FLOW

The VISSIM simulation software is calibrated according to
real hourly traffic flow in Nanjing Airport freeway from
Nanjing to Airport investigated by airport toll station at
9:00-15:00 on August 22, 2017. Since the real traffic flow
does not include congestion, in order to cover the state of
free-flow, transition, and congestion in the freeway, the traffic
flow increases 600Veh/h from the real measured value of
the previous period during 15: 00-17: 00, which reflect the
state of congestion. Only increase the number of vehicles
does not necessarily result in congestion. However, based on
the transition state, we guarantee that all variables are con-
stant, and continue to increase the traffic flow to characterize
the congestion state. The input of traffic flow is shown in
TABLE 3.

b: VEHICLE TYPE

The user-defined taxi type is 1, and the vehicle color is blue;
the truck type is 2, and the vehicle color is yellow; the bus
type is 3, and the vehicle color is blue; the car type is 4, and
the vehicle color is red.

¢: SPEED DISTRIBUTION

In the freeway, the expected speed of car, truck, and bus is
120,100 and 100 km/h. The speed distribution of cars, trucks,
buses, and taxis is shown in Fig. 3.

d: VEHICLE PROPORTION
Through investigation, the vehicle proportion on the freeway
is car: truck: bus: taxi = 0.42:0.12:0.26:0.2.

e: TIME DETECTOR

In the freeway section, time detectors are set up to collect
travel time data of the traffic flow.

B. DESIGN OF EXPERIMENTAL SCHEME

In the process of experiment, the dynamic changing process
of the freeway traffic flow was simulated by changing the
input traffic flow, including the state of free-flow, transition,
and congestion.
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TABLE 3. The input of traffic flow.

Time Segments

9:00-9:30
)

9:30-10:00

10:00-10:30 10:30-11:00

Simulation
Time Segments
(s)
Traffic Flow
(veh/h)

0-1800

800

1800-3600

3600-5400 5400-7200

1600 2000

Time Segments

11:00-11:30
(s)

11:30-12:00

12:00-12:30 12:30-13:00

Simulation
Time Segments
(s)
Traffic Flow
(veh/h)

7200-9000

2400

9000-10800

10800-12600 12600-14400

2800 3000

Time Segments

13:00-13:30
()

13:30-14:00

14:00-14:30 14:30-15:00

Simulation
Time Segments
(s)
Traffic Flow
(veh/h)

1400-16200

3600

16200-18000

18000-19800 19800-21600

4800 5400

Time Segments

15:00-15:30
)

15:30-16:00

16:00-16:30 16:30-17:00

Simulation
Time Segments
(s)
Traffic Flow
(veh/h)

21600-23400

6000

23400-25200

25200-27000 27000-28800

7200 7800

Velocity (km/h)

Velocity (km/h)
s

=

0 02 0 [ 08 10 0 02 04 08 08 10

Cumlative Perceniage Cumiaive Peceniage

(a) (b)

Velocity (km/h)
Velocity (km/h)

ol
w2 s s s 0 w o w W w w1
Cumuelive Percentage

(©) (d)

Cumlative Perceniage

FIGURE 3. The speed distributions. (a) Speed distributions of cars. (b) Speed distributions of trucks. (c) Speed distributions of buses.

(d) Speed distributions of taxis.

Using different random seed number, the experiment sim-
ulated 133 times and the simulation time was 28800s. At last
133 sets of data were obtained, which represented 133 days
’data of 9:00-17:00. Data of 133 days were divided into two
data sets, in which 27-133 days of data were used as training
data sets and 1-26 days of data were used as test data sets.
The 5" day of data in the test data sets was the real travel
time obtained by field experiment, which was acquired on
August 22, 2017.

Travel time was obtained at the sampling interval of 300
seconds. T; was used to represent the travel time at time step
i (i is the current period), where i = 1,2...93, represents
93 time steps from 9:00 to 17:00.

C. VARIABLES OF THE MODEL

1) TRAFFIC STATE PARAMETER

In the Highway Capacity Manual [48], the freeway traffic
state was divided into six grades (namely A to F) according
to the average speed and density, shown in TABLE 4.

7472

TABLE 4. The standard of traffic state classification [48].

Density Design Speed (mi/h)
Tsrfafgc Range 75 65 55
(pc/mi/ln) Speed (mi/h) Speed (mi/h) Speed (mi/h)

A [0,11) >75 >65 >55
B [11,18) [74.8,75) >65 >55
C [18,26) [70.6,74.8) [64.6,65) >55
D [26,35) [62.2,70.6) [59.7.64.6) [54.7,55)
E [35.,45) [53.3,62.2) [52.2,59.7) [50,54.7)
F >45 [0,62.2) [0,52.2) [0,50)

Note: In order to keep the data neat, the unit used pc/mi/In and mi/h in

In this study, traffic state parameters refer to the standard
of traffic state classification of the freeway, let x = 1 to 6 for
representing the traffic state A to F of freeway respectively.
The paper combined existing traffic state levels and described
the freeway at a lower level. Therefore, the traffic state of
the freeway was divided into three categories. The free-flow
state included the traffic state A and B, namely xf = 1 and 2;
the transition state included the traffic state C and D, namely
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x; = 3 and 4; the congestion state included the traffic state
E and F, namely x, = 5 and 6, which is shown in TABLE 5.
The traffic state parameter is X = {x7, x;, x¢}.

TABLE 5. Traffic state parameter.

Traffic State Traffic State Parameter Traffic State of The Paper

A 1

B 2 free-flow
C 3 -

D 4 transition
£ 3 congestion
F 6 g

2) VARIABLES OF THE MODEL
Traffic flow, speed, and density are three basic parameters
that characterize traffic flow characteristics and influence
travel time of the vehicle. In addition, occupancy and number
of vehicles will also have a certain impact on travel time.
Therefore, traffic flow, speed, density, occupancy, and num-
ber of vehicles are introduced as input variables in the model.
Other factors that have been discussed in previous studies
are also considered. Thus, input variable of the model is the
relevant parameters at time step i (that is, the current period),
where i = 1,2...93, represents 93 periods from 9:00 to
17:00. The target variable of the model, namely the predicted
travel time, is travel time at time step i+-1, which is denoted by
Ti+1. The explanation of each variable is shown in TABLE 6.

TABLE 6. Selected explanatory variables.

Variables Definition Type of
Variables
T travel time of the vehicle at time step i (travel
! time in the current period)
T, travel time of the vehicle at time step -1
T, travel time of the vehicle at time step -2
AT changes of travel time over two adjacent time
i steps i and i1, AT, =T -T,_,
AT changes of travel time over two adjacent time
il steps i1 and -2, AT, =T -T_ Input
. variable
0 traffic flow at time step i
K density at time step
4 speed at time step i
R occupancy at time step i
N, number of vehicles at time step 7
X, traffic state parameter at time step i
target
variable
T, travel time of the vehicle at time step i +1 (the
predicted
variable)

V. RESULTS AND DISCUSSION

GBDT models with different prediction horizons (5 min
ahead, 10 min ahead and 15 min ahead) were established
respectively. Data of 133 days were divided into two data sets,
of which 27-133 days of data used as training data sets and
1-26 days of data used as test data sets.

VOLUME 7, 2019

SPM 8.2, a data mining software developed by Salford
Systems, was used to establish the GBDT model [49].
Mean Absolute Deviation (MAD), Mean Absolute Percent

Error (MAPE) and Relative Error (RE) were selected as

evaluation criteria.

] — .
MAD = =3 |yi = 5il (17)
i=1
1| yi — 9
MAPE = - Z 2 (18)
TR
RE = 2= 4 100% (19)
Yj

where in (17)-(19), n is the total number of samples. y; is the
real value of travel time. y; is the predicted value of travel
time.

A. PARAMETER DETERMINATION

1) NUMBER OF LEAF NODES IN A SINGLE

REGRESSION TREE J

In order to determine the number of leaf nodes in a single
decision tree J, for different prediction horizons, the mod-
els of the training data sets are established according to
J = 2,3...11, respectively by keeping the other parame-
ters constant. The number of decision trees is automatically
determined by MAD of the test data sets. For different predic-
tion horizons, the prediction accuracy of various J is shown
in Fig. 4. J is determined according to MAD of the model.
It can be observed from Fig. 4 that J are 8, 9, and 10 when
the prediction horizon is 5 min ahead (1-step ahead), 10 min
ahead (2-step ahead), and 15 min ahead (3-step ahead).

[ —#— 5 min shead prediction —8— 10 min ahead prediction —&— 15 min ahead prediction

50

——— e . 2 Ene
—

454

4.04

MA|

304

254

g g g e i

20 T T T T 1

Number of leaf nodes in a single regression tree (J)

FIGURE 4. MAD of various numbers of leaf nodes in single regression
trees for different prediction horizons.

2) LEARNING RATE 7

The determination of the learning rate 7 is similar to J. For
different prediction horizons, the models of the training data
sets were established with various 7 respectively by keeping J
constant. The number of decision trees is automatically deter-
mined by MAD of the test data sets. For different prediction
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FIGURE 5. MAD of various learning rate for different prediction horizons.
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FIGURE 6. MAD of various number of attribute sampling for different
prediction horizons.

horizons, the prediction accuracy of 7n is shown in Fig. 5.
As indicated in Fig. 5 that the model error decreases as the
learning rate increases. However, when the learning rate of 5
min ahead prediction (1-step ahead) is decreased from 0.05 to
0.01, the learning rate of 10 min ahead prediction (2-step
ahead) and learning rate of 15 min ahead prediction (3-step
ahead) is decreased from 0.01 to 0.005, the error is increased.
The reason may be that the low learning rate has caused over-
fitting. n is determined according to MAD of the model. From
Fig. 5 that n are 0.05, 0.01, and 0.01 when the prediction
horizon is 5 min ahead (1-step ahead), 10 min ahead (2-step
ahead), and 15 min ahead (3-step ahead).

3) NUMBER OF ATTRIBUTE SAMPLING S4

In order to improve the accuracy of the model, sampled
variables are used as the candidate variables in the process
of constructing the decision tree. The candidate variables are
called attribute sampling numbers. In reference (25), Freid-
man takes intv/k (k is the number of variables) as the number
of attribute samples. The paper has 11 variables, using the
method of Freidman that inty/k = 3. In order to find the best
number of attribute samples, for different prediction horizons,
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FIGURE 7. MAD of various subsample fraction for different prediction
horizons.

TABLE 7. Variable importance for different prediction horizons.

5 min Ahead 10 min Ahead 15 min Ahead
Prediction Prediction Prediction
Variabl (1-step ahead) (2-step ahead) (3-step ahead)
e Orde Relative Orde Relative Orde Relative
r Importanc r Importanc ' Importanc
e (%) e (%) e (%)
T, 1 100 1 100 1 100
v, 2 54.42 4 40.89 3 55.93
X, 3 47.87 2 51.70 6 30.70
K 4 37.00 6 2393 2 63.75
T, 5 31.79 5 24.00 7 26.63
T, 6 30.93 3 49.83 5 52.63
[} 7 27.73 7 17.95 8 22.11
N, 8 22.15 10 9.25 9 13.71
AT, 9 21.32 9 9.85 11 10.44
AT, 10 19.81 11 8.95 10 11.98
R 11 19.56 8 10.54 4 54.08
TABLE 8. Mape of different models.
Predlptlon Data Set GBDT BP Neural SVM
Horizon Network
5 min ahead Trg;‘;;“g 0.0199 0.0270 0.0374
prediction Test data 0.0245 0.0299 0.0422
10 min ahead Trg;‘;;“g 0.0359 0.0449 0.0647
prediction Test data 0.0394 0.0470 0.0654
15 min ahead Trg;‘:;“g 0.0426 0.0578 0.0682
prediction Test data 0.0466 0.0599 0.0695

the models of the training data sets are established according
toS, = 1,3,5,7,8,9, 10, 11, respectively by keeping J
and n constant. The number of decision trees is automati-
cally determined by MAD of the test data sets. For different
prediction horizons, the prediction accuracy of various S is
shown in Fig. 6. S, is determined according to MAD of the
model. As can be seen in Fig. 6 that S, are 8, 9, and 10 when
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FIGURE 8. Learning result of GBDT for different prediction horizons. (a) Learning result of GBDT for 5 min ahead (1-step ahead)
prediction. (b) Learning result of GBDT for 10 min ahead (2-step ahead) prediction. (c) Learning result of GBDT for 15 min

ahead (3-step ahead) prediction.

the prediction horizon is 5 min ahead (1-step ahead), 10 min
ahead (2-step ahead), and 15 min ahead (3-step ahead).

4) SUBSAMPLE FRACTION frd

The sampling fraction of the training data sets is generally
0.5-0.8. In order to find the best value of frd, for different
prediction horizons, the models of the training data sets are
established with frd = 0.5,0.6,0.7, 0.8, respectively by
keeping J,  and S, constant. The number of decision trees
is automatically determined by MAD of the test data sets.
For different prediction horizons, the prediction accuracy of
various frd is shown in Fig. 7. frd is determined according
to MAD of the model. As showed in Fig. 7 that frd are 0.5,
0.6, and 0.5 when the prediction horizon is 5 min ahead
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(1-step ahead), 10 min ahead (2-step ahead), and 15 min
ahead (3-step ahead).

In summary, all parameters of GBDT have been deter-
mined. When the prediction horizon is 5 min ahead (1-step
ahead), all parameters are {/, n, Sg, frd} = {8, 0.05, 8, 0.5}.
When the prediction horizon is 10 min ahead (2-step ahead),
all parameters are {J, n, S,, frd} = {9,0.01,9,0.6}. When
the prediction horizon is 15 min ahead (3-step ahead), all
parameters are {J,n,Sq, frd} = {11,0.01,10,0.5}. The
learning results of the models are different with different
prediction horizons, as indicated in Fig. 8. When the pre-
diction horizon is 5 min ahead (1-step ahead), the MAPE
is 0.0198, and the cumulative number of regression trees is
950. When the prediction horizon is 10 min ahead (2-step
ahead), the MAPE is 0.0365, and the cumulative number
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FIGURE 9. Partial dependence function graph for different prediction horizon. (a) 5 min
ahead prediction. (b) 10 min ahead prediction. (c) 15 min ahead prediction.
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of regression trees is 923. When the prediction horizon is
15 min ahead (3-step ahead), the MAPE is 0.0418, and the
cumulative number of regression trees is 511.

B. EXPLANATION AND DISCUSSION OF THE MODEL

Input variables of the model usually have different effects
on the dependent variable. Exploring the impact of a single
input variable on the dependent variable can dig the hidden
information of data. The greater importance value of the
variable is, the stronger influence on the model is. Vari-
able importance for different prediction horizons is shown in
TABLE 7.

From TABLE 7, the contribution values of input variables
in the model are different. When the prediction horizon is
5 min ahead (1-step ahead), the most important variables
are T;, Vi, X;, K;, and T;—1. When the prediction horizon is
10 min ahead (2-step ahead), the most important variables
are Tj, Xi, Ti—2, Vi, and T;—_;. When the prediction horizon
is 15 min ahead (3-step ahead), the most important variables
are T;, K;, Vi, R;, and T;_,. For different prediction horizons,
the most important variable is the same, that is, travel time
in the current period T;. Travel time of the current period
has the greatest influence on travel time of the next period.
As expected, the immediate previous traffic state will influ-
ence the traffic in the near future. For different prediction
horizons, speed of the vehicle V; in the current period has a
greater influence on the predicted travel time, because speed
is the most intuitive reflection of travel time. For different
prediction horizons, the influences of Q;, N;, AT;, and AT;_;
on the model are relatively small, indicating that flow rate
and number of vehicles cannot directly affect travel time.
The influence of time difference on the model is less than
travel time of the two periods closest to the predicted travel
time.

Since the most important influence variables are the same
for different prediction horizons, the partial dependence func-
tion graphs between predicted travel time and travel time in
the current period are shown in Fig. 9.

From Fig. 9, one can see that travel time in the current
period have a highly nonlinear relationship with the predicted
travel time for different prediction horizons. Meanwhile,
the impact trend of the partial dependent function between
travel time in the current period and predicted travel time is
the same for different prediction horizons. However, as the
prediction horizon increases, the change rate of the curve
gradually decreases, which demonstrate that travel time in
the current period has less influence on the predicted travel
time. In particular, when 7; > 170, the curve changes most
obviously for different prediction horizons. As the prediction
horizons increase, the curve gradually becomes a straight
line. It indicates that along with the increase of prediction
horizons, even the most important influence variable 7; has a
weaker effect on the predicted travel time. It also reveals that
the model’s predicted performance drops with the increase of
prediction horizons.
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C. ACCURACY OF THE MODEL

To test the effectiveness of the GBDT model, the BP (Back
Propagation) neural network model and the SVM model
were also established by using the same data. BP neural
network [50] is a multi-layer feedforward network trained by
error inverse propagation algorithm, which was proposed by
a team of scientists led by Rumelhart and McCelland in 1986.
SVM [51] was first proposed by Corinna Cortes and Vapnik
in 1995. Both methods have been widely used for travel
time prediction and other problems. For different prediction
horizons, the BP neural network model with a three-layer
feedforward perceptron algorithm and the SVM model with
radial basis function (RBF) as the kernel function was used
to predict travel time. Then the models were tested using
1-26 days of data sets. The training and test errors of different
models are shown in TABLE 8.

As indicated in TABLE 8, for different prediction horizons,
the prediction accuracy of the GBDT model is better than
the BP neural network model and the SVM model. As the
prediction horizons increase, the performances of the three
models all drop. In comparison, the GBDT model is the least
sensitive to the prediction horizons and can maintain good
prediction performance. It reveals that the GBDT mode is
a promising method for travel time prediction. Meanwhile,
the advantages of GBDT are more noticeable in multi-step
prediction.

Fig. 10 shows the comparison between travel time of the
5% day in the test data sets (real travel time) and travel
time obtained with various models for different prediction
horizons. It can be observed in Fig. 10 that the GBDT model
can accurately predict the change of travel time.

VI. CONCLUSION

In this paper, GBDT is proposed for travel time prediction,
which is a hotspot algorithm in machine learning and can
deeply explore the complex relationships between variables.
For different prediction horizons, GBDT model is established
with 11 variables, namely travel time in current period T3,
traffic flow in current period Q;, speed in current period V;,
density in current period K;, number of vehicle in current
period N;, occupancy in current period R;, traffic state param-
eter in current period X;, travel time in previous period T;_1,
etc. Using different random seed number, the experiment
simulated 133 times with VISSIM simulation software, rep-
resenting 133 days of traffic conditions. Taking 27-133 days
data as training data sets and 1-26 days data as test data sets,
results show that among all prediction horizons, the most
important influence variable is the same, that is, travel time
in the current period 7;, which reflects that travel time of
the current period has the greatest influence on travel time
of the next period. Comparison results show that GBDT
outperforms BP neural network model and SVM model in
travel time prediction, especially in multi-step prediction.
In general, GBDT is a promising method for travel time
prediction.
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Comparing with other machine learning algorithms,
the GBDT model cannot only produce more accurate predic-
tion results but also provide us an opportunity to understand
the diverse influences of different variables and nonlinear
relationships between variables and prediction results.

The development of traffic information acquisition tech-
nology (such as GPS trajectories, smartphone and road sen-
sors) has provided us with a large amount of traffic data,
which offer us an opportunity to develop a more accurate
travel time prediction model based on data mining. Further
research will use the data to verify the model. Moreover,
the data obtained by VISSIM in this paper, which limited
the diversity of data. In the future, the variables of weather,
characters of drivers, and other variables affecting travel time
will be incorporated into the model.
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