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ABSTRACT People identification using gait information (i.e., the way a person walks) obtained from
inertial sensors is a robust approach that can be used in multiple situations where vision-based systems
are not applicable. Typically, previous methods use hand-crafted features or deep learning approaches with
pre-processed features as input. In contrast, we present a new deep learning-based end-to-end approach
that employs raw inertial data as input. By this way, our approach is able to automatically learn the best
representations without any constraint introduced by the pre-processed features. Moreover, we study the
fusion of information from multiple inertial sensors and multi-task learning from multiple labels per sample.
Our proposal is experimentally validated on the challenging dataset OU-ISIR, which is the largest available
dataset for gait recognition using inertial information. After conducting an extensive set of experiments
to obtain the best hyper-parameters, our approach is able to achieve state-of-the-art results. Specifically,
we improve both the identification accuracy (from 83.8% to 94.8%) and the authentication equal-error-rate
(from 5.6 to 1.1). Our experimental results suggest that: 1) the use of hand-crafted features is not necessary
for this task as deep learning approaches using raw data achieve better results; 2) the fusion of information
from multiple sensors allows to improve the results; and, 3) multi-task learning is able to produce a single
model that obtains similar or even better results in multiple tasks than the corresponding models trained for
a single task.

INDEX TERMS Gait, inertial, CNN, fusion, multi-task.

I. INTRODUCTION
Gait is an unequivocal biometric pattern of human locomo-
tion since each subject has its own biological characteristics,
making viable the unambiguous identification of people by
their way of walking. Gait analysis can be traced back to 60’s,
when it was used to study walking patterns from healthy peo-
ple [1], as well as for the early diagnosis of neurological disor-
ders such as cerebral palsy [2], Parkinson’s disease [3] or Rett
syndrome [4]. Moreover, this subject of study does not only
include topics from the area of medicine, but it has been also
explored by other research fields, as security [5].

Thus, gait recognition can be used as a biometric pattern in
security applications. Biometric security is defined as amech-
anism used to authenticate subjects based on the verification
of physical characteristics of the subjects. Unlike the iris,
face, fingerprint, palm veins or other biometric identifiers,
the gait pattern can be collected in a non-invasive manner.

This way, subjects do not have to actively collaborate with the
system, what allows gait recognition can be used in complex
environments where subjects have to wear special clothes
(e.g. NBC –nuclear, biological, chemical– suits) or where
other biometric patterns cannot be used due to specific lim-
itations (position of the cameras, privacy laws, etc.). More-
over, gait patterns are reliable since they are difficult to
duplicate due to their dynamic nature. On the other hand,
gait recognition is challenging because differences between
walking styles from different people can be very subtle. It can
also be affected by transient factors such as fatigue, illness,
emotions, etc. In addition, external factors such as clothing,
shoes or carrying heavy loads, influence gait [6]. Despite that,
many approaches have demonstrated that gait can be used as
a biometric pattern for recognition [7]–[9]. Gait patterns are
mainly applied to two different tasks: identification [9], [10],
where gait is used to obtain the identity of a known subject,
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FIGURE 1. Overview. Sketch of the process followed in our approach. The
raw inertial information obtained from a sensor is passed through the
CNN model to obtain the identity of a subject.

and authentication [11]–[13], where gait is used to validate
the identity of a known subject.

Commonly, the gait recognition problem has been studied
from a computer vision point of view as it is not intrusive for
the subject [14]. However, in the last decade, gait recognition
using inertial sensors has become an active and exploited
topic thanks to the cheapening of Micro Electro Mechanical
Systems (MEMS) and their integration into smartphones [15]
or smartwatches [16]. This wearable sensor-based approach
relies on inertial sensors (e.g. accelerometer sensors, gyro
sensors, force sensors) placed in different parts of the human
body (e.g. waist, pockets, shoes, hands) to record gait
information.

As a result, wearable inertial sensors have been employed
in a variety of research topics related to inertial analysis such
as driving analysis [17], fall detection [18], rehabilitation and
therapy for patients [19] and surveillance and monitoring of
users daily life [20].

In this paper, we propose an end-to-end gait recognition
system based on Convolutional Neural Networks (CNN) that
uses inertial sensor data as input. Fig. 1 shows a sketch of the
process followed in our approach. In addition, two extensions
on this CNN-based model are proposed and studied. The first
one includes an early fusion scheme that uses information
obtained from several sensors. The second one adopts amulti-
task scheme to produce multiple outputs from a single input.
Specifically, the tasks considered by our model are identi-
fication, gender recognition and age estimation. However,
in case more labelled data were available, new kinds of
tasks could be added. Finally, our proposal is tested on the
OU-ISIRGait Database [21], since it is the largest gait dataset
including inertial information. According to the results, our
multi-task and fusion approach establishes a new state-of-the-
art, evidencing that the use of multiple inputs and multiple
outputs benefits the learning process.

Thus, themain contributions of this paper are: (i) an end-to-
end approach that uses raw inertial data as input; (ii) an early
fusion scheme to take advantage of information frommultiple
sensors; (iii) a multi-task learning to improve the learning
process and to produce multiple outputs from a single input;
and, (iv) state-of-the-art results on the challenging dataset
OU-ISIR Gait Database [21].

The rest of the paper is organized as follows. We start by
reviewing related work in Sec. II. Then, Sec. III explains
the proposed CNN architectures, and the fusion and multi-
task techniques. Sec. IV contains the experiments and results.
Finally, we present the conclusions in Sec. V.

II. RELATED WORK
The study of the gait using information from inertial sen-
sors attached to the subject is widely applied to many dif-
ferent fields like human activity recognition [13], [22], fall
detection [23], Parkinson’s diagnosis [24] or monitor-
ing patients with Parkinson’s disease [25], [26]. Another
application which is gaining importance during the last years
is people identification using their way of walking, i.e. gait
recognition. In general, most of the gait recognition
approaches are based on computer vision [7], [27]–[30], but
there are also previous works which are based on inertial
sensors [12], [31]. In those examples, the inertial sensor is
attached to the subject in a specific position and orientation.
Thus, the data collected by the sensor has the same coordinate
system. Note that the sensor position is an important aspect to
be taken into account as motion dynamics can vary depending
on sensor location. Some typical positions are hips [32],
legs [33], chest, ankles, lower back and wrists, or combina-
tions of the previous positions [34]. More realistic locations,
such as in a bag [35] or in a pocket [20], have also been
investigated. Other approaches like [36] focus on the authen-
tication problem using sensors integrated on smartphones so
the position is not controlled. Connor and Ross [37] review
a wide range of approaches applied to the gait recognition
problem using different kind of inputs.

In the field of gait recognition, many different approaches
have appeared during the last years. Dynamic Time Warping
(DTW) has been used as a distance measure in [38]–[40].
In these works, gait sequences are initially partitioned into
gait cycles and compared, using DTW, with some previously
selected reference cycles for each class. A similar approach
is presented in [41], where, instead of using DTW as metric
to compare the cycles, a Hidden Markov Models (HMM) is
applied. Similarly, in [42], a cyclic rotation metric (CRM)
is employed instead of DTW. Classification Trees are used
by Watanabe [43] as classifier for gait recognition. They are
employed to process inertial data extracted from the mobile
phone of the subjects while they are walking. Choi et al. [44]
compare different gait signature metrics to represent the
gait information. Finally, these signatures are classified with
a k-Nearest Neighbors algorithm. Other techniques apply
radial basis function (RBF) networks to locally approxi-
mate the accelerations and angular velocities [12] to identify
subjects.

Another important difference between approaches lays
on the type of input data, which can be organized and
pre-processed in many different ways. Kwapisz et al. [45]
employ a combination of time domain features such
as average, time between peaks or binned distributions.
Khandelwal and Wickström [46] proposed a new methodol-
ogy based on utilizing the fundamental spectral relationship
between the movement of different body parts during gait.
More complex features are also used, like Time Frequency
Representation [34], which is a way to describe a signal
simultaneously in a frequency and time space. Higher-Order
Statistics [10] are extensions of second-order measures to
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higher orders, useful to non-Gaussian’s real-life signals as
gait signals.

With the advent of deep learning and Convolutional Neural
Networks (CNNs), instead of developing features manually,
the features are automatically obtained by the network dur-
ing the training process using raw signals as input. In the
case of inertial information, there are two main approaches.
On the one hand, the models are fed with raw information
coming from the inertial sensors [13]. On the other hand,
there are approaches which transform the inertial information
into an image-based representation to fed a CNN, taking
advantage of its capabilities to work with images. Thus,
Zhong and Deng [9] and Zhao and Zhou [11] transform the
inertial signals in spaced time series, called Gait Dynamics
Image (GDI), which are used as CNN input samples.

Traditionally, the cycle-stationary character of the march
has been used to split the data into small subsequences. This
helps to perform a faster and less expensive processing as the
amount of input data is smaller than when a full sequence
is employed. Thus, the full gait sequence is further subdi-
vided using a cycle-based segmentation [21], [47]–[49] or a
window-based segmentation [45], [50]. The former explicitly
studies this previously mentioned cyclic character and creates
a precise but complex segmentation. The latter, which is the
simplest option, obtains the resulting segmentation following
the assumption that one window should contain, at least, one
complete gait cycle. Normally, the length of this window is
between 1.4 [51] and 10 seconds [45].

In addition to using gait as an approach to identify people,
it can be also applied to other tasks such as gender recogni-
tion or age estimation. Usually these tasks are independent
of the main task [8], [52], but it has been demonstrated, like
in applications for face recognition, that they can help to
improve the results of the main task [53].

When different types of input data are available, fusion
techniques can be used to improve the performance of the
processing applied to those data. Two main methods can
be employed for data fusion: early fusion and late fusion.
On the one hand, early fusion methods, also known as feature
fusion methods [54], [55], take data from multiple sensors
and produce different features, which are merged at some
stage of the pipeline to build a combined descriptor. On the
other hand, late fusion methods, also known as decision
fusion methods [56], fuse the output of independent classi-
fiers applying some kind of arithmetic operations. Another
option is explored in [34] and [57] where early and late fusion
are applied together.

In this work, we develop an end-to-end approach based
on a CNN which uses raw inertial data as input. We also
propose the extension of our model with a fusion scheme
that assumes the availability of multiple sensors generating
different types of input data. In addition, we present a multi-
task approach that, using a single model, improves the learn-
ing process by dealing with several tasks at the same time.
Finally, we combine the fusion and the multi-task approach
in a common model which uses multiple sensors to produce

multiple outputs. To the best of our knowledge this is the first
work that, employing inertial data, combines multiple inputs
and multiple outputs in a single CNN to cope with the gait
recognition problem.

III. PROPOSED APPROACH
A. PROBLEM DEFINITION
We propose an end-to-end approach based on Convolutional
Neural Networks (CNNs) which automatically extracts dis-
criminant features from a gait sequence. This kind of net-
works are suitable for this problem since they are based
on convolutions which is a generic operation that can be
used for any kind of signal. The proposed CNN uses the
raw data acquired directly from the inertial sensors without
any pre-processing step. The use of pre-processed features
implies that a human has designed a set of operations to
compute features according to his/her intuition about what
is better to represent the input information. However, in our
opinion, these pre-procesed features may not be the best
possible ones since the human may not know all possi-
ble representations. On the other hand, using raw data as
input to a CNN allows the model to learn its own fea-
tures through backpropagation, automatically discovering
the best features that maximize the accuracy on the target
task.

Since we are going to use OU-ISIR Dataset [21] in our
experiments, we propose a set of improvements for our
model to take advantage of the information included in
the dataset. This dataset includes information from multi-
ple inertial sensors (i.e. accelerometer and gyroscope), thus,
we plan to combine the information from all of them so
that the model can build better features and, consequently,
improve the global accuracy. In addition, as it also includes
three labels per sample with information about identity,
age and gender of a subject, our model processes the gait
information in a multi-task setup to jointly recognize all
of them. For more details about the dataset, the reader is
referred to Sec. IV-A. Note that, although we focus on that
dataset, our approach is applicable to any dataset that contains
one or more sensors and labels for one or more characteristics
of the subjects (i.e. id, gender, age, etc.). Finally, an identity
verification (or authentication) system has also been imple-
mented to decide if two different samples belong to the same
subject.

We will use the following nomenclature throughout
this paper, where vectors and matrices are marked in
bold:
• S: input sequence. It is composed by a temporal
sequence of D channel measurements taken by a sensor.

• si: i-th input sample consisting of a sub-sequence of S
with a specific length, L. These fixed sized subsequences
constitute the CNN inputs.

• yti : label for sample si and task t .
• g(si, θ): non-linear function applied to si with a set of
parameters θ .

• ŷi: output of the network for input si.
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FIGURE 2. Pipeline for multi-task and multi-sensor learning in a gait-based system. Each sensor has its own input branch to learn specific
filters. At some point of the architecture, all branches are concatenated in a single Common Branch that produces a feature vector containing
information from the multiple sensors. Finally, the prediction of the different tasks is carried out using the combined information.

TABLE 1. CNN architectures. Acronyms: ‘P’ = pooling size; ‘Dr’ = dropout; ‘C ’ = number of classes for the used class; ‘Cid ’ = number of classes for the
identification task; ‘Cage’ = number of classes for the age task; ‘Cgender ’ = number of classes for the gender task.

B. INITIAL CNN ARCHITECTURE
Since the CNN model requires a fixed input size and the
length of the gait sequences is not equal for all of the
subjects, we must normalize their length before processing
them through the CNN. To take advantage of the charac-
teristic stationary cycle of the human gait, we divide each
sequence S into U subsequences si, where 1 ≤ i ≤ U ,
with a fixed and sufficient length to collect an entire gait
cycle. Note that gait sequences are not divided into gait
cycles, we just take subsequences with a fixed length from
a sequence. Therefore, the sequence is divided into windows
of length L where each dimension of the signal defines a
specific input channel (leftmost part of Fig. 2 shows the input
data considering D = 3 channels, which is also the number
of physical dimensions). Thus, the convolutions of the first
layer have a filter size of 1 × N × D to take advantage of
the temporal information given by L (length of the sample)
and the D dimensions (also called axes) supplied by sensor
captures. Note that, in this case, N is the size of the convolu-
tion. To increment the number of subsequences available for
training, windows are taken with an overlap of O%.
We propose a CNN with four convolutional layers,

whose number of filters gradually increases. ReLU, batch

normalization and max pooling operations are added
after each convolution. After the last convolutional layer,
we change the max pooling operator by an average pooling
one. Then, a dropout and a fully-connected (FC) layer, with as
many outputs as available classes in the dataset, are appended.
The final layer (i.e. output) is a Softmax one that obtains the
probability distribution associated to the input sample.

The first row of Tab. 1, corresponding to the Single
Task/Single Sensor case, describes the baseline architecture.
Specifically, this table shows all convolutional and fully-
connected layers together with the auxiliary layers attached
to them (i.e. pooling layers size and dropout percentage).
The line above each cell indicates the filter size and the
number of filters. Thus, the first two numbers define the filter
dimension, and the third one indicates the number of filters
that comprises the layer. For example, 1×10×240 represents
a convolution with 240 filters of dimension 1×10. In the case
of the pooling layers, shown in the bottom line of each table
cell, the information indicates the window size that is applied
by the pooling operators to the input data.

Note that the decision of using four layers of convolutions
was taken after carrying out a battery of experiments with
different number of layers and filters.
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To train our model for the identification task (the multi-
task loss function is explained in Sec. III-C), we use a cross-
entropy loss which is commonly proposed to quantify the
closeness between two probability distributions. It is defined
by the following equation:

Lm(̂y, c) = −̂yc + log
K∑
k=1

êyk , (1)

where ŷ is the output vector of the network, ŷc is the output
for the target class, ŷk is the k-th component of the output
vector, c is the ground-truth class and K is the total number
of classes.

C. MULTI-TASK APPROACH
Since the dataset employed in this paper provides multiple
type of labels, we also explore the application of deep multi-
task models (DMT) to our problem. Training a deep multi-
task model (DMT) with T + 1 tasks requires the use of a
set of tuples I = (si, ymi , y

1
i , y

2
i , . . . , y

T
i ), where y

m
i is the

label corresponding to the main task, and yti , with t ∈ [1,T ],
represents the label for each auxiliary task [7].

Taking into account the available labels in the chosen
dataset, which include identity, age and gender, we define
the following multi-task loss function LDMT for a given
sample s:

LDMT (g(s, θ),Y) = λidLid (̂yid, yid)

+ λageLage (̂yage, yage)

+ λgenderLgender (̂ygender, ygender), (2)

where Y = (yidi , y
age
i , ygenderi ) and Lid, Lage, Lgender are

the loss functions for id, age and gender tasks, respectively.
Similarly, λid, λage and λgender are the weights given to the
tasks, being λid equals to 1 (main task). For the other lambda
values associated to the auxiliary tasks, we are going to use
values between 0 and 1. In Section IV-D.3 we conduct some
experiments to establish the most suitable values for each
subtask.

Regarding the loss function used for each task, identity and
gender employ the well-known expression of cross-entropy
loss indicated in equation 1. In the case of the age task,
the dataset labelling only considers a set of ranges. Since
this task can be formulated as a classification problem, we
employ the same loss function than the previous tasks. Fig. 2
shows a sketch of our CNN. It can be observed that a common
feature vector obtained from the Common Branch computes
several outputs at the same time, i.e. age, identity and gender
(rightmost part of the figure).

D. MODALITY FUSION
Due to the existence of different kinds of input data coming
from different sensors, we have designed a network which
combines these inputs to benefit the classification accuracy
by learning new relationships between different kinds of
input data. To allow the model learning combined features

automatically, the information coming from each sensor is fed
into an individual branch composed of a specific number of
convolutional layers that will compute specific predictors for
each sensor. In Fig. 2 we can see an example of a CNN with
two branches (named CNN Branch 1 and CNN Branch 2),
where each branch receives information from a different sen-
sor. Finally, the descriptors resulting from both branches are
concatenated to produce a joint feature vector that is passed
to a common branch (i.e. Common Branch in Fig. 2) that
extracts combined features for all sensors.

Since there are many possible layers in the architecture
where the information of the input branches can be com-
bined, we have selected the best layer by cross-validating
the different setups and selecting the best one according to
the accuracy metric. To limit the number of possible tests,
we have restricted the experiments to convolutional or aver-
age pooling layers. The details about this experiment can be
found in Sec. IV-D.4.

E. IDENTITY AUTHENTICATION
In this problem, an input test sample is compared against
samples of the training set. The answer of the system should
be a positive output for samples belonging to the same subject
and a negative output for samples belonging to different
subjects.

The authentication procedure starts by feeding the input
sample to the CNN so that its feature vector is extracted.
Similarly, the feature vectors of the training samples are also
calculated in the same way. Since the feature vectors can be
obtained from any layer of the model, we perform a cross-
validation process, which is explained in Sec. IV-E, to find
out the layer that produces the best possible features. Once the
features are extracted from the network, they are normalized
with a L2-norm:

fnorm =
f√∑n
i=1 |fi|

2
, (3)

where fnorm is the normalized feature vector, f is the feature
vector extracted from a specific layer, fi is the i-th feature
of f and n is the dimensionality of the feature vector.

Then, a distance vector d with as many components as
samples we have in the training set is computed. The value
of the i-th component of this vector is calculated by applying
the Euclidean distance between the input sample and the
j-th training sample.
Finally, in order to compute the Area Under Curve

(AUC) or the Equal-Error-Rate (EER), we transform these
distances into probabilities. With this aim, we propose an
expression that normalizes the distance vector as follows:

probs = 1−
d

max(d)
, (4)

where probs is the resulting probability vector for the input
sample, d defines the distance vector from each test sample
to each training sample and max is a function that extracts the
maximum value of vector d.
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IV. EXPERIMENTS AND RESULTS
A. DATASET
The OU-ISIR dataset [21] is regarded as the largest gait
dataset based on inertial sensors. The information is collected
using one smartphone and three IMU sensors located in
the waist of the subjects. An IMU sensor is an electronic
device that measures the speed, orientation and gravitational
forces of a person, animal of object that is moving. To obtain
these measurements, the IMU sensor uses a combination of
accelerometers and gyroscopes. The central IMU and the
smartphone are located in the center back waist and the other
two IMU sensors are placed on the left and right waist of the
person, respectively.

The dataset is split into two subsets, the first one
(part A), which is composed of 744 subjects (389 males
and 355 females) with ages between 2 and 78 years,
is recorded only with the central IMU sensor. In this subset,
two sequences of data per person have been recorded at a
rate of 100Hz. Following the methodology used in similar
works ([9], [11], [12], [21], [39], [40], [42], [58]), the first
sequence is used for training and the second one for
testing. Three labels, namely identity, gender and age, are
provided for each subject. Notice that age identification prob-
lem has been tackled using a classification approach, since the
labels provided by the dataset only identify ranges of ages:
‘Under10’, ‘Group10-19’, ‘Group20-29’, ‘Group30-39’,
‘Group40-49’ and ‘Over50’. The second subset (part B)
is composed of 495 subjects recorded with the three
IMU sensors. For each subject and each sensor, there are two
sequences for level walk, a sequence for up-slope walk, and
a sequence for down-slope walk.

Fig. 3 shows an example of the data acquisition pro-
cess. The inertial data collected by the sensors is shown
on the right part of the image. Top plot shows the tem-
poral measurements for the accelerometer and bottom plot
contains the measurements for the gyroscope. The image
of the subject and the images of the signals have been
obtained from Ngo et al. [21]. In our experiments we use
the information from the accelerometer and gyroscope as
independent signals that could be fused. Each sensor is com-
posed of three signals, or axes, that represent a measure-
ment in a three-dimensional space (i.e. X , Y and Z ). Both
sensors are oriented in the same direction, so their axes are
equal.

B. INPUT DATA
Due to the reduced amount of data available for training,
we perform a data augmentation process before the training
step. This way, from every original sequence, we obtain
three new sequences applying data augmentation techniques.
Concretely, we apply the following operations:
• Adding gaussian noise with σ = 0.01 to the input signal.
• Scaling the original sequence by a random value in the
range 0.7 and 1.1 following Eq. 5.

Lr (S) = S · ((1.1− 0.7) ∗ rand()+ 0.7), (5)

FIGURE 3. Data acquisition process. The left part of the image shows a
subject walking through a circuit with the sensor system in the waist. The
right part of the image depicts the inertial information recorded during
the walk. Top plot shows the measurements for the accelerometer and
bottom plot contains the measurements for the gyroscope. Images
obtained from [21].

where S is the original signal and rand() is a function
that returns a random number extracted from an uniform
distribution in the range [0, 1].

• Interpolating the original signal by inserting 10 new
values between each pair of original values, and then
randomly sampling this new signal, so that for each
set of 10 values a single value is taken randomly. This
way, sampling imprecision resulting from delays in the
physical sensor or in its firmware is simulated.

With these techniques, the training process is improved
and the network will be able to deal with different
types of noise. Since the input sequences have different
lengths, we split sequences into fixed-length subsequences of
L = 100 measures (i.e. one second), what is enough to
contain a complete gait cycle. In addition, to increase the
number of samples even more, subsequences are extracted
with an overlap of O = 75%.

C. IMPLEMENTATION DETAILS
We ran our experiments on a computer with two Xeon
E5-2698 processors, with 16 cores each one, running at
2.3GHz, 256 GB of RAM and a GPU NVidia Titan X Pascal,
with MatConvNet library [59] running on Matlab 2016a for
Ubuntu 16.04.

During training, we perform 100 epochs with a training set
split into training + validation. Training process is finished
with a fine-tuning step that runs 50 additional epochs with the
whole training set, without validation. The learning rate starts
at 0.01, and is divided by 10 every 50 epochs. The same policy
is used in the case of fine-tuning, except that the starting
rate is 0.001. We train the networks using standard stochastic
gradient descent (SGD) with mini-batches of 128 samples,
weight decay of 0.0005 and momentum of 0.9. Filters are
initialized with random values from a normal distribution
with zero-mean and standard derivation of 0.01. Bias are ini-
tialized to zero. Note that these hyper-parameters have been
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TABLE 2. Gait recognition accuracy and F1-score of three different
sensor positions. The best results are marked in bold.

cross-validated before running the experiments presented in
the following sections.

Since the input sequences are split into subsequences,
at test time we have to combine the outputs of each subse-
quence to obtain a global accuracy for the whole sequence.
With this aim, we combine the probabilities of all subse-
quences by multiplying them to obtain a final probability
distribution using the following equation:

P(S = c) =
U∏
i=1

Pi(si = c), (6)

where U is the number of subsequences extracted from
sequence S, P(S = c) is the probability of assigning the
identity c to the person in sequence S and Pi(si = c) is
the probability of assigning the identity c to the person in
subsequence si. Note that we performed a set of experiments
with different strategies to combine the probabilities and we
selected the best one (i.e. product of the probabilities).

D. GAIT RECOGNITION EXPERIMENTS
1) SENSOR POSITION
In this experiment we evaluate the performance of our base-
line network (first row in Tab. 1) for three different positions
of the accelerometer included in OU-ISIR part B (i.e. left,
center and right waist).

Tab. 2 summarizes the accuracy and F1-score results for the
identification problem using our baseline network with three
different sensor positions. According to the results, the most
discriminant position is the left waist while the other two
positions obtain similar results. These results correlate with
those obtained in [21].

Note that although the best accuracy has been obtained
when the sensor is located at the left waist, the experiments
conducted in the following sections will use the sensor at the
center backwaist as themost populated dataset (OU-ISIR part
A) only provides information for this position. In addition,
the state-of-the-art approaches, which we want to compare
with, only use this subset.

2) SINGLE TASK WITH INDIVIDUAL SENSORS
In this experiment we compare the accuracy of each individ-
ual sensor to obtain the baseline results that will be used to
evaluate the impact of the fusion and multi-task techniques.

Since there are three different labels or tasks per subject
(i.e. identity, age and gender) and two sensors (i.e. accelerom-
eter and gyroscope), we train as many networks as combi-
nations are available. Thus, we train six CNNs following

the specifications commented in Sec. III and the architecture
defined in the first row of Tab. 1. Note that for all these
networks, our input data shape is 1× 100× 3.
Following the experimental setup commented in Sec. IV-A,

the first sequence of each subject is used for training and
the second one for testing. In addition, we perform the data
augmentation and operations commented in Sec. IV-B.

The first two rows in Tab. 3 summarizes the accuracy and
the F1-score results for this experiment. We observe that the
accelerometer obtains the best results for all tasks although
the difference with the gyroscope is always lower than 1%.
Thus, this means that both sensors can be used to recognize
people using their way of walking. As the results obtained
with both sensors are high, we expect the fusion of both input
data can boost the results.

3) MULTI-TASK WITH INDIVIDUAL SENSORS
The objective of this experiment is to validate if a multi-task
training process could improve the baseline results. Thus,
we train one network per sensor with a multi-task loss as
explained in Sec. III-C. The architecture used for these net-
works is defined in the second row of Tab. 1. According to
Eq. 2, the value taken by the lambda parameter λid , belonging
to the main task is 1.0, while the corresponding ones for aux-
iliary tasks are problem-dependant. Thus, we have selected
the best values for these parameters through cross-validation
running a set of experiments with values ranging from 0.1
to 1.0. After this cross-validation process, the best values
obtained for each lambda are 0.6 and 0.7 for age and gender
respectively. Note that for all these networks, our input data
shape is 1× 100× 3 and three labels are employed, one per
task.

Third and fourth rows of Tab. 3 show the results for
this experiment. Again, the accelerometer achieves the best
results for all tasks compared to gyroscope. Comparing the
multi-task results for each sensor with the baseline results,
we can observe that the multi-task loss improves the accu-
racy and F1-score for all tasks and sensors. On average
(‘Avg’ columns in Tab. 3), the improvement is 1.6% for
the accelerometer and 0.7% for the gyroscope. Therefore,
the multi-task loss helps the optimization process to find
better descriptors and, consequently, improves the global per-
formance of the model.

Apart from the improvement in the results, the multi-task
model also has an important impact in computing perfor-
mance. Thus, it is able to produce the output for all tasks at the
same time using the same parameters. This implies a saving
of time in both training and testing as only one model must be
computed instead of three models if a single task setup had
been implemented.

4) SELECTION OF THE FUSION POSITION
To deal with the information from both sensors, we use a
CNN with two branches, one per sensor, that will be fused at
some point of the architecture. Note that, as explained above
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TABLE 3. Gait recognition accuracy and F1-score. ‘Avg’ corresponds to the average accuracy or F1-score of the three tasks. The best results are marked in
bold.

TABLE 4. CNN architectures for fusion experiments. Acronyms: ‘P’ = pooling size; ‘Dr’ = dropout; ‘Cid ’ = number of outputs in identification task
(744 outputs). Each row represents an architecture that performs the early fusion in a different layer and each column represents the different
layers that make up these neural networks.

in Sec. III-D, our fusion is performed as the concatenation of
the embedding of the different inputs.

Since the proposed architecture is composed of multiple
layers, data fusion can be performed at each one of them.
In order to find out the best layer to fuse, we perform a
set of experiments where branches are fused after each con-
volutional layer of the network and after the average pool-
ing layer. As we are dealing with three tasks, two different
networks and five fusion positions, the number of experi-
ments to be carried out is be very large. Thus, to reduce the
experiments, we restrict the study to only the identification
task. Then, the results will be extrapolated to the rest of
the tasks and to the multi-task approach. Tab. 4 shows the
architectures used during this experiment. Each row rep-
resents a different architecture and each column indicates
the configuration of each layer of the architecture. When
a filter is preceded by Acc or Gyr it means that this fil-
ter is applied to data from the accelerometer or the gyro-
scope, respectively. Otherwise, it is applied to the fused
data.

Tab. 5 contains the comparative results for the different
fusion positions. As we can see, both the accuracy and
F1-score drop as fusion is deeper applied in the architecture.

TABLE 5. Fusion level experiment. Each row represents a different layer
where the fusion is applied. ‘Acc’ column represents the accuracy and
‘F1-score’ column represents the F1-score for the identification
problem, respectively.

Thus, the best result is obtained when fusing just after the
first convolution while the worst one is attained after the
last convolution and after the average pooling. We think
this behaviour is due to the fact that the training dataset
is relatively small and, when the fusion is performed in
later layers, there are more trainable parameters and the
models overfit. Probably, with a bigger dataset, the best
results would be obtained in later layers where the stored
knowledge is more discriminant. Unfortunately, currently
there are no larger datasets. Consequently, fusion after the
first convolutional layer will be employed in the following
experiments.
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5) SINGLE TASK WITH FUSION
In this experiment we focus on the fusion approach to check
its impact on the accuracy compared to the baseline. Taking
advantage of the findings obtained in the previous experi-
ment, we design a network with two branches that will be
combined after the first convolutional layer.

Since there are three different labels or tasks per subject
(i.e. identity, age and gender), we train three CNNs, one per
task, following the specifications commented in Sec. III and
the architecture defined in the third row of Tab. 1. Note that
for all these networks, our input data shape is 1× 100× 3 for
each branch.

The fifth row of Tab. 3 contains the results for this experi-
ment. As we can observe, the fusion improves the baseline
results for all tasks and, on average, the improvement is
around a 3% compared to the accelerometer, which, attending
to accuracy and F1-score results, is the best sensor. If we
compare the fusion approach with the best multi-task sensor,
we can see that the results are better for id and age but a bit
worse for gender. However, on average, fusion improves in a
1.3% the best results of multi-task in terms of accuracy and
in a 1.9% for F1-score.

6) MULTI-TASK WITH FUSION
Finally, we evaluate the effect of applying fusion and multi-
task in the same network. Therefore, a network with two
branches is designed, which are combined after the first
convolutional layer. Also, a multi-task loss for training the
model is included.

In this case, we only have to train one CNN as all tasks
are used at the same time. We follow the specifications com-
mented in Sec. III and the architecture defined in the last row
of Tab. 1. Note that our input data shape is 1 × 100 × 3 for
each branch. An sketch of this model can be seen in Fig. 2.
Note that in this experiment, our lambda values are 0.9 and
0.8 for age and gender, respectively.

The last row in Tab. 3 contains the results for this exper-
iment. According to the results, this approach is the best
one compared with the other architectures of the previous
experiments. These results validate our hypothesis claiming
that the use of more modalities and labels boosts the results
as the model has more information to describe the subjects.
On average, the model with multi-task and fusion achieves
an improvement of 4.4% for accuracy and 4.7% for F1-score
with respect to the accelerometer without multi-task.

Moreover, thismodel is able to produce outputs for all tasks
at the same time using the same parameters. This means a
saving of time both in training and in test as we have to deal
with only one model instead of three when a single task setup
is used.

E. AUTHENTICATION EXPERIMENTS
In these experiments, the evaluation of our models is per-
formed following the indications commented in Sec. III-E.
Thus, we extract the activations of the average pooling layer

TABLE 6. Authentication accuracy. ‘EER’ is the Equal-Error-Rate (lower is
better) and ‘AUC’ is the Area Under the Curve (higher is better). The best
results are marked in bold.

for each sample to be tested and compute the euclidean dis-
tance between it and the training samples. Then, we evaluate
the performance of our approach calculating the Area Under
the Curve (AUC) and the Equal Error Rate (EER) metrics,
which have been previously extracted from a ROC curve.

Tab. 6 shows the AUC and EER for our different models
defined in the recognition experiments. Thus, each row is a
different model and each column is a different metric. Com-
paring the results appearing in the table for single sensors
(first and second rows), the accelerometer obtains the best
results for both metrics compared to the gyroscope. If we
focus on the MultiTask experiments (third and fourth rows),
we can see that the results are slightly worse than the obtained
with the isolated sensors, specially for the EER metric. In our
opinion, this worsening of the results is due to the multi-task
learning setup as the model has to deal with different labels.
Thus, the descriptors used for the authentication process con-
tains information used for a different task and the authentica-
tion gets worse precision. Finally, if we focus on the fusion
experiments (rows fifth and sixth), the results improve on
the previous ones but, again, the multi-task learning obtains
worse results than the single-task learning.

F. STATE OF THE ART COMPARISON
In this section, we compare our best approaches for recogni-
tion and authentication with the state-of-the-art. Note that the
works included in the comparison are explained in Sec. II.
Tab. 7 contains the results for the recognition problem and
Tab. 8 contains the results for the authentication problem.

In both cases, our approach sets a new state-of-the-art by
a wide margin. For the recognition problem, our MultiTask
Fusion improves the previous approach by a 11% for the
identification task. Note that the other approaches do not use
other tasks (‘-’ values in the table) so the comparison for those
cases cannot be performed. For the authentication problem,
our SingleTask Fusion obtains the best results and improves
by 4.5% the previous best EER result. Therefore, our end-
to-end method is able to beat all the previous approaches,
establishing a new state-of-the-art.

G. EXECUTION TIME DURING TEST
As stated by the results reported in the previous sections,
the use of a multi-task learning combined with the fusion
of information from multiple sensors is able to improve the
baseline model and previous works in terms of accuracy.
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TABLE 7. Gait recognition: state-of-the-art. Each row represents a
different approach. ‘Avg’ is the average accuracy of the three tasks.
The best results are marked in bold.

TABLE 8. Authentication: state-of-the-art. Each row represents a
different approach. ‘EER’ is the Equal-Error-Rate. The best results
are marked in bold.

FIGURE 4. Inference time comparison. Execution time (ms) of the
proposed models for inference.

In this section, we evaluate the execution time of our models
during the test process (inference). Experiments have been
conducted on a heterogeneous architectures consisting of a
host with two Intel Xeon E5-2698 CPUs and a NVIDIA
GeForce GTX 980 device connected to the host through a
PCIe 3.0 bus.

In our experiments, the transfer time of an input sample
from CPU main memory to GPU global memory through
the PCIe bus is negligible (around 1µs). Then, the sample
is processed on the GPU and the execution time for the
inference is calculated. The experiment for each CNN model
is run ten times and the average time is calculated. Obtained
results are shown in Fig. 4. According to the results, the base-
line networks (i.e. SingleTask models) are the fastest ones.
When fusion or multi-task are included, the computation
increases and therefore the execution time increases too.
For SingleTask and MultiTask models, the execution time

increases approximately in 1 ms but the accuracy of the
model increases in more than 3%. Regarding the MultiTask
models, it is important to point out that despite they have a
higher execution time than SingleTask models, they produce
three simultaneous outputs (id, age and gender). However,
SingleTask models should be execute three times to obtain
the same outputs. Consequently, the MultiTask models are
the fastest ones when multiple outputs are necessary and,
in addition, they produce the most accurate results.

V. CONCLUSIONS
We have presented a new end-to-end approach based on
CNN architectures for the gait-based recognition and authen-
tication problems that uses raw inertial data as input. A fusion
scheme has also been proposed which takes advantage of data
obtained from several inertial sensors. In addition, we have
developed a multi-task learning model that works with the
multiple labels of the dataset. Extensive cross-validation has
been employed to establish the best hyper-parameter values
of the models, such as the layer to fuse, λ values, etc.

As a result, the proposed architectures are able to extract
automatically gait features from sequences of inertial infor-
mation recorded by accelerometers or gyroscopes. Those
signatures have been used in four different tasks: people iden-
tification, gender recognition, age recognition and people
authentication. In all cases, our approach sets a new state-
of-the-art compared to previous approaches.

With regard to the input sensor, according to our results,
the accelerometer obtains the best results in all setups. How-
ever, the gyroscope achieves results which are close to the
ones obtained with the accelerometer. The fusion of both sen-
sors improves the accuracy in all cases showing that the use
of multiple inputs benefits the learning process. Regarding
the multi-task problem, we have demonstrated that a single
model can be trained in a multi-task setup to obtain the
outputs of all tasks at the same time, instead of having one
model per task. Moreover, the multi-task learning boosts the
results for the tasks of people identification, gender recogni-
tion and age recognition. In the case of people authentication,
the single task models obtain better results although by a
small margin.

As a final recommendation and, according to the results
obtained, the best option would be to use an end-to-end
approach fusing the information from all sensors. Multi-task
learning can improve the results for recognition problems but,
for authentication, the performance is a bit lower compared
to a single task approach.

As future work, we plan to study in detail the multi-task
setup including authentication to improve its performance.
We intuit that including a verification loss during training
should be a good starting point to improve the current results.
In addition, we plan to study how the gait is affected by
illness or fatigue in terms of recognition accuracy.

The authors gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan X Pascal
GPU used for this research.
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