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ABSTRACT In this paper, we present a new multiple description coding scheme, which is based on a sparse
dictionary training method called K singular value decomposition (KSVD). In the proposed scheme, each
description encodes one source subset with a small quantization stepsize, and other subsets are predictively
coded with a large quantization stepsize. The source processed by the KSVD becomes sparse, which can
improve the coding efficiency. The proposed scheme is then applied to lapped transform-based multiple
description image coding. Finally, image coding results show that the proposed scheme achieves a better
performance than the current state-of-the-art multiple description coding methods.

INDEX TERMS K singular value decomposition (KSVD), multiple description coding, sparse
representation.

I. INTRODUCTION
With the development of communication technology,
the transmission of information on the network is more and
more frequent. But the internet and wireless communication
networks are unreliable, which can result in bit error, packet
loss, or delay. To solve these issues, multiple description cod-
ing (MDC) [1] emerges and gradually becomes a mainstream
technology applied in harsh channel conditions. It partitions
the source into multiple bit streams and transmits them
through different channels respectively, which can reduce the
probability of all data being lost at the same time. These bit
streams are called description and they are equally important.
When one description is received, the image can be restored
roughly. And if more descriptions can be received, the recov-
ered image quality is better.

The multi-description idea was proposed by Bell Labs
in the 1970s [2]. The first MDC method is putted forward
by Vaishampayan, called multiple description scalar quan-
tization (MDSQ) [3], which generates two sub-streams by
producing two indices for each quantization level. It is a
multiple description design focusing on scalar quantization
system.

In [4] and [5], some extension methods of MDSQ for more
than two channels are proposed, which employ a combinato-
rial optimization approach to divide the multiple description
system into multiple stages. In [6] and [7], a lattice vector
quantization-based MDC (MDLVQ) method is presented,

which generates M descriptions by using M-fraction lattice
to regularly divide the fine lattice. But all of them will lead to
complex index allocation problems as M increases.

In [8], a design of MDC scheme based on wavelet
transform considering the use of pairwise correlating trans-
form (PCT) is proposed. It divides the coefficients of discrete
cosine transform (DCT) transform into two groups and intro-
duces correlation through a linear transformation. When one
is lost, it can be estimated from another received by the corre-
lation between two groups. And many related improvements
for MDC based on wavelet transform are developed [9]–[11].
In [12], a new technique that produces multiple description
by quincunx spatial multiplexing is studied. It employs a
multiphase downsampling for input image and uses a local
random binary convolution kernel to replace the traditional
low-pass filter.

In [13], it presents a novel multiple description lapped
transform with prediction compensation (MDLTPC) for two-
description, which encodes one subset as the base layer
and encodes the prediction residual of other subset as the
enhancement layer in same description. In [14], a M-channel
MDC scheme using two-rate predictive coding and stag-
gered quantization (TRPCSQ) is proposed, where the pre-
diction residuals are encoded by M − 1 lower-rate uniform
quantizers in different descriptions. In [15], an extension
method three-layerMDC (TLMDC) is developed to refine the
low-rate-coded subsets. If receiving more than two low-rate
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FIGURE 1. Block subset definitions in MD image coding. (a) M = 2; (b) M = 3; (c) M = 4; (d) M = 9.

reconstructions of a subset, it uses their average as the final
reconstruction.

Recently, twomore effectiveMDCmethodswith randomly
offset quantizers (MDROQ) and uniformly offset quantiz-
ers (MDUOQ) are proposed [16] by generalizing the random
and uniform quantization theory [17]. The MDROQ method
has random offsets due to predictive coding, which refines
the optimal reconstruction of intersection of all received
quantization bins as the final reconstruction. The MDUOQ
method has near-uniform offsets among different low-rate
quantizers because the unequal deadzones are used in differ-
ent quantizers.

Since the image is complex two-dimensional signal, a sin-
gle orthogonal transformation base does not fully reflect
the geometric characteristics of the image. In the previ-
ous methods, they usually adopt DCT orthogonal transform
that lost some details of the image. Later, some works
on the image transformation methods are studied [18], [19].
Reference [20] obtains ultra-fine description granularity by
locally adaptive sparse representation of video signals. In this
paper, we focus on sparse representation of image and present
the KSVD-based MD image coding scheme, which adopt
the redundant dictionary trained by KSVD to replace the
orthogonal base dictionary obtained by DCT.

The rest of paper is structured as follows. In Section II,
some related works are introduced. In Section III, the system
model is described, and a new transformation is formulated.
Simultaneously, the advantages of the proposed scheme are
analyzed. Next, in Section IV, simulations are performed
to verify the effectiveness of proposed schemes. Finally,
Section V concludes the whole paper.

II. RELATED WORKS
A. MDROQ AND MDUOQ METHODS
In [16], two MDC methods are proposed, based on
prediction-induced randomly offset quantizers and unequal-
deadzone-induced near-uniformly offset quantizers, respec-
tively. They introduce deadzone quantizer based on the
TRPCSQ method, which have better rate-distortion (R-D)
performance than just using uniform quantizer. In both meth-
ods, they partition the input image into M subsets using
some two-dimensional patterns as show in Fig. 1 to derive
M descriptions.

FIGURE 2. A three-description coding example of joint de-quantization
from prediction-induced random quantizers.

Each description is generated by employing a uniform
or deadzone scalar quantizer to encode M subsets. First,
it uses the time-domain lapped transform (TDLT) [21], [22]
to improve the coding efficiency. It adds a pre-filter before the
block transform and a post-filter after the inverse transform.

Then, for the i-th description, the i-th subsets is encoded
with a small quantization stepsize q0, and other subsets are
predicted in turn based on the block transform coefficients
of previously encoded subsets. After that, it calculates the
prediction residuals and encodes them with a quantization
stepsize q1, where q1 > q0. The prediction and the calcu-
lation of the prediction residuals are obtained by using the
DCT-domain Wiener filter [23], [24].

At last, at the decoder, each sample is reconstructed jointly
from all received descriptions, based on the intersection of all
received quantization bins. The reconstruction of sample x in
the i-th description is:

x̂i = x̄i + êi. (1)

x̄i is the prediction of x in the i-th description, êi is
the reconstruction value of the corresponding prediction
residual ei.

The MDROQ method is based on prediction-induced
randomly offset quantizers. Fig.2 shows a reconstructed
three-description example. Where x is original sample in
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description 0. It can be seen that the quantization bins that
x belongs to in different descriptions are randomly offset
because the random predicting x̄i. According to all received
descriptions, it refines the optimal point of the intersection of
quantization bins as the reconstructed sample, e.i. x̂q0,q1 .
The MDUOQ method is based on unequal-deadzone-

induced near-uniformly offset quantizers. It uses quantizers
of unequal deadzone sizes to derive the initial uniformly
offset quantizers. Fig.3 lists a example of uniformly offset
quantizers with unequal deadzone for M = 3. Where (a)
and (b) are the original quantizers with unequal-deadzone-
induced uniform offsets. Through the quantized prediction,
quantizer (c) is obtained by shifting to 3q1 from quantizer (a)
and quantizer (d) is obtained by shifting to −2q1 from
quantizer (b).

FIGURE 3. Examples of uniformly offset quantizers with unequal
deadzone and δ = 0.6 and M = 3.

B. KSVD ALGORITHM
Elad proposed the KSVD algorithm in 2006 [25], which gen-
eralizes the K-means clustering process. It trains an overcom-
plete dictionary by alternately performing between sparse
coding and updating the dictionary atoms to better represent
data. The dictionary trained by the KSVD performs well for
both synthetic and real images in applications.

When giving a training set Y = {yi ∈ Rm}Ni=1, it can find
the optimal dictionary D with K atoms to sparsely represent
Y by solving the following optimization problem:

min
D,X
{‖Y − DX‖2F } subject to ∀i, ‖xi‖0 ≤ T0. (2)

where D ∈ Rm×K (K � m), X ∈ RK×N is the sparse code of
Y, and T0 is a threshold of the sparsity of X. This algorithm
is as follows:

Firstly, setting the initial dictionary matrix D0 ∈ Rm×K

with l2 normalized columns.
Then, repeating the following two stages until conver-

gence:
• Sparse coding stage: it computes the corresponding
representation vectors xi of each example yi using any
pursuit algorithm, just like Matching Pursuit (MP) [26]
or Orthogonal Matching Pursuit (OMP) [27], [28].
Kaur and Budhiraja [29] demonstrates OMP has faster

recovery for images compared with the least squares
method, and the OMP is easily implemented and is
faster. Thus, we choose OMP algorithm in this paper.
The best sparse code X can be got by:

X = argmin
xi
‖yi − Dxi‖2F subject to ∀i, ‖xi‖0 ≤ T0.

(3)

• Dictionary updating stage: it only updates one column
of D at a time via solving a small singular value decom-
position (SVD) problem:

Ek = Y −
∑
j 6=k

djx
j
T . (4)

ERk = U4V T . (5)

where Ek is the overall representation error matrix, ERk is
restricted matrix of Ek and x

j
T is the j-th row of X (this is

the coefficients corresponding to the j-th column of D).
The first column of U as the updated column of D, and
the first column of V multiplied by 4(1, 1) updates the
corresponding coefficient vector.

III. THE PROPOSED SCHEMES
In this section, we mainly describe the KSVD-based MD
image coding for M = 2, 3, 4 and 9. Firstly, the proposed
block transform based on KSVD algorithm is presented.
Then, theMDC systemwith theKSVD transform is described
detailed. Finally, theoretical analysis is given.

A. KSVD-BASED TRANSFORM
Comparing with DCT, the KSVD-based transform can
achieve the sparse representation for the source, and reduce
the bit rates at the same source quality.

The [25] gives the training redundant dictionary method
based on singular value decomposition. The transform coeffi-
cients obtained using the constructed dictionary as the trans-
form base are sparse. Therefore, in this paper, we use the
sparse transformation based on KSVD rather than DCT for
the block transform. The KSVD-based sparse transformation
is shown in Fig. 4. We first run the KSVD algorithm to
derive the redundant dictionary, and then the image blocks are
sparsely transformed to get the sparse transform coefficients.

1) Training sample set: it is a set of N examples of block
patches of size 4 × 4 pixels, where N = 40000,
the block patches can also be 8×8, 16×16, or 32×32.
This is selected randomly from given training images.

2) Test sample set: it is a set of block patches with the
same size of the training sample. It is non-overlapping
sampled from the test image.

3) KSVD training: we apply the KSVD algorithm to train
a redundant dictionary D of size m×K , where m is the
dimension of example, m = 16 and K = 64 in this
paper.

4) Sparse transform: the forward transform expression is
follow:

X = D−1B. (6)
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FIGURE 4. The process of KSVD-based transform.

FIGURE 5. Encoder and decoder of KSVD-based MDROQ with M = 2.

where B represents the test sample set, and X is the
transform coefficient matrix.
The corresponding inverse transformation is:

B = DX . (7)

B. SYSTEM DESCRIPTION OF KSVD-BASED MDROQ
The system diagram of KSVD-based MDROQ for encoder
and decoder of one description withM = 2 is shown in Fig.5.
Where the block size is L = 8 and each line represents
half block, i.e., L/2 samples. P is a prefilter at the encoder
and T is a postfilter at the decoder, which both are used
at the boundary of two blocks. Where P and T have the
following structures in order to derive a near optimal linear
phase overlap transformation:

P = Wdiag{I ,V }W . (8)

T = P−1 = Wdiag{I ,V−1}W . (9)

W =
1
√
2

[
I J
J −I

]
. (10)

I is an L/2 × L/2 identity matrix, V is an L/2 × L/2
invertible matrix, and J is an L/2 × L/2 counter-identity
matrix.

For the MD image coding, to generate M descriptions,
we first partition the input image into M subsets. At the
encoder, each subset is filtered through P and KSVD-based
transformed. The KSVD-based transformmake the transform
coefficients be sparse. Where y(i) is the corresponding trans-
form coefficients of the i-th subset. Take 2-description as an
example, the two subsets [S0, S1] can be got by the Fig. 1(a).
In description 0, y(0) is encoded with small quantization
stepsize q0 directly; y(1) is predicted from the reconstructed
y(0) in all directions and the prediction residuals of y(1) are
encoded with a large quantization stepsize q1. In description
1, y(1) is encodedwith small quantization stepsize q0 directly;

y(0) is predicted from the reconstructed y(1) in all directions
and the prediction residuals of y(0) are encoded with a large
quantization stepsize q1.

At the decoder, the received descriptions sequential
apply entropy decoding and the inverse quantization (IQ).
If description 0 is received, the value of IQ of the subset S0
directly executes the inverse KSVD (IKSVD) transform and
postfilter (T) to finish the reconstruction. The value of IQ
of S1 is first adds the value predicted from the reconstructed
S0 and then executes the IKSVD and T. We can reconstruct
a rough but acceptable image information. Thus, if more
descriptions are received, the quality of restored image will
be higher.

The process of encoder and decoder of three-description is
shown in Fig.6. It’s clearly seen that the prediction sequence
of one description obtained for 3-description. In description
0, S0 subset is encoded directly; S1 subset is predicted from
the reconstructed S0 subset; S2 subset is predicted from the
reconstructed S0 subset and S1 subset.

C. SYSTEM DESCRIPTION OF KSVD-BASED MDUOQ
The framework of KSVD-based MDUOQ for M = 2 is
similar to Fig.5, in addition to using low-rate quantizers with
different deadzones to quantize the prediction.

At the encoder, we employ the KSVD-based transform to
obtain the sparse transform coefficients after the prefilter P.
Then, the i-th subset is encoded with a quantization stepsize
q0 in the i-th description. Moreover, other subset j 6= i is
predicted sequentially and the prediction is quantized with
a uniform quantization stepsize q1. At last, the prediction
residual is encoded with a deadzone size of 2(δ + l

M−1 )q1.
Where 2δq1 is the smallest dedzone size, l = mod(j − i −
1,M ).

At the decoder, if the i-th description is received, entropy
decoding and the inverse quantization (IQ) are executed first.
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FIGURE 6. Encoder and decoder of KSVD-based MDROQ with M = 3. (a) Encoder of one description; (b) Decoder of one description.

Then, the prediction and the prediction residual of subset
j 6= i are reconstructed by a uniform quantizer and a deadzone
quantizer, respectively. At last, the inverse KSVD (IKSVD)
transform and postfilter (T) are used to obtain the reconstruc-
tion.

D. THEORETICAL ANALYSIS AND EXPECTED DISTORTION
EXPRESSION
In the proposed scheme, the compression of the image is
achieved through sparse transformation. Therefore, the sparse
transform base has become the key to determine the image
compression ratio and image reconstruction accuracy. As the
sparsity increases, the complexity of decoding will decrease
and the reconstruction of the image will be improved [30].
In this paper, we choose the KSVD-based transform to make
the sparse transform coefficients have higher sparsity.

According to the random quantization theory, the closed-
form expression of the expected distortion for the proposed
MDC scheme is written as:

DE =
M∑
k=0

pkek . (11)

pk =
(
M
k

)
pM−k (1− p)k . (12)

ek =
1
M

(ke0,k + (M − k)e1,k ). (13)

where pk is the probability of received k descriptions, ek is the
corresponding mean squared error (MSE), e0,k is the MSE of
subsets with one high-rate and k − 1 low-rate codings, and
e1,k is the MSE of subsets with k low-rate codings.

IV. EXPERIMENTAL RESULTS
We choose six 512 × 512 standard test images with various
characteristics, which are lena, boat, baboon, couple, peppers
and goldhill, respectively. They obtain the corresponding
sparse transform coefficients through the KSVD-based trans-
form. We adjust the q0 and q1 to maintain the same total
rate (R) in the simulation experiment and the PSNR value
is usually used to measure the quality of recovered image.
The larger the value of PSNR, the less distortion the image
has.

For the two-description image coding, we compare
the performance of KSVD-based MDROQ method with
MDROQ [16] and MDLTPC [13]. The results are showed
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FIGURE 7. The side PSNR and central PSNR of KSVD-based MDROQ, MDROQ and MDLTPC for R = 0.5 bpp with M = 2.

FIGURE 8. The side PSNR and central PSNR of KSVD-based MDROQ, MDROQ, TRPCSQ and TLMDC for R = 0.5 bpp with M = 3.

in Fig. 7, where the total bit rate (R) is 0.5 bpp. It is obvious
that the proposed scheme is far better than the MDROQ and
MDLTPC method for different images.

For the three-description image coding, the compar-
ison results of KSVD-based MDROQ with MDROQ,
TRPCSQ [14] and TLMDC [15] for R = 0.5 bpp and the
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FIGURE 9. The side PSNR and central PSNR of KSVD-based MDROQ, MDROQ and TRPCSQ for R = 1.0 bpp with M = 4.

FIGURE 10. The side PSNR (D1,D3,D5,D7) and central PSNR of KSVD-based MDROQ and MDROQ for R = 2.0 bpp with M = 9.

comparison results of KSVD-basedMDUOQwithMDUOQ,
TRPCSQ and TLMDC for R = 1 bpp are displayed in Fig. 8
and Fig. 12, respectively. Although the third layer has been

added to TLMDC, the improved methods can also be added,
so they can be compared together. And our new scheme has
better overall performance.
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FIGURE 11. The side PSNR (D2,D4,D6,D8) and central PSNR of KSVD-based MDROQ and MDROQ for R = 2.0 bpp with M = 9.

FIGURE 12. The side PSNR and central PSNR of KSVD-based MDUOQ, MDUOQ, TRPCSQ and TLMDC for R = 1.0 bpp with M = 3.

Fig. 9 compares the side PSNR Di and central PSNR
DM of the four-description KSVD-based MDROQ, MDROQ
and TRPCSQ with R = 1 bpp and Fig. 13 demonstrates

the comparison results of four-description KSVD-based
MDUOQ, MDUOQ and TRPCSQ. For the nine-description
image coding, we separately show the results of side PSNR
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FIGURE 13. The side PSNR and central PSNR of KSVD-based MDUOQ, MDUOQ and TRPCSQ for R = 1.0 bpp with M = 4.

FIGURE 14. The side PSNR (D1,D3,D5,D7) and central PSNR of KSVD-based MDUOQ and MDUOQ for R = 2.0 bpp with M = 9.

and central PSNR with R = 2 bpp of KSVD-based MDROQ
and MDROQ in Fig. 10 and Fig. 11 in order to avoid
too crowd and the results of KSVD-based MDUOQ and

MDUOQ in Fig. 14 and Fig. 15. It can be seen that the
side PSNR has a greater improvement as the central PSNR
increases.
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FIGURE 15. The side PSNR (D2,D4,D6,D8) and central PSNR of KSVD-based MDUOQ and MDUOQ for R = 2.0 bpp with M = 9.

From these figures, they clearly show that the proposed
KSVD-based MDROQ and KSVD-based MDUOQ schemes
outperform MDROQ and MDUOQ in both side PSNR and
central PSNR forM = 2,M = 3,M = 4 and M = 9. This is
because KSVD-based sparse transformation can better rep-
resent the structural characteristics of the image to improve
the reconstruction quality. By observing the Fig. 9 to Fig. 11
and Fig. 13 to Fig. 15, we can also see that the proposed
scheme has a better effect on MDUOQ than MDROQ for
sameM . Therefore, the solution we propose has a significant
improvement for most images.

V. CONCLUSION
In this paper, new multiple description coding methods
KSVD-based MDROQ and KSVD-based MDUOQ are pro-
posed. The KSVD algorithm is used to achieve the sparse
transform. The input source can obtain sparse transform
coefficients through KSVD-based transform to improve the
reconstruction accuracy. Theoretical analyses and experimen-
tal results demonstrate that the proposed scheme achieves
better performance than other methods.
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